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Abstract

Simple binary patterns have been successfully used
for extracting feature representations for visual object
classification. In this paper, we present a method to
learn a set of discriminative tri-value patterns for pro-
jecting high dimensional raw visual inputs into a low
dimensional subspace for tasks such as face detec-
tion. Unlike previous methods that use predefined sim-
ple transform bases to generate tens of thousands fea-
tures first and then use machine learning to select the
most useful features, our method attempts to learn dis-
criminative transform bases directly. Since it would
be extremely hard to develop analytical solutions, we
define an objective function that can be solved using
simulated annealing. To reduce the search space, we
impose sparseness and smoothness constraints on the
transform bases. Experimental results demonstrate that
our method is effective and provides an alternative ap-
proach to effective visual object classification.

1. Introduction

For pattern recognition tasks such as visual object
classification, e.g., face detection, one of the important
challenges is to extracting discriminative representation
features. Normally, a transform is used to transform the
raw pixels into feature vectors. To counter the ”curse
of dimensionality” and to facilitate fast computation,
the transformed features should be of low dimensional.
There have been a lot of work in the literature address-
ing this problem, such as Principle Component Analysis
(PCA)[6][11], Linear Discriminat Analysis (LDA)[9]
and the Independent Component Analysis(ICA) [3].

The results of Viola and Jones [10] have demon-
strated that using simple tri-value transform bases is
sufficient to extract effective representation features for
visual object classifications. The computational advan-
tage of tri-value patterns has also made this type of
transform attractive. Another very interesting transform
is random transform (RT) where the bases are generated
randomly [2][5]. For these types of transforms, a poste-
rior selection is oftern prefered [10][4].

Our new method’s transform bases are tri-value pat-
terns in the set {−1, 0,+1} similar to those used in
[10][5][12] where the value 0’s corresponding to those
pixels that are not involved in the computation. How-
ever, we take a different approach to these previous
methods. In random transform, the transform bases
are generated randomly with certain predefined distri-
bution; in Viola and Jones, the transform patterns have
predefined shapes and they are used to generate tens of
thousand of features first and then machine learning is
used to select the relevant features. In [12], the method
is just for {0, 1} binary bases. Instead, in this work, we
attempt to derive the transform bases directly and the
contribution of this paper can be regarded as introduc-
ing an alternative method to developing simple tri-value
transform bases for feature extraction and representa-
tion for visual object classification.

2. Problem Formulation

The problem that we are interested is illustrated in
Fig. 1 where an input image is convolved with a set of
binary pattern (tri-value or tri-state bases) to produce a
feature vector which is then used by a classifier to de-
termine to identity of the input. It is not difficult to see
the importance of a proper pattern design which should
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help producing more discriminative feature vectors.

Figure 1. Project onto tri-value bases.

Generally speaking, the problem of finding the
binary/tri-value bases is an integer programming prob-
lem. Since the computation complexity is NP-hard and
the dimension of such bases is relatively high (several
hundred), an exhaustive search approach is intractable.
However if we can provide some heuristic information,
such as the sparseness constraints or local structural
constraints, the search space can be significantly re-
duced and a randomized optimization algorithm such as
simulated annealing and genetic algorithm can be used
to solve such kind of problem. It is obviously very dif-
ficult to simultaneously optimize all the bases. Instead,
we extract the bases in a sequential manner. That is,
we firstly find the most discriminative one, and then re-
peated this process until we get enough bases. There-
fore, the problem we are facing is a discrete projection
pursuit problem which can be formulated as follow:

Problem Definition: Given the sample set X =
{xi}N

i=1 and corresponding class labels {ci}N
i=1 , we

search for projection vectors W = {w1,w2, ...,wd}
that satisfy

W = arg max WF (W)+α ·S(W)+β ·C(W) (1)

s.t.wi(k) ∈ A, where A is the alphabet, e.g. A = {0, 1}
for binary basis and A = {−1, 0, 1} for the tri-value
case. The objective function in (2) is composed of three
terms, the discriminate term F (w), sparseness terms
S(W) and the clique constraint term C(W). The co-
efficient α and β controls the trade off between them.
And considering the sequential way of obtaining these
bases, the i’th base can be obtained by turning the ob-
jective function into

wi = arg max wF (w) + α · S(w) + β · C(w) (2)

The discriminative term F (w) in (2) measures the sepa-
rability of the input patterns (we consider two-class in-
puts here). It should maximize the distance between
different classes while minimize the within class dis-
tance. Based on this principle, several discriminative

functions can be used[8]. Here we mainly concentrated
on the Fisher Discriminant Function.

F (w) =
wT Sbw
wT Sww

(3)

(2) Taking into account the discreteness and sparseness
of the tri-state bases, it is more convenient to write this
formula in an equivalent form to reduce computation
complexity while avoiding numerical instability.

F (w) =
wT S−1

w Sbw
wT w

(4)

For the Sw which is too singular to invert, a PCA di-
mension reduction before the LDA is necessary. Then
the objective function becomes

F (w) =
wT GT Ŝ−1

w ŜbGw
wT w

(5)

where the matrix G is formed by the first m principle
components obtained from the training pattern features.
Ŝw and Ŝb are the within and between class scatter ma-
trices after the PCA dimension reduction.

The sparseness function S(w) measures the sparse-
ness of the bases. When we refer to tri-value bases
where A = {−1, 0, 1}, it is the number of non-zero
coefficients in the bases and can simply be written as
wT w. As will be shown later, if the base being opti-
mized is constrained by a predefined constant sparse-
ness, this term as well as the denominator of Equation
(5) will remain constant in the optimization process.

The clique constraint function C(w) controls the
piece-wise smoothness of the tri-state bases. This term
is introduced with two purposes: First, by applying it
we can integrate some prior knowledge into the opti-
mization process, such as the smoothness or geometri-
cal characteristic of the pattern. This could eliminate a
lot of bad candidate bases in our search space and leads
to a faster convergence speed. Second, when the dis-
criminative power of the pursuited base gradually falls,
this constraint can force the non-zero coefficients con-
centrating on a discriminative local part.

Here we only considered a class of clique constraint
functions which can be written in quadratic form.

C(w) =
∑

ψ∈{−1,0,+1}
wψDψwψ

where wψ is obtain from w using wψ (k) ={
1, w (k) = ψ
−1, w (k) 6= ψ

. The distance matrix Dψ is as-

sumed to have the form

Dψ = (di,j) =
(

e−
dist(∆xij,∆yij)

σ

)
=

(
e−

(∆x2
ij+∆y2

ij)

σ

)



where ∆xij and ∆yij are the horizontal and vertical
distance of two different entries in a base which should
be defined with some prior knowledge to reveal the cor-
relation between the two entries. In this work, we are
interested in bases in which zeros and non-zero coeffi-
cient will cluster separately and this term can be inter-
grated into the sparseness term as αw0(D0+β/αI)w0.

In this work we considered two different distance
functions: the cluster constraint and the symmetric con-
straint. The cluster constraint defined the distance func-
tion dist(∆xij ,∆yij) with

∆xij = mod(|xi − xj | ,
⌈xmax

2

⌉
)

where xmax is the width of the face patch and ∆yij can
be defined similarly. It encourages non-zero coefficients
to gather together and the connectivity is considered in
a circular way that to avoid non-zeros coefficients to be
”pushed” to the four corners by the zeros. The sym-
metric constraint take into consideration the symmetric
characteristic of human face, if one portion of the pat-
tern is considered to be non-discriminative (correspon-
dent to zeros coefficients) then the symmetric counter
part of it is very likely to be unimportant too. So the
distant function dist(∆xij ,∆yij) is defined with

∆xij =
∣∣∣xi −

⌈xmax

2

⌉∣∣∣−
∣∣∣xj −

⌈xmax

2

⌉∣∣∣

And ∆yij can be defined similarly.

3. Optimizing the Objective Function

We optimize the above objective function with the
simulated annealing (SA) algorithm[7]. In practice, we
optimize N = 100 bases of different sparseness in par-
allel and choose the one with the largest objective func-
tion as the result. Each of these bases is specified a
constant sparseness defined by S(wi) = 240 − 2i, i =
0, . . . , N − 1 and made zero mean by forcing an equal
number of +1 and −1. Consequently, only swapping is
needed in the permutation operation of SA algorithm.

The algorithm works by swapping the position of
two randomly selected entries of a base wi. If the
base ŵi resulted by this alteration increases the objec-
tive function, then accept the change. Otherwise, accept

the change with a probability of e
J(ŵi)−J(wi)

T . The tem-
perature T is set to a sufficient large value Tmaxin the
initialization to make the algorithm have enough time to
reach the optimum.
Initialization: T = Tmax,W = φ
i) Generate a set of random bases {wi|i = 0..N − 1}
with different sparseness.
ii) Optimize each w with SA algorithm. Randomly

swapping two entry of wi to obtain a new base ŵi. If

J(ŵi) − J(wi) > 0 or e
J(ŵi)−J(wi)

T > r , wi = ŵi

. The random number r obeys a uniform distribution
between [0, 1]. Repeat this process for 3000 times and
then decrease as T = kT , k = 0.98.
iii) Select the base with the maximum objective func-
tion value among {wi|i = 0..N − 1}. Subtract w from
X and W = W ∪ {w}.

4. Experimental Results

An face/non-face classification task is conducted to
evaluate the effectiveness of our method. By using the
MIT database [1], we have 2429 faces and 4,548 non-
faces for training and 472 faces and 23,573 non-faces
for testing. The 19×19 image patches are preprocessed
with histogram equalization and mean subtraction to re-
move the influence of different illuminant.

We compared the classification performance of our
selected tri-value bases to the results obtained with
PCA, LDA, and RT. In the experiment, the image
patches are firstly projected into a lower dimension fea-
ture space with aforementioned methods and then fed
to a statistical classifier for training and testing. Three
different feature dimension (10, 30, 64) and two types
classifiers: the Naive Bayesian classifier and support
vector machine are investigated in this experiment.

(a) cluster constraint (σ = 5, α = β = 2.5E−3)

(b) symmetry constraint (σ = 2, α = β = 2.5E − 3)

Figure 2. The 64 discriminative binary
patterns learned with two different con-
straints, where -1’s are back pixel, 0’s are
gray pixels and +1’s are white pixels.



Fig. 2 visualized the tri-value patterns learned from
the face non-face database. It is seen that the first few
bases reveal patterns resembles a human face. As more
bases are extracted, they become more and more sparse.
These sparse bases concentrated on local areas. From
the parameter setting of our experiments, the intermedi-
ate stage between them is relatively short. Some inter-
esting patterns with a specific shape which show some
relationship to the discriminative part of human face are
also observed in the transition process.

Fig. 3 shows comparison between the ROC curves
of tri-value projection, PCA, LDA and RT. We can see
that the tri-value bases successfully acquired the dis-
criminative power of LDA projection and the perfor-
mance is very close to LDA bases. As a result, the first
a few bases (about 10 dim) is much more discrimina-
tive than RT. With the increase of base number, the RT
which shares a similar perfect reconstruction character-
istic with PCA started to get better in this application.

5. Concluding Remarks

In this paper, we have introduced a learning method
to derive discriminative binary patterns for creating ef-
fective representation features for visual object classi-
fication. Compared with previous methods that used
predefine the binary patterns, our method learns the bi-
nary pattern directly. We have introduced an objective
function and two constraints to pursuit a set of tri-value
bases that is both discriminative and sparse. Experi-
ment results show that the tri-value bases have a similar
performance to LDA while reducing the computation
complexity.We will go on improving the performance
and sparseness of the selected bases using more sophis-
ticate prior knowledge of the patterns and to find more
effective methods for our optimization problem.
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(a) 10 dim
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(b) 10 dim
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(c) 30 dim
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(d) 30 dim
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(e) 64 dim
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(f) 64 dim

Figure 3. ROC of features extracted with
different methods.


