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ABSTRACT

This paper presents a new robust regularization approach to the
reconstruction of enhanced images from noisy observations. A
new regularization constraint designed explicitly to boost non-
noise fine image details is optimized together with a traditional
two-term (smooth and fidelity) regularization functional. A
gradient descent based numerical solution is developed which is
shown to be numericaly stable and converge within finite
iterations. Experimental results are presented to demonstrate
that images constructed by the new method contain much better
preserved edges and fine details.

1. INTRODUCTION

Estimating the underlying scenes from observed noisy datais an

important inverse problem in image processing. Generaly

speaking, thisis an ill-posed inverse problem. One way to solve
the problem is to use regularization theory [2, 3] and obtain a
solution by minimizing a cost function of the form of (1)

E(f)=(f (- d))fdx+1 ¢ (Nf(x))dx @

where Nf(x) is the gradient of f(X), j is an edge preserving
nonlinear function, W denotes the image domain, and | is a
regularization factor which balances the influences between the
two terms of (1).

The first term of (1) measures the fidelity of the estimation
and the second term measures the smoothness of the
reconstruction. The regularization parameter is chosen such that
the recovered original image is faithful to the observed data and
at the same time it is smooth. The choice of an appropriate edge
preserving functionj is very important which should encourage
smoothing within regions and discourage smoothing across region
boundaries. A number of different functions have been used in
the literature. The authors in [1] explored severa possible
choices of j in the context of anisotropic diffusion filtering and
robust estimation. Other possibilities of j include those
suggested in the original nonlinear anisotropic diffusion model of
Peronaand Malik [5]. The Tukey’s biweight function was found
to give better performance than the Perona-Madlik’s Lorentzian
function. Tukey biweight function is defined as (2) and its first
order derivative defined as (3).

One of the problems with the functional of (1) isthat it can
gtill smear image details and cause the recovered images to be

blurred. This is illustrated in Fig. 1 where the borders between
piecewise constant regions have been smeared by the
regularization method of (1) (see Fig. 1 (c)) and edge detection
has failed to recover the region borders from the restored image
(see Fig. 1 (f)). Please see text in Section 4 for details of the
experimental procedures.
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One solution to overcome this problem is to introduce line
process [2], best known as the Mumford-Shah functional [4]:

E(f.K) = ff()- d(¥)’dx+1 ¢ (Nf (0)dx+alK| (4)

where K is the (closed) set of edges and the last term of (4) isthe
penalty for introducing the line segments. In the literature, there
have been many modifications to this general scheme. However,
numerical solution to (4) is nontrivial.

In this paper, we introduce a hew regularization constraint
to the standard functional of (1). This new constraint explicitly
boosts edges and details thus preventing excessive blurring.

2.LAPLACIAN REGULARIZATION

Our new functiona has the form of (5)
E(f)=1,f0)- dp0fdx+1,¢ Nf(o)ax+ (9

o ox(F Y- F(x)* h(x))dx

where, | 4, | ; and | ;3 are non-negative weighting constants, h(x) is
the systems point spread function (PSF), x is a nonlinear
function similar to j and * denotes spatial domain convolution.
The first two terms are the same as in (1), the third term is the
new Laplacian regularization constraint. The interpretation of
the first two terms is similar to that in (1). We explain the
purpose of the third term.

For analysis convenience, we first set x (X) = x and re-write
the third term of (5) as



E(f)=df(9- f(x*h(x))ix ()

In order to understand the effects of minimizing (6), lets assume
that the function f(x) and the point spread function h(x) both
take the form of a Gaussian:

® x* 0 (7)

f(X):S w/%e(pé 2 2+

Q-

X 0 8
h(x) = e(p =X
h é E h @
(6) now becomes
E(shs )= ©)
) & &
—ex = = expk- —dx
pé- 2s fz E, \ 5 +s h p(é 2(5 +s )EZ

Clearly, E, is afunction of the widths of f(X) and h(x), s; and
Sh - Fig. 2 (a) plots E, as a function of the ratio of the width of f
and h and Fig. 2 (b) plots the first order derivative of E_ with
respect to the signal width of f(X). Depending on this ratio value,
we can observe following interesting points: For signal features
that are much narrower than the PSF, E, is very large and such
signd (noise) will be considered as outliers by x. For signa
feature that is narrower than the PSF, expanding its width will
reduce E;, rapidly and it reachesits minimum at about s; = 1.5s;,.
For signal feature that is much wider than the PSF, E_ is smal
and it changes very slowly with s;. Therefore, a rough
explanation of the effect of minimizing E_ is (1) the process will
leave large homogenous regions unchanged, (2) it will expand
non-noise detail features to roughly the width of the PSF, and
(3) it will treat very sharp changes as outliers. We will see in the
experiment section that such a process together with the other
two terms in (5) will enable the reconstruction process to
preserve edges and sharp features better.

3.NUMERICAL SOLUTION

For notation convenience, we use 1-D signd to illustrate the
solution to the problem. There are various possibilities to find a
solution to (5), here we will use a gradient descent approach to
solving the equation. The discrete formulation of (5) can be
written as

E(f) =1, A[f(0- doolP +1,8 &) [f(0- F(x+i)]  (10)
+LAXI(F()- A f(x+kh()]

The partia derivative of E with respect to f can now be derived:
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where
L) = f(x)- & f(x+k)h(k) (12)

andj '(X) and X (x) are the first order derivatives of j (X) and x(X)
respectively.
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F|g 1, (a) Synthetical stripesimage, theintensity in each vertical

stripe is a constant. (b) Noise corrupted image of (8). (c)
Restored from (b) using (1). (d) Restored from (b) using (5). (€)
Stripes borders of the origina (). (f) Stripe borders from (c) via
edge detection. (g) Stripe borders from (d) via edge detection.
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Fig. 2 The Laplacian regularizer as a function of the widths of
the signal and the point spread function.

Oncethe partial derivative is computed, then gradient
descent technique can be used to iteratively recover the original
image f(x). This process can be written as



le(x) = ft(x) - h% (13)
f=f (%)
where 0< h < 1 is the updating step-size and t denotes the
iterating sequential index. In the next section, we report
experimental results of the new method.

4. EXPERIMENTAL RESULTS

We have performed various experiments to evauate the
usefulness of the new image reconstruction functiona. In the
experiments, we choose the Tukey biweight function (2) for
both the edge preserving potential function j and for the
Laplacian non-linear regularization function x. and we use a
Gaussian with a sy = 1 pixel as the point spread function h(x).

To choose an appropriate scale parameter s for the
biweight functions, we use a robust estimation method similar to
that proposed in [1] and select the scale according to

s =3.3MAD =3.3Median{| - Median{1}]} (14)

where MAD denotes the median absolute deviation, Median {1}
is the median value of the set {I}. In the case of the edge
preserving function j , the set {1} is obtained from {I}= {2f(x) —
f(x-1) — f(x+1)}. In the case of Laplacian regularization function
x theset {1} ={L(X)}.

The choice of the regularization parameters | 1, | , and | 5is
done empirically. This is the approach used by amost al
authors. Although a systematical method is desirable, this has
proven to be difficult. Fortunately, we found that the scheme is
not overly sensitive to the choices of these parameters. In all our
experiments, we were able to find a"good" set of parameters for
a given image after a few tries. A rough heurigtic is this. |, is
related to the signal to noise ratio (SNR). If SNRissmall, then | ;
should be small and | , should be relative large so that the smooth
term is sufficiently large to regularize the image. After
determining the values of | ; and | 5, we fix them and choose the
value of | by first setting it to a small value and then gradually
increase it until a satisfactory valueis found.

Apart from the regularization parameters, the updating
step-size is also selected by experiment. There have been many
studies in the neural network literature on how to choose such
parameters, e.g., [6], but this is beyond the scope of this paper.
We found that setting h = 0.25 works very well for all our
experiments.

Fig. 3 shows the result of reconstructing a noise corrupted
synthetical piecewise constant image. It is seen that by
introducing the new term, we were able to restore the edge
features much better. The new method is numerically stable and
for this image the algorithm converged at about 500 iterations
and further iterations did not change the result. In thisFigureit is
seen that the reconstructed image after 2000 iterations is almost
the same as that after 500 iterations.

Fig. 4 shows the result of reconstructing a noisy MRI
image. Again, it is seen that with the introduction of the new
Laplacian regularization term, we were able to restore sharp and
finer details of the image. It is again seen that the algorithm is
numericaly stable. For this image, again, the reconstruction
hardly changed by further iterations after 500 updates.

5. CONCLUDING REMARKS

In this paper, we have presented a new regularization constraint
which, when optimized together with the traditional
regularization functionals, enables the reconstruction of enhanced
images from noisy observations. We have aso presented a
numerical solution and shown that the new agorithm is
numerically stable.
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Fig. 3 Experimental results on a synthetical image. (&) origind.
(b) noise corrupted image. (Contd.)
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Fig. 3 Experimental results on a synthetical image. (a) original.
(b) noise corrupted image. (c) reconstructed image | ; =0.1, | , =
1,1 ;=0 (without Laplacian regularization). (d) reconstructed
imagel ;=0.1,1,=1, I 3=0.5. (€) reconstructed image | ; =0.1,
l,=1,13=1.(c) (d) (e) are results after 500 iterations. (f)
reconstructed image 1, =01, |, = 1, I3 = 1, after 2000
iterations. (g) region borders of the origina image. (h)
region borders based on edge detection from (c). (i) region
borders based on edge detection from (€). (j) region
borders based on edge detection from (f).
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Fig. 4 Experimental results on a MRI image. (a) origind. (b)

noise corrupted image. (c) reconstructed image| ; =0.1,1,=1, 13
= 0 (without Laplacian regularization). (d) reconstructed
imagel ; =0.1,1,=1, 1 3 = 0.5. (€) reconstructed image | ; =0.1,
l,=1,13=0.7. (f) reconstructed image | ; =0.1, | , =1, | 3= 1.
(c) @) (e and (f) are results after 500 iterations. (g)
reconstructed image | ; =0.1, | , = 1, | 3 =0 after 2000 iteration.
(h) reconstructed image 1, =0.1, 1, =1, |3 = 1 after 2000
iterations.



