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This paper proposes to employ the visual saliency for moving object detection via direct analysis from
videos. Object saliency is represented by an information saliency map (ISM), which is calculated from
spatio-temporal volumes. Both spatial and temporal saliencies are calculated and a dynamic fusion method
developed for combination. We use dimensionality reduction and kernel density estimation to develop
an efficient information theoretic based procedure for constructing the ISM. The ISM is then used for
detecting foreground objects. Three publicly available visual surveillance databases, namely CAVIAR, PETS
and OTCBVS-BENCH are selected for evaluation. Experimental results show that the proposed method is
robust for both fast and slow moving object detection under illumination changes. The average detection
rates are 95.42% and 95.81% while the false detection rates are 2.06% and 2.40% in CAVIAR (INRIA entrance
hall and shopping center) dataset and OTCBVS-BENCH database, respectively. The average processing
speed is 6.6 fps with frame resolution 320 × 240 in a typical Pentium IV computer.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Moving object detection from video is the first and important
step in video analysis [1–7]. It has been widely used as low-level
tasks of computer vision applications such as target tracking, visual
surveillance, human behavior recognition, video retrieval and a pre-
stage of MPEG4 image compression. The objective of moving object
detection is to locate foreground objects in the scene for further
analysis. The captured video can be either from a stationary camera
or a moving camera [8]. This paper mainly focuses on the stationary
camera scenario which is the case inmany applications such as visual
surveillance.

Generally speaking, the main challenge of object detection from
video is to detect objects with different moving speeds in com-
plex background clusters, and under different illumination changes.
Many methods have been developed and reported in the last two
decades for object detection from video. These methods can be
categorized in three approaches, namely contour-based [9–11],
orientation-based [12,13] and distribution-based [2,14–19]. The
contour-based approach is able to give a good localization of object
contour, but it may not be able to handle fast motion. Optical flow
is a type method in orientation-based approach and can accurately
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detect the motion direction, but it is sensitive to illumination
changes. Distribution-based methods model the background based
on the intensity distribution and is a popular approach. However,
the performance depends on the accuracy in estimating the distri-
bution. A review on these works is given in Section 2.

In order to overcome the limitations on existing methods, this pa-
per proposes a new detection method based on spatio-temporal (ST)
information saliency which is calculated from density estimation of
pixels both in spatial and temporal domain. Unlike existing methods
[5,20–23], our proposed ST model incorporates both spatial and tem-
poral saliencies for moving object detection via direct analysis from
videos. A dynamic weighted fusion method is developed to combine
the spatial and temporal saliencies. Object saliency is represented
by an information saliency map (ISM) which is calculated from ST
metrics based on information theory [24]. Dimensionality reduction
and kernel density estimation (KDE) are employed to develop an ef-
ficient information theoretic based procedure for constructing the
ISM. Preliminary versions of our work have been reported in [25].

The rest of this paper is organized as follows. Section 2 will give
a brief review on existing work. Section 3 will report the details of
our proposed method using ST ISM. Experimental results and the
conclusion are given in Sections 4 and 5, respectively.

2. Previous works

Moving object detection from video has been studied for more
than two decades and a number of motion detection methods have
been proposed in the last decade. We categorize these methods into
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three approaches, namely distribution-based approach, orientation-
based approach and contour-based approach.

In distribution-based approach, background subtraction is the
most popular method to detect moving objects. The rationale of
this approach is to estimate an appropriate representation (back-
ground image model) of the scene based on pixel distribution, so
that the object(s) in the current frame can be detected by subtract-
ing the current frame with the background image [26]. Based on
this idea, several adaptive background models have been proposed.
Stauffer and Grimson [14] developed a method to model pixels as a
mixture of Gaussians (MOG) and constructed a model that could be
updated on-line. Along this line, other similar methods have been
developed [15,16]. However, there is one problem in background
modelling methods that it requires long computational time for
estimating the background image model. Furthermore, since MOG
assumes all pixels are independent and spatial pixel correlation is not
considered, the background model based on individual pixels is sen-
sitive to illumination and noise. When the density function is com-
plex, parametric approach may fail. Elgammal et al. [17] proposed a
set of Gaussian kernels for modelling the density at pixel level. This
model estimates the probability density function (PDF) directly from
the data without assumptions of the underlying distributions. Mittal
et al. [2] proposed an adaptive kernel density estimation (AKDE)
based background subtraction method and introduced a new band-
width function which was data-dependent for density estimation.
Normalized features were used to solve illumination problems. The
authors claimed that this method is able to handle mild illumination
changes. More recent works on nonparametric background mod-
elling can be found in [18,19]. Generally speaking, moving object
detection methods based on pixel distribution require an accurate
estimation of the background image. The performance is good if the
background image does not change much in a certain period of time.

In orientation-based approach, optical flow is the most widely
used method. This approach approximates the object motion by
estimating vectors originating or terminating at pixels in image se-
quences, so it represents the velocity field which warps one im-
age into another high dimensional feature space. Some researchers
[12,13] proposed motion detection methods based on optical flow
technique, these methods can accurately detect motion in the direc-
tion of intensity gradient, but the motion which is tangential to the
intensity gradient cannot be well represented by the feature map.
Moreover, optical flow based methods also suffer from the illumina-
tion problem.

In the contour-based approach, level sets [9], active contours [10]
and geodesic active contours [11] have been proposed. These meth-
ods can effectively detect moving objects with different sizes and
shapes, and claimed to be insensitive to illumination changes [27].
But contour-based methods cannot handle fast moving objects very
well and are computationally expensive.

Besides these three approaches for detecting moving object di-
rectly from the scene, there is another branch namely visual atten-
tion (VA) based approach which is currently applied for image and
video understanding. The VA based approach is to determine regions
that involuntarily attract our VA. Many VA models [28–32] for still
images have been proposed to simulate the cognitive vision mecha-
nism of human beings. Itti et al. [28] proposed a VA model in which
three spatial visual feature sets (color, intensity and orientation) are
extracted and three saliency maps are built from each feature set.
Then a center surround difference filter is applied to each map, and
a final saliency map is obtained from combination of these individ-
ual maps. This model has then been extensively studied [20] and
shown effective in still image analysis. Bruce et al. [30] proposed an-
other VA model for image analysis using local statistics which can
be obtained using independent component analysis. Since the tem-
poral information is not considered, these methods did not perform

well when applied in video analysis applications, because motion in
video is more salient to our vision system than spatial contrast. To
solve this problem, Cheng et al. [29] developed another VA model
which not only considers intensity and color features, but also mo-
tion information. They considered a short video clip as a basic pro-
cessing unit and obtained the saliency map from both spatial feature
and temporal feature. The horizontal slice and the vertical slice were
considered independently. However, they did not consider the fu-
sion of spatial features and temporal features. Moreover, their model
assumed that illumination could be ignored.

3. Proposed method

This paper proposes a newmethod to construct an ISM using both
spatial and temporal information saliencies. An ST ISM is generated
for moving object detection. The ISM is a two-dimensional array
and each entry reflects the ST saliency of the corresponding pixel
in that video frame. By analyzing the ISM, the detection of moving
object(s) with different moving speeds under different illuminations
is achieved.

3.1. Information theory

From modern attention theory, saliency is the impetus for selec-
tive attention. Different attention models may give different defini-
tions of saliency [28]. In this paper, we use the information measure
as a quantity that reflects saliency [30]. This measure is calculated as
self-information in a particular context. Considering a discrete ran-
dom variable X ∈ {x1, x2, . . . , xn}, suppose an event X = xi is observed,
Shannon's self-information content of this event I(xi) is defined as
follows:

I(xi) = log2 1/p(X = xi) = −log2 p(X = xi) (1)

It means that the information content of an event xi is inversely
proportional to the probability of the observation of event xi. An
event that rarely happened contains high information while an event
which happens frequently contains low information. The property
of information theory shows close relationship with saliency, and
information theory can be seen as a channel between saliency and
selective attention [30]. In this paper, information saliency and in-
formation content are considered as equivalent concepts.

3.2. Computing ISM

We construct the ISM based on spatial and temporal saliencies.
For each frame in the video, we compute its ISM which shows the
visual saliency of each pixel of the frame.

Fig. 1 shows the block diagram of the proposed method in calcu-
lating the ISM. Our method mainly consists of three steps, namely
spatial saliency computing, temporal saliency computing and ST
saliency computing. Suppose we want to calculate the ISM for
the frame Im0, an ST three-dimensional volume V� is constructed
by the current frame Im0 and its previous (N − 1) frames, i.e.
{Im1, Im2, . . . , ImN−1}. The ST volume is then divided into smaller ST
sub-volumes with smaller size of M × M × N. For each sub-volume,
a spatial vector set X′ = {x′

0, x
′
1, . . . , x

′
N′−1} is constructed by the patch

(x′
0) in frame Im0 and its N′ − 1 spatial neighborhoods. In spatial

saliency computing, the spatial saliency IS(x′
0) and S-weight P(X′|V)

(for fusion) are calculated. For the temporal saliency, a temporal
vector set with N elements X = {x0, x1, . . . , xN−1} is constructed from
the sub-volume. The temporal saliency IT (x0) and T-weight P(X|V)
(for fusion) are calculated. By combining the spatial and tempo-
ral saliencies with the S-Weight and T-Weight, the ST saliency for
x0 is then determined. It is noted that x′

0 is the same as x0. They
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Fig. 1. Flowchart of information saliency map (ISM) computing from one single patch, noted as the focusing patch. It mainly contains three parts, namely spatial saliency
computing, temporal saliency computing and spatio-temporal saliency computing.

represent thesame vector form of patch Im0(r, s), called a focusing
patch in this paper. As is shown in Fig. 1, a focusing patch is tem-
porally the first patch in the sub-volume, and spatially the central
patch in a selected context.

The ISM for all the focusing patches are computed in similar
methods. Finally, the ISM for the current frame Im0 can be obtained
as follows:

I(Im0) =

⎛
⎜⎜⎜⎜⎜⎝

I(1, 1) I(1, 2) . . . I(1,w)

I(2, 1) I(2, 2) . . . I(2,w)

...
...

. . .
...

I(h, 1) I(h, 2) . . . I(h,w)

⎞
⎟⎟⎟⎟⎟⎠

(2)

where I(r, s) is the ST information saliency for focusing patch (r, s),
r = {1, 2, . . . ,h}, s= {1, 2, . . . ,w}, h and w correspond to the number of
focusing patches in the saliency map vertically and horizontally. The
resolution of I(Im0) is the same as the original image Im0.

3.2.1. Computing temporal saliency
This section describes how to compute the temporal saliency of a

focusing patch in a sub-volume. Theoretically, based on the entropy
equation, the temporal saliency IT (r, s) is computed by the following

equation:

IT (x0) = IT (r, s)

= − log2[P(Im0(r, s)|V�(r, s))]

= − log2(P(x0|X)) (3)

where V�(r, s) represents the sub-volume constructed at Im0(r, s), x0
is the vector form of Im0(r, s) noted as the focusing patch, as Fig. 1 is
shown, X = {x0, x1, . . . , xN−1}. After calculating the saliency of all the
focusing patches in the current frame Im0, the temporal saliencymap
IT (Im0) is then represented by IT (r, s), r = {1, 2, . . . ,h}, s = {1, 2, . . . ,w},
with the same size and structure as in Eq. (2).

The central part in Eq. (3) is to compute the conditional prob-
ability P(x0|X), which can be illustrated as “Given an event that a
series of xi (i= 0, 1, . . . ,N − 1) happen, the probability of x0 to be the
first event.” In another word, it is equivalent to the probability of
chosen x0 to be the focusing patch in the whole temporal dataset
{x0, x1, . . . , xN−1}. In this case, we need to find the density function
from the data. Estimating the distribution in high dimension space
X = {x0, x1, . . . , xN−1} is time consuming. To solve this problem, prin-
cipal component analysis is employed for dimension reduction and
a new vector set Y = {y0, y1, . . . , yN−1} is generated for estimating the
probability, where yi is a q × 1 vector. From Eq. (3), we have

IT (x0) = −log2(P(y0|Y)) (4)
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We adopt a non-parametric approach for computing P(y0|Y) and
KDE is employed. KDE gives the exact probabilities regardless of the
shape of the population distribution fromwhich the random samples
are drawn.

Considering the q-dimensional sample space Y={y0, y1, . . . , yN−1},
the multivariate kernel estimator is adopted and defined as:

f̂ (y) = 1
N

N−1∑
i=0

KH(y − yi) (5)

where the kernel KH(y)=‖H‖−1/2K(H−1/2y),H is the bandwidthmatrix
which specifies the spread of the kernel around sample yi. In this
paper, we use the sample-point estimator [2]:

f̂ (y) = 1
N

N−1∑
i=0

KH(yi)(y − yi)

= 1
N

N−1∑
i=0

‖H(yi)‖−1/2K(H(yi)
−1/2(y − yi)) (6)

This estimator considers the bandwidth matrix as a function H(yi)
of the sample points yi. So different samples should have kernels
with different sizes. H(yi) is then calculated as follows:

H(yi) = h(yi)I (7)

where h(yi) is the Euclidean distance from yi to the k-th nearest
point. In order to overcome the illumination effect, we derive a new
formulation in Eq. (23) to calculate H(yi) which will be discussed in
Section 3.3.

This method offers two advantages in calculating the band-
width matrix. First, it avoids the under-smoothness and the over-
smoothness problems in data distribution estimation. Second, this
is an adaptive method and dependent on statistical data. When data
are diverse and far apart, the kernel will be smoother. When data
are tightly distributed, the kernel will be sharper. These are good
properties for calculating the probabilities in Eq. (4), especially when
the data size is small. Gaussian kernel is used in this paper and the
density estimator in Eq. (6) becomes Eq. (8) and can be solved.

f̂ (y) = 1

(2�)q/2N

N−1∑
i=0

[
(h(yi))

−q/2 exp
(

−1
2
(y − yi)

T (h(yi)
−1I)(y − yi)

)]

(8)

The temporal saliency of focusing patch x0 is then generated in the
following equation:

IT (x0) = − log2(P(y0|Y))
= − log2(f̂ (y0)) (9)

f̂ (y0) will be calculated using bandwidth matrix in Eq. (26) (details
will be discussed in Section 3.3). We get

f̂ (y0) = 1

(2�)q/2N

N−1∑
i=0

[
(DKL(f̂0‖f̂i))−q/2

× exp
(

−1
2
(y0 − yi)

T (DKL(f̂0‖f̂i))−1I)(y0 − yi)
)]

(10)

3.2.2. Computing spatial saliency
Spatial saliency computing method is similar with the method

in temporal saliency computing. Considering the density of focusing
patch x0 in the spatial vector set X′, the spatial saliency of x0 can be

computed using the following equation:

IS(x0) = IS(r, s)

= − log2[P(Im0(r, s)|B(r, s))]
= − log2(P(x0|X′)) (11)

where B(r, s) represents the selected spatial context which in-
cludes a set of spatial neighboring patches centering at Im0(r, s),
X′ = {x0, x′

1, . . . , x
′
N′−1} is the spatial vector set with x0 the current

focusing patch. Then principal component analysis is employed for
dimension reduction and a new vector set Y ′ = {y0, y′

1, . . . , y
′
N′−1} is

generated for estimating the probability, where y′
i is a q × 1 vector.

Finally, the spatial saliency of focusing patch x0 is calculated in the
following equation:

IS(x0) = − log2

⎛
⎝ 1

(2�)q/2N′

N′−1∑
i=0

[
(h(y′

i))
−q/2

× exp
(

−1
2
(y′ − y′

i)
T (h(y′

i)
−1I)(y′ − y′

i)
)] ⎞

⎠ (12)

A straightforward advantage of using spatial saliency is to detect
slow motion. In the case that an object slows down its speed, the
object temporal saliency is decreasing to zero. To keep tracking the
object saliency, the ST saliency is calculated and the slow motion
detection problem can be solved.

3.2.3. ST saliency fusion
After calculating the spatial saliency and temporal saliency of a

focusing patch, the next step is to fuse these two saliency maps.
The fusion is based on the conditional (probability) information with
spatial and temporal contexts [22]. Writing the self information of
focusing patch x0 in the spatial and temporal contexts, we have

I(x0) = −log2(P(x0|X ∪ X′)) (13)

That is, the information saliency of patch x0 can be obtained from
the minus logarithm of probability of x0 given the conditions of both
X and X′. From the property of conditional probability, the following
equation can be obtained:

I(x0) = −log2

(
P(x0,X ∪ X′)
P(X ∪ X′)

)
(14)

where P(x0,X∪X′) is the joint probability of x0 and X∪X′. Since x0 is
the intersection of its spatial data set X′ and its temporal data set X,
in the case that x0 is chosen to be the focusing patch, it means one
existing patch in set X or X′ is the focusing patch, so event X (a series
of xi, i = 0, 1, . . . ,N − 1) and X′ (a series of x′

i, i = 0, 1, . . . ,N − 1) will
happen. In this case, P(X∪X′|x0)=1. From the property of conditional
probability, P(x0,X∪X′)=P(x0)∗P(X∪X′|x0)=P(x0). Then we further
consider the fact that P(X ∪ X′) = P(X) + P(X′) − P(X ∩ X′) = P(X) +
P(X′) − P(x0), the following equation can be obtained:

I(x0) = −log2

(
P(x0)

P(X) + P(X′) − P(x0)

)
(15)

From the total probability theorem, considering the probability space
of x0 is partitioned into its spatial data set X′ and its temporal data
set X, P(x0) = P(X)P(x0|X) + P(X′)P(x0|X′), the following equation can
be obtained:

I(x0) = −log2

(
P(X)P(x0|X) + P(X′)P(x0|X′)

P(X)[1 − P(x0|X)] + P(X′)[1 − P(x0|X′)]

)
(16)

Choosing V as the minimum ST regular hexahedron that con-
tains X and X′, the marginal probability P(X) is equal to the joint
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Fig. 2. (a) Original frames, (b) temporal ISM, (c) spatial ISM and (d) spatio-temporal ISM. The three columns are from frame 70, 105 and 140, respectively, in CAVIAR “Browse
2” database. This video clip contains two persons, one person walks to the center of the scene, keeps static for several seconds and walks away from the scene; the other
person has slow motion near the reception desk.

probability P(X,V) and the marginal probability P(X′) is equal to the
joint probability P(X′,V). Then we get Eq. (17),

I(x0) = −log2

(
P(X,V)P(x0|X) + P(X′,V)P(x0|X′)

P(X,V)[1 − P(x0|X)] + P(X′,V)[1 − P(x0|X′)]

)
(17)

Finally, we get Eq. (18) by dividing the numerator and denominator
in Eq. (17) by P(V).

I(x0) = −log2

(
P(X|V)P(x0|X) + P(X′|V)P(x0|X′)

P(X|V)[1 − P(x0|X)] + P(X′|V)[1 − P(x0|X′)]

)
(18)

where P(x0|X) and P(x0|X′) can be obtained from Eqs. (9) and (12).
P(X|V) and P(X′|V) are denoted as T-weight and S-weight as illus-
trated in Fig. 1. Eq. (18) shows that the ST saliency of x0 can be calcu-
lated from the conditional probability of P(x0|X), P(x0|X′), S-weight
and T-weight.

From Eq. (18), it can be seen that I(x0) becomes larger when either
P(x0|X) or P(x0|X′) is smaller. This indicates the ST saliency I(x0) is
directly proportional to the spatial saliency IS(x0) and the temporal
saliency IT (x0). This is true in saliency based object motion analysis
approaches.

The ST ISM calculated from Eq. (18) represents the saliency of
current frame based on spatial and temporal distribution estimation.
Since visual saliency I(x0) is always larger than zero, Eq. (18) satisfies

the following condition:

P(X|V)P(x0|X) + P(X′|V)P(x0|X′)
P(X|V)[1 − P(x0|X)] + P(X′|V)[1 − P(x0|X′]

<1

⇒ P(x0|X)<1/2, P(x0|X′)<1/2 (19)

Applying the above condition to Eqs. (3) and (11), it can be ob-
tained that IS(x0)>1 and IT (x0)>1. This implies that the spatial
saliency and temporal saliency will be considered only when their
saliency value is larger than 1. Low saliency areas are considered
as noisy area and their saliency will not be counted in the overall
saliency.

3.3. Illumination effect on ISM

Our proposed ISM is insensitive to illumination effects during
object motion detection process. Based on the Lambertian model
[33], a frame can be represented by the a product of illumination
function Illu(x, y) and reflection function Ref (x, y). Considering the
temporal axis, this equation can be represented as follows:

f (x, y, t) = Illu(x, y, t) · Ref (x, y, t) (20)

Object motion can change the intensity property and also affect
the reflection function Ref (x, y, t). If there is no motion information,
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Fig. 3. (a) Original video, (b) spatio-temporal ISM and (c) foreground person detection rectangle result and object information content. From up to down rows: frame 20,
30, 40 and 55 from video “Browse 1” CAVIAR database. This video contains four persons moving with different speed, three of them are moving in the illuminated area. The
rectangle value is obtained from averaging the spatio-temporal ISM where object motion is detected.

Table 1
Moving object detection results on CAVIAR database.

Database TP FP TG FAR (%) DR (%)

Browsing (6 videos) 7021 182 7298 2.53 96.20
Fighting (4 videos) 5346 204 5625 3.68 95.04
Groups_meet (6 videos) 7598 153 7815 1.97 97.22
Leaving_bags (5 videos) 7756 168 8702 2.12 89.13
Rest (4 videos) 5108 151 5322 2.86 96.35
Walking (3 videos) 5380 127 5512 2.31 97.61
ShopCenter (26 videos) 46723 799 48753 1.68 95.84
Average – – – 2.06 95.42

TP: true positive; FP: false positive; TG: total ground truth; FAR: false alarm rate,
FAR = FP/(TP + FP); DR: detection rate, DR = TP/TG. The number in the bracket
represents the total number of video clips in each particular scenario.

the condition of Eq. (21) should be satisfied and Eq. (22) is generated

Ref (x, y, t) = Ref (x, y) (21)

f (x, y, t) = Illu(x, y, t) · Ref (x, y) (22)

In this case, reflection function will remain unchanged in the
temporal sequence, then f (x, y, t) is directly proportional to the illu-
mination function Illu(x, y, t). Since the ST volume consists of a small
number of frames (20 frames in our experiments), it is reasonable to

assume that within a short period of time �t (less than one second
in our experiments if we assume 30 frames per second), considering
(x0, y0) is a sample point, the following equation is satisfied:

lim
�x→0,�y→0

∫
�t

|Illu(x0 + �x, y0 + �y, t) − Illu(x0, y0, t)|dt = 0 (23)

Given the condition of Eq. (21), then

lim
�x→0,�y→0

∫
�t

|f̂ ′(f (x0 + �x, y0 + �y, t)) − f̂ (f (x0, y0, t))|dt = 0 (24)

where f̂ is the pixel density function at point (x0, y0), f̂ ′ is the pixel
density function at point (x0 + �x, y0 + �y). Let f̂ be the candidate
distribution, to check how close the probability distribution f̂ ′ is to
this candidate distribution, Kullback–Leibler divergenceDKL, which is
a vital concept related to entropy in information theory, is employed,
DKL is represented by

DKL(f̂‖f̂ ′) =
∫
�t

f̂ (f (x0, y0, t)) log
f̂ (f (x0, y0, t))

f̂ ′(f (x + �x, y + �y, t))
dt (25)

From Eq. (24), lim�t→0 DKL(f̂‖f̂ ′) = 0 will be satisfied. It shows
that if two pixels are close to each other, their density functions will
be similar. On the other hand, if the candidate pixel do not follow
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Fig. 4. (a) Original frames, (b) results on MOG [15] (�=0.002 and with fixed number of Gaussian components of M=4), (c) results on AKDE [2] (temporal window size=300),
(d) our proposed ISM and (e) foreground object detection results using the ISM in (d). The five frames are from video “Dataset 3_Testing_2” in PETS2001 database at frame
4150, 4200, 4250, 4300, 4350. The value in the rectangle correspond to the object information content. In order to simulate fast illumination change, the video is subsumable
by five before experiment.

Eq. (21), f (x, y, t) will not only dependent on illumination function
Illu(x, y, t), but also object reflection function Ref (x, y, t). Pixel density
functions will be different. This is a necessary condition to identify
if adjacent pixels are under illumination.

To calculate the ST ISM in model Eq. (18), the conditional proba-
bility of P(X|V) and P(X′|V) are calculated by KDE, using DKL · I as the
bandwidth matrix

H(yi) = DKL(f̂‖f̂i) · I (26)

From Eq. (26), illuminated data in V will be tightly distributed
because of a sharp kernel, their probabilities become larger while
lowering the information saliency. From Eq. (18), the overall saliency
will change a bit with the influence of illumination.

4. Experimental results

We have applied our ST ISM to the detection of moving
foreground objects in real video data. The experimental results are
divided into two parts. First, we evaluate the performance of our
proposed method using two datasets in CAVIAR [34], namely INRIA
entrance hall and shopping mall front view. Second, the proposed
method is compared with existing methods using CAVIAR INRIA
entrance hall [34], PETS2001 [35] and OTCBVS-BENCH [36] datasets.

Two existing methods, namely MOG [15] and AKDE [2], are selected
for comparison. In all experiments, we set the number of patches in
each sub-volume to be N = 20 and the number of patches in each
spatial context to be N′ = 25. RGB images are converted into gray
level image. Patch resolution is set to be 4 × 4, so the dimension of
the original feature vector is 〈16 × 1〉. q is chosen to be 4.

4.1. Evaluation of the proposed method

CAVIAR database [34] consists of three datasets, namely INRIA
entrance hall, shopping mall front view and shopping mall corridor
view. The INRIA entrance hall dataset has six types of events, namely
“Browsing”, “Fighting”, “Groups_meeting”, “Leaving_bags”, “Rest” and
“Walking”, totally 28 video sequences. These video sequences are
captured from inclined look-down camera with a wide angle. The
bottom left region of the video is under severe illumination condition.
The shopping mall front view dataset consists of 26 video clips. This
database is selected to evaluate our method because of significant
illumination variations. Furthermore, people outside the shops have
a shadow, which is challenging for human detection.

Fig. 2 illustrates the moving foreground object detection process
using the ST ISM when object's state changes from moving to sta-
tionary. Fig. 2(a) shows three frames from the video “Browse 2” in
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Fig. 5. (a) Original frames, (b) results on MOG [15] (�=0.002 and with fixed number of Gaussian components of M=4), (c) results on AKDE [2] (temporal window size=300),
(d) our proposed ISM and (e) foreground object detection results using the ISM in (d). The five frames are from video “OTCBVS-BENCH-3b” in OTCBVS-BENCH database
at frame 110, 160, 200, 240 and 280. There are illumination changes during these frames caused by moving clouds. The value in the rectangle correspond to the object
information content.

the CAVIAR dataset. When the person walks slowly and then stops
moving, the temporal saliency of the person region becomes smaller
as illustrated in Fig. 2(b). When the person stops moving, the tem-
poral ISM shows that area of the person has very low saliency. How-
ever, the spatial saliency would not be affected by the object motion
speed as shown in Fig. 2(c). It can be seen that the person does not
lose his spatial saliency at different speeds. Fig. 2(d) shows the ST
ISM, which combines the spatial ISM and temporal ISM naturally by
Eq. (18). It is shown that the areas covering the person show a high
degree of saliency no matter the person is moving or not.

Another typical experimental result from CAVIAR INRIA entrance
hall is shown in Fig. 3. Fig. 3(a) shows the original video “Browse 1”
at frame 20, 30, 40 and 55, while the ISM and the detection results
are shown in Fig. 3(b) and (c), respectively. The rectangles show the
detected foreground objects and the values indicate the average in-
formation saliency value of each region. The difficulty is to detect the
three moving persons in the illuminated area. The lighting changes
from time to time in this region, which makes the corresponding
background very unstable. Moreover, when persons are passing this
area, their appearance will change greatly because of the strong il-
lumination reflection. The proposed ST ISM gives good results, in-
cluding the two persons with very slow motion on the left. This is
because illumination effect shows much lower ST saliency than mo-
tion effect.

For the CAVIAR INRIA entrance hall and shopping mall front view
datasets, ground truth data are available so that we can make quan-
titative analysis of our proposed method. The detection rate (DR)
and the false DR of each video sequence are recorded and tabulated
in Table 1. Our performance evaluation method is the same as the
one in [37], where true positive (TP), false positive (FP), false nega-
tive (FN) and total ground truth (TG) are used. Let RGT and RD be the
ground truth rectangular region and detected region, respectively.
The detected region is considered as the TP if

(RD ∩ RGT )
RD

�Th (27)

where “∩” is the overlapped area between two regions and Th is
a pre-defined threshold (90% in our experiments). Otherwise, the
detected region is classified as FP.

As presented in Table 1, the average DR using our proposed
method is 95.42% while the average false alarm rate (FAR) is 2.06%.
The experiment results for the Leaving_bags scenario is not very good
because small bags show much lower saliency, and sometimes the
bags are left on the ground for a long time that they are considered
to be part of the background. If only moving people are considered
in this scenario, the DR is 96.92%.
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Fig. 6. Comparison between the proposed method with MOG [15] and AKDE [2]. (a) ROC curve in CAVIAR INRIA entrance hall dataset, (b) ROC curve in CAVIAR shopping
center front view dataset and (c) ROC curve in OTCBVS-BENCH (1b, 2b, 3b) database.

4.2. Comparing the proposed method with existing methods

This section compares the proposed method with two existing
methods, namely MOG [15] and AKDE [2] using the INRIA entrance
hall dataset in CAVIAR [34], PETS2001 [35] and OTCBVS-BENCH [36].

The improved adaptive MOG model [15] is used to construct the
PDF for each pixel independently and pixel-level background sub-
traction is performed to find the regions of interest. Experimental
results show that MOG is able to successfully model background that
has regular variations. However, MOG does not perform well when
there are severe illumination changes in a short period of time. Fur-
thermore, when an object is with relatively slow motion, MOG may
mis-classify that region(s) as background and update the background
accordingly. These situations can be illustrated using the example in
Fig. 4. This video clip from PETS2001 [35] is under fast illumination
change when the sunlight is blocked by a piece of cloud. Another
challenge in this video is that the tree is waving in the present of
wind. For implementation, we set � = 0.002 and with fixed number
of gaussian components ofM=4 in [15]. From Fig. 4(b), it can be seen
that MOG cannot model the background well and does not detect
the moving persons correctly, and the person in the center of the
frame who moves slowly is also missed. The AKDE [2] shows good
performance in dynamic scenes modelling, including ocean waves,
tree motions and mild illumination change, but this method does
not perform well in severe illumination cases. This can be illustrated
in Fig. 4(c), for the temporal window size is set to be 300. The re-
sults using our proposed method is shown in Fig. 4(d) in which all
the moving objects with different speeds are detected.

Another comparison of our proposed method with existing
methods was performed on the OTCBVS-BENCH [36] database. This
database (1b, 2b, 3b video set) contains rapid changes of illumina-
tion video, caused by moving clouds under the strong sunlight. Also,
the moving persons are small. Fig. 5 shows the results using MOG,
AKDE and our proposed method of five representative frames from
a video. It can be seen that our proposed method can correctly de-
tect slow object motions under severe illumination variations while
MOG and AKDE methods give a relatively high false detection error.
The ROC curves for these methods are also recorded and plotted in
Fig. 6. It can be seen that the proposed method outperforms MOG
and AKDE.

5. Conclusions

A novel moving object detection method based on information
theory and ST ISM have been developed and reported in this pa-
per. An ISM is introduced to represent each frame in video and is

estimated through direct analysis of video frames. It is shown that
the moving object detection is feasible by using the ISM. Two pub-
licly available databases have been selected to evaluate the proposed
method. The DR and FAR on CAVIAR datasets are 95.42% and 2.06%,
respectively, while the DR and FAR on OTCBVS-BENCH datasets are
95.81% and 2.40%, respectively. Comparison with two popular meth-
ods, namely MOG and AKDE, are also reported. Experimental results
show that the proposed method is robust to illumination changes
and no prior knowledge of the scene is required. Moreover, ISM not
only provides the saliency of each pixel for object detection, but also
gives additional higher level object saliency information which can
be used as one of the cue for event recognition.

Our future work will be concentrated on exploring object saliency
correlation between successive frames in a multi-dimensional space.
We will make use of the ISM together with other cues for human
activity recognition and event understanding.
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