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ABSTRACT 

In this paper, we present a storage-efficient and computationally 
fast method for rapid navigation/browsing through large image 
repositories and for content-based image retrieval. In the 
developed system, multiple resolution and orientation achromatic 
and opponent chromatic channels are sequentially encoded by a 
maximal information sensory encoding model, which 
conveniently and effectively indexes the images into a binary tree 
data structure and represents the images by n-bit binary keys. 
Content-based image retrieval, database navigation and image 
browsing are done very efficiently and rapidly by manipulating 
the n-bit binary keys in the binary tree data structure. We present 
experimental results to demonstrate the effectiveness of our 
method. 

 

1. INTRODUCTION 
In conventional content-based image retrieval (CBIR) image 
database paradigm [1], image contents are represented by low 
level feature descriptors such as color histograms [2], texture 
characteristics [3] and “blobs” [4]. The descriptors are normally 
of very high dimension and image similarities are measured by the 
distances of their low level content descriptors. Retrieval is 
normally done by exhaustively searching the whole database and 
very few works, e.g., [5], have addressed the issues of efficient 
indexing and retrieval. 

In this paper, we present a novel framework for efficient image 
indexing and fast retrieval. Our method has following innovative 
features. The images are first represented in a pattern color 
separable model in an opponent color space. The spatial pattern 
information is derived from the achromatic channel where most of 
the signal energy is concentrated and the color information is 
derived directly from the opponent chromatic signals. We then use 
a maximum entropy sensory coding strategy [13, 14] to code the 
achromatic spatial pattern channels and the chromatic channels in 
a sequential and hierarchical manner. Such a coding scheme 
readily renders a very efficient binary indexing tree data structure 
where images in the database can be represented with extreme 
efficiency, each image is indexed by an n-bit binary key, where n 
is the depth of the tree. Content-based or example-based image 
retrieval amounts to matching the n-bit binary keys of the 
querying image and that of the database images. Such an indexing 
scheme not only renders storage and searching efficiency, equally 
importantly, it also makes visual sense. 

The organization of the paper is as follows. In the next section, we 
briefly review image representation and sensory coding which 

have provided the theoretical and scientific guidance for this 
work. In section 3, we present a sequential maximum entropy 
partitioning techniques for coding the images. Section 4 explains 
how such a maximal information coding technique can be 
exploited for efficient indexing and fast navigation through large 
image databases. Section 5 presents experimental results and 
section 6 concludes the paper. 

2. IMAGE REPRESENTATION AND 
MAXIMUM ENTROPY SENSORY CODING  
A well-known colour vision theory is the opponent colour theory 
[7], which suggests that there are three visual pathways in the 
human colour vision system. One pathway is sensitive mainly to 
light-dark variations; this pathway has the best spatial resolution. 
The other two pathways are sensitive to red-green and blue-yellow 
variation (the opponent channels). The blue-yellow pathway has 
the worst spatial resolution. In opponent-colour representation, 
the spatial sharpness of a colour image depends mainly on the 
sharpness of the light dark component of the images and very 
little on the structure of the opponent-colour image components. 
There is evidence to suggest that different visual pathways process 
colour and spatial pattern in the human visual system. The 
pattern-colour-separable model of human colour vision [6] 
suggests that the value of one neural image is the product of three 
terms. One term defines the pathway's sensitivity to the stimulus 
colour direction. A second term defines the pathway’s sensitivity 
to the spatial patterns of the stimulus and the third term defines 
the pathway’s sensitivity to the stimulus strength.  

There are many studies that suggest that receptive fields of simple 
cells in mammalian primary visual cortex can be characterized as 
being spatially oriented and bandpass comparable to the basis of 
wavelet transforms [8, 9]. It is also a common practice in 
computer vision to represent the appearance of the objects by 
multiresolution directional steerable filters [10]. In this work, we 
use the following scheme to represent an image. 

Assuming that the original data is in RGB color space, we first 
convert it into an opponent color space 
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Y is then filtered by oriented Gaussian derivative filters, g(σ, θ) of 
scale σ and orientation θ (other multiresolution representations 
such as wavelet can also be used) 

( ) ( )jigYjiY θσ ,*, =     (2) 

And finally, an image I is represents as 
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Once an image is represented with schemes such as (3), each 
component will have a clear visual interpretation. For example, 
Y(i, j) relates to the surface roughness at a particular scale and 
orientation, rg relates to the red-green component and yb 
represents the yellow–blue component of the image. For example, 
Figure 1 shows the color appearances in the opponent chromatic 
space. What we would like to do is to exploit this intuitive visual 
interpretation of the representation. 
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Figure 1, Color appearances in the red-green (rg) and yellow-blue 
(yb) chromatic space. 

Now that the images have been represented at multiple resolutions 
and orientations in an opponent color space, what process should 
be done in the next stage in order to recognize the scene and 
objects? There have many research works study sensory coding 
and natural scene statistics. The efficient coding hypothesis 
predicts that individual neurons should maximize information 
transmission [13, 14]. Although we are not interested in the 
hypothesis itself, the information maximization coding principle 
may be “borrowed” for indexing large image database. 

With an image represented in multiple channels by (3), we can 
then use the information maximization principle to code each of 
the channels. How this principle can be practically exploited will 
be explained in the next section, we here look at what does 
information maximization means.  

Suppose we have a signal s, to be coded by an encoder as C(s) 
and the response of the encoder is limited within some bonded 
intervals. In order to convey the maximal information, it is 
straightforward to show that the distribution of the encoder 
response must be uniformly distributed within the bonded 
interval. According to Shannon information theory [12], 
information content is measured as entropy: 
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H(X) reaches maximum when P(X) is a uniform distribution. 
Therefore, maximal information and maximum entropy (maxent) 
are equivalent. 

3. SEQUENTIAL MAXENT ENCODING OF 
VISAUL COMPONENTS 
To exploit the maximal information encoding principle for image 
indexing and retrievals turns out to be less straightforward at first 
sight. In the human visual system, the multiple channels in (3) 
could well be coded in parallel based on the maximal information 
principle. However, in engineering practice, it is very difficult to 
compute information of multidimensional random variables 
because of the difficulty in estimating the probability density 
functions in high dimensional spaces. To get round this 
computational difficulty, we simplify the model by assuming (not 
necessarily make biological sense) that the channels are coded 
independently in a sequential manner and each follows a maximal 
information principle.  

Each component in (3) is still of very high dimension (image 
height multiply by image width). To simply the problem further, 
we only model the first order statistics by considering pixels in 
each of the component independently, that is, we collapse each 
component into a sequence of scalar values. In this case, a 
histogram of the pixel distribution in each of the channels can be 
easily compiled. For a scalar random variable, constructing a 
maximal information encoder with limited alphabets becomes a 
simple task. All is needed is to ensure that the pixel populations 
distributed to each alphabet is identical. 

With such a simplified model, we can encode the components in 
(3) independently. Each component is then again treated as 
multiple instances of a scalar random variable. A scalar encoder 
that conveys the maximal information for each channels can then 
be easily constructed. 

4. EFFICIENT INDEXING AND FAST 
NAVIGATION 
How the maximal information encoders such as those described in 
section 3 can be used for image database indexing and retrieval? 
Here is a scheme we have developed which has been found to 
work very well (see next section). In our developed scheme, a 
binary tree data structure is constructed by encoding the 
components in (3) in a hierarchical order as illustrated in Figure 2. 

Starting from level 0, for a pre-selected component C0, we find a 
value that cuts all pixels in this component from all images in the 
database into two equal population halves, this value is sometime 
known as the median of the pixels. It is important to note that at 
this initial node, all pixels from all images in the database 
participate in finding this median value. Note also that to code the 
component into two alphabets, the maximal information coding 
dictates that the pixels must be equally distributed into the two 
alphabets. Once we have found the median value M0, we then 
divide the images in the database into two clusters each placed in 
one of the two child nodes. Those images whose C0 component 
has more pixel values greater than M0 are classified to the right 
child node and those images with more pixel values smaller than 
M0 are put into the left child node. The two child nodes of the 
root node form level 1 of the hierarchy. At level 1, images are 
indexed by a 1-bit key. All images in the left child node will be 
indexed as 0-value and all images in the right child node will be 
indexed as 1-value. The component used by the node and the 
median value of that component are stored with the tree. 
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Figure 2, Binary tree indexing of images based on maximal 
information sequential visual coding 

In any non-leaf node in the tree, the component of the node (pre-
defined and will be explained more in the next section) and its 
median value computed from all images falling into the node, are 
again used to divide the images in this node into its left and child 
nodes. For images classified into the left child node, a 0-value bit 
is appended to their key and for images classified into the right 
child node, a 1-value bit is appended to the images key. Again 
information about the component used in the node and its median 
value are stored with the tree. 

For an n-level tree so constructed, all images are indexed by n-bit 
binary keys. The keys between images in a parent node and its 
immediate two child nodes differ by one bit. 

Once the tree has been constructed, new images can be easily put 
into the tree. All we have to do is to compare the median values of 
the various components of the image corresponding to those 
orders used in the tree to assign the image into appropriate nodes, 
and the image will be indexed with the keys of the nodes it 
belongs to. 

Query-by-example follows the same procedures as that for adding 
an image to the database. One the binary key of the query image 
has been computed, there are considerable flexibility in retrieval, 
we can either return all images in the leaf node the query image 
falling into, or images at the lower level nodes of the tree the 
querying image belongs to (more returns).  

Navigating through the tree is also easy, we can transverse the tree 
by going up and down the nodes. At any particular node, we could 
output the images at the node for visualization and then decide to 
see more images (by going to the parent node) or see fewer 
images (by going to one of the chide nodes). 

From storage’s point of view, each image has only n-bit key extra 
information to store. For the tree itself, we only need to store 
information of the component used in each non-leaf node and the 
component’s median value of all (training) images. Therefore the 
overhead of our system is very small. We are not aware of any 
CBIR image database management system has the efficiency of 
our method. Because we actually index our images, which is 
unlike many existing methods for CBIR, where much side 
information in the form of image content descriptors, such as 
color histograms, will have to be stored, and image retrieval is 
done by linearly searching the image database, our method is 
much more efficient. In the next section, we will present 

experimental results to demonstrate the effectiveness of our 
method.  

5. EXPERIMENTS 
We have tested our method using a very large image database. We 
have tried both image database browsing and navigation, and 
content-based image retrieval. In our experiments, we only use the 
original of the achromatic channel and chromatic channels. For 
nodes at the same level, the same component has been used. The 
orders of the channels used are randomly picked. 

5.1 Navigating/Browsing Image Databases 
We have implemented a navigation/browsing tool using Java. The 
user interface of the simple tool is shown in Figure 3.  
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Figure 3, User interface of a simple tool for browsing/navigating 
image database. 

On the left, there is a panel which displays random images from 
the database. The users can pick images from this panel as 
querying examples. Once an image is selected from this panel, it 
will be displayed on the upper right hand corner above the result 
display panel. Simultaneously (and instantly on a 2.66 GHz 
Pentium Processor PC and 10,000-image database), all images in 
the leaf node that has the same binary key as the querying image 
are displayed on the display panel. Two navigation buttons allow 
the users to transverse the binary tree. Images at the current node 
are displayed on the display panel. The querying image can also 
be picked up from the display panel. Obviously at this stage, the 
tool is very crude, and more functionalities will be added on later.  

 



 

 

 
Figure 4, Navigating the database using an example image with 
red flowers in green plants backgrounds. Top: leaf node images. 
Middle: Parent node one level above the leaf node. Bottom: 
Parent node 2 levels above the leaf node.  

 

 

 

 
Figure 5, Navigating the database using an example image with a 
horse in green grass backgrounds. Top: leaf node images. Middle: 
Parent node one level above the leaf node. Bottom: Parent node 2 
levels above the leaf node.  

 



 

 

Figure 6, Navigating the database searching for sun set scene. 
Top: leaf node images. Bottom: Parent node 1 levels above the 
leaf node. 

Figure 4, 5, and 6 shows results of three rounds of navigation 
through a 10,000 image database which has been indexed into an 
11 level binary tree as described in this paper. Of course, at this 
stage, there is no intelligence built in the system, and we are 
currently trying to make the system smarter. One of the major 
advantages of our systems is its simplicity and efficiency, which 
may compensate the accuracy. 

5.2 Image Retrieval Experiments 
In a second experiment, we tested the methods retrieval accuracy 
performances. In this experiment, we used 60,000 images in our 
database. There are two test sets. The first set consists of 168 pairs 
of images. Examples of these pairs are shown in Figure 7. We 
then put the 168 pair images in the database. The purpose is to see 
whether the pairs of images will have the same key. If so, then 
imagine using one of the pairs as querying image, it will directly 
find the image cluster of the corresponding target. If the cluster is 
of small size, then finding the target should be made much easier. 
Therefore, the more pairs there are in the same nodes, the better 
would be the performance for this particular test. Results are 
shown in Table 1. The longer the keys are, the smaller are the 

sizes of image clusters in the leaf node, hence the chance of the 
same pairs falling into the same node is decreased. It is seen that 
even using an 11-bit key (on average the leaf nodes will contain 
clusters of 30 images and of course they are unevenly distributed), 
111/168 pairs managed to stay together at some leave nodes. 
Reduce the key length to 9 bits (average leaf node cluster contains 
117 images), there are 162/168 pairs managed stay together.  

 
Set A 

 
Set B 

Figures 7, Examples of image pairs. For an image in set A, there 
is one corresponding image in set B. The corresponding images 
form a pair of querying and target images. 
 

Table 1. Pairs Images in the same leaf nodes 

Key length 11 bits 10 bits 9 bits 

# pairs with 
identical keys 111 156 162 

 



In another test, we used 120 classes of color texture images. Each 
class consists of 6 similar images. Examples of these are shown in 
Figure 8. 

      

      

      

Figure 8, Example color texture images in a second test data set. 

 

Table 2. Texture classes in the same leaf nodes 

Key length 11 bits 10 bits 9 bits 

# pairs with 
identical keys 92 115 120 

 
Results of this second set test data is shown in table 2. It is seen 
that the results are very good. 

 

6. CONCLUDING REMARKS 
In this paper, we have presented an effective and efficient method 
for fast navigating large image repository and for content-based 
image retrieval. The advantage of our method is its efficiency and 
simplicity. We have further presented experimental results to 
demonstrate the effectiveness of our method. We believe our 
technique can be developed into really useful tools for large image 
repository management. 
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