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ABSTRACT 

 
In this paper, we present a method for data classification 
with application to car/non-car objects. We first 
developed a sample based car/non-car maximal mutual 
information low dimensional subspace. We then trained a 
support vector machine (SVM) in this subspace for the 
detection of cars. Using publicly available standard 
training and testing data sets, we demonstrated that our 
car detector gave very competitive performances. 
 

1. INTRODUCTION 
 
Car detection is a popular research topic in automatic 
object detection [1 - 3]. As it is common to any generic 
object detection, feature representation plays a key role in 
the success of car detection. An effective representation 
method should be compact and discriminative. It is desired 
that the representation should have low dimensionality to 
combat the “curse of dimensionality” problem and to 
improve computational efficiency. The representation 
should also ideally be in a space where different classes of 
objects are well separated. 

Recently, the authors have introduced an informative 
subspace method for human face detection [4]. In this 
paper, we extend the method to other object types and 
show that similar idea can also be successfully applied to 
the detection of cars.  

In this work, we use the car and non-car training and 
testing images from the University of Illinois at Urbana-
Champaign [5]. The advantage of using this database is 
that both the training data and testing data are publicly 
available which makes it easier to compare the 
performances of different methods. In this database, the 
training set contains 550 side-view car images and 500 
non-car images with a size of 100 by 40 pixels stored in 
PGN raw data format. The testing set contains 170 images 
with 200 cars in them. The scales of the cars in the testing 
set are approximately the same as those in the training set. 
The testing images are different in size and the number of 
cars in them. They are also stored in PGN raw data format. 
In the next section, we describe our car detection system, 

in section 3 we present results of our method and section 4 
concludes our presentation.  
 

2. OUR CAR DETECTION SYSTEM 
 
Our car detection system is illustrated in Fig. 1. The input 
image (detection window of 100 x 40 pixels) is first down-
scaled by a factor of two. The purposes of down scaling 
are two folds. One is to reduce the dimensionality of the 
input and the other is to smooth the input (remove noise). 
We have tried a number of scaling factors and found that a 
down scaling factor of 2 gave the best results. Even though 
down scaling the detection window from 4000-d to 1000-d 
is a significant reduction, the dimension of the input is still 
too high. We therefore applied a linear transform to this 
1000-d input. Even though conventional linear transforms 
such as PCA or LDA can be applied here, we use a 
maximal mutual information (MI) subspace (to be briefly 
explained shortly) to reduce the dimensionality of the 
detection window. The transformed low dimensional input 
vector (set to 32-d in this paper) is then fed to a support 
vector machine (SVM) [10] which have been trained to 
make a binary decision indicating whether the current 
input is a car or non-car object. 
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Fig. 1. A car detection system in maximal mutual information 
subspace 
 
2.1 Maximal Mutual Information Subspace 
 
In the context of object classification, Fano’s inequality 
[6] gives a lower bound for the probability of error (an 
upper bound for the probability of correct classification). 
The maximal mutual information subspace method [4] 
used Fano’s inequality in much the same way as it was 
used by other authors [7, 8]. The classification process can 
be interpreted as a Markov chain as illustrated in Fig. 2.  

The probability of misclassification error in the setting 
of Fig. 2, Pe = P(y ≠ y’), has the following bound [6] 
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where F is the ensemble of random variable f, and m is the 
number of outputs of y (number of object classes).  
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Fig. 2. Interpreting the classification process as a Markov chain, 
y is the object class random variable, x are the observations 
generated by the conditional probability density function P(x | y). 
The observations are subjected to a transform G, which produces 
a new feature f from input x. The classifier C then estimates the 
class identity of input x as y’ based on the transformed feature f.  

The form of the classifier, C, has not been specified. Eq. 
(1) quantifies at best how well we can classify the objects 
using the features f. However, an upper bound of the 
probability of misclassification error cannot be expressed 
in terms of Shannon’s entropy. The best one can do is to 
minimize the lower bound to ensure an appropriately 
designed classification algorithm does well. Since both m 
and H(Y) are constants in (1), we can maximize the mutual 
information I(Y, F) to minimize the lower bound of the 
probability of misclassification error. The task now 
becomes that of finding the transform function G that 
minimizes this lower bound. In this paper, we use a simple 
constructive approach to finding the transform bases 
directly from the training samples [9]. Our objective is to 
find a dimension reduction linear transform G that 
minimizes the lower bound in (1). Because the 
observations x and the transformed feature f and class 
variable y are all normally multidimensional vectors, 
directly estimating an optimal G that maximizes I(Y, F) is 
computationally extremely difficult.  

Assume x is an l-d column vector and f is a k-d column 
vector, (k<< l), then f = Gx, G is a k (rows) by l (columns) 
transform matrix. Let X = {x1, x2, …xN} be the N labeled 
training samples (car/non-car), Y = {y1, y2, …yN} their 
corresponding class labels, G = [g1, g2, …, gk]

T, and gi be 
the ith transform base. Since we will find the transform 
bases directly from the training samples using a maximum 
mutual information criterion, we term our method 
informative sample subspace (ISS) procedure (see ISS 
procedure box).  

To find the first transform base, we select one sample 
at a time, and project all other training samples onto that 
selected sample. The projection (a scalar) and the sample 
identity can be used to estimate the joint probability, 
which in turn can be used to estimate the mutual 
information of the projection and the class distribution. 

The sample with projection output that maximizes the 
mutual information is selected as the first transform base. 
This base is then removed from the training sample set. 
All remaining samples are then made orthogonal to the 
first base and used as training samples to find the second 
transform base. The process continues until all required k 
bases are found. From the procedure it is not difficult to 
see that all k initial bases are orthonormal. Fig. 3 shows 
examples of 6 transform bases obtained from the training 
set of the car no-car data from the database of UIUC [5]. 

ISS Procedure Box 
Informative Sample Subspace (ISS) Procedure 

 
Proc. Find G(X,Y)  

for i = 1 to k do  
    for m = 1 to N do 
        for n =1 to N do  
            F (m, n) = <xm, xn> //inner product 
        End for 
        Proc. Estimate joint probability P(Y, F(m, •)) 
        Proc. Compute I(m) = I(Y, F(m, •)) 
                      //Compute mutual information 
   End for 

If I(j) > I(m), ∀m  Then gi = xj /||xj|| 
Remove xj and yj from X and Y respectively 
N = N –1 
    for m = 1 to N do 
        xm = xm – < xm, gi >gi 
    End for 
End for 

End Proc.  
 

 
Fig. 3 Examples of maximal mutual information subspace 
bases of our car detector. 

3. EXPERIMENTAL RESULTS 

3.1 A Simple Example 
 
One of the reasons that mutual information (MI) has not 
been more widely used is because of the exponential 
computational complexity in the estimation of MI. Our 
direct sample based heuristic approach provides a 
computationally practicable method for using mutual 
information. Although our MI-based method bears some 
resemblance with Fisher’s linear discriminant analysis 
(LDA) because both use labeled data, there are 
fundamental differences. Whilst LDA assumes unimodal 
equal variance Gaussian class distributions which are 
almost always not true for real world data, MI-based 
transforms do not make such a restricted assumption. 
Whilst LDA is not directly related to classification rates, 



maximizing MI directly minimizes a lower bound of 
classification errors. Whilst LDA only makes use of the 
covariance, MI based transforms exploit higher than 
second order, more general statistical information. It is 
well known that LDA can be easily over fitted in situations 
with large numbers of highly correlated features and can 
also be under fitted when the decision boundaries are 
complex and nonlinear. There are reasons to believe that 
MI based methods could overcome such problems better 
than LDA because MI captures higher order, more general 
statistical relations between variables. Principal 
Component Analysis (PCA) is a widely used liner 
transform for dimensionality reduction. It is an optimal 
dimensional reduction technique in the mean square error 
sense. However, the transform is not necessarily suitable 
for pattern classification purpose.  

Fig. 4 shows a 2-class problem and the first linear 
transform base of PCA, LDA, and the maximal mutual 
information subspace. It is seen that when the decision 
boundary is complicated, projecting the data onto LDA 
and PCA subspace will make the data difficult to classify. 
However, projecting the data onto the maximal mutual 
information subspace makes the data easily separable. 
This is conformed by building a Bayesian classifier in the 
1-d subspace to classify the two classes. The classification 
errors in the 1-d subspaces are respectively, PCA: 22.1%, 
LDA: 16.2%, and the new informative subspace: 2.9%. 
Although these are simple toy examples, we believe they 
are indicative that maximal mutual information subspace 
may offer better performances than traditional subspaces 
such as PCA and LDA. 

 

 
Fig. 4 Different transforms and their classification ability, the 
line is the first base of the respective transforms. Left: PCA 
projection base. Middle: LDA projection base. Right: MI 
projection base. Class 1 ( -blue), Class 2 (+ - red). 
 
3.2 Car Detection (Car/Non-Car Classification) 
 
We have applied our car detector to the standard test set of 
the UIUC database [5], which consists of 170 gray-scaled 
images with 200 cars in them. We employed exhaustive 
search method on the testing set. The scale of the car used 
in the testing was the same as the one in the training set. 
The 100 by 40 pixel detection window was moved 4 pixels 
horizontally and 2 pixels vertically each time during the 
evaluation. The input image patch was downscaled to 50 
by 20 pixels before going through the maximal mutual 
information linear transform. Finally the car evaluation 
was taken place in the 32 dimensional maximal mutual 

information subspace by the support vector machine 
(SVM) which was trained based on the standard method 
[10]. A car was counted as correctly detected if all parts of 
the car were enclosed in the 100 by 40 pixel window, 
which was a stricter criterion than that used by the data’s 
originators [1]. The car detector evaluated 176,792 
patterns over the 170 test images. In order to make 
comprehensive comparison we adopt three criteria as used 
in [1] to characterize the car detector, these criterions are 
Correct detection rate - Recall (R), False detection rate (F) 
and Precision (P):  

setdatatheincarsofnumberTotal

positivescorrectofNumber
R =  

setdatatheinnegativesofnumberTotal
positivesfalseofNumber

F =  

positivesfalseofNumberpositivescorrectofNumber

positivescorrectofNumber
P

+
=  

The ideal detector should have 100% correct detection 
rate, 0% false detection rate and 100% precision. We 
show our car detector performance in Table 1, and show 
the performance of UIUC car detector in Table 2. The 
ROC curve of our car detector is shown in Fig. 5. From 
these results, we can see clearly that our car detector 
outperforms the original detector [1] in every quality 
indicator. These results demonstrate that our maximal 
mutual information subspace based car detector is a 
successful method. Fig. 6 shows example images of 
detection results. 
 
Table 1: Our car detection system (Fig. 1)’s performance 
 

Activation 

threshold 

No. of correct 

detections, N 

Recall 

(R) 

No. of false 

detections, M 

Precision 

(P) 

False detection 

rate (F) 

0.15 

0.25 

0.35 

0.45 

0.55 

0.65 

188 

184 

182 

180 

179 

174 

94.0% 

92.0% 

91.0% 

90.0% 

89.5% 

87.0% 

45 

39 

34 

30 

25 

23 

80.6% 

82.5% 

84.3% 

85.7% 

87.7% 

88.3% 

0.027% 

0.023% 

0.020% 

0.018% 

0.015% 

0.014% 

  
 
Table 2: Car detection performance of [1] 
 

Activation 

threshold 

No. of correct 

detections, N 

Recall 

(R) 

No. of false 

detections, M 

Precision 

(P) 

False detection 

rate (F) 

0.55 

0.65 

0.75 

0.85 

0.90 

0.95 

181 

178 

171 

162 

154 

140 

90.5% 

89.0% 

85.5% 

81.0% 

77.0% 

70.0% 

98 

92 

76 

48 

36 

29 

64.9% 

65.9% 

69.2% 

77.1% 

81.1% 

82.8% 

0.09% 

0.08% 

0.07% 

0.04% 

0.03% 

0.03% 
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Fig. 5 ROC curve of our car detector 

4. CONCLUDING REMARKS 

In this paper, we have successfully developed a maximal 
mutual information subspace method to a popular object 
detection problem. This is an extension of sample based 
subspace method [4] and maximal mutual information 
subspace method [9] of our earlier works developed for 
human face detection. This work demonstrates that such a 
sample based subspace method can also be applied to 
more general object detection tasks. 
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Fig. 6 Examples of car detection result of our method. 


