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Abstract—In this paper, we present a spectral graph 

partitioning method for the co-clustering of images and features. 
We present experimental results, which show that spectral co-
clustering has computational advantages over traditional k-
means algorithm, especially when the dimensionalities of feature 
vectors are high. In the context of image clustering, we also show 
that spectral co-clustering gives better performances. We 
advocate that the images and features co-clustering framework 
offers new opportunities for developing advanced image 
database management technology and illustrate a possible 
scheme for exploiting the co-clustering results for developing a 
novel content-based image retrieval method. 
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I. INTRODUCTION 
Managing increasingly large image repositories is a 
technically challenging problem, which in recent years has 
attracted extensive research interests. Data clustering is 
standard technique that is also useful for image database 
management. To cluster images into visually homogeneous 
groups, images are represented by their visual features such 
as colour histogram and texture descriptors. However, as has 
been pointed out in [2] traditional clustering methods cannot 
identify which feature(s) is more important to a certain image 
(cluster). For example, when colour histogram is used to 
represent images for clustering, information about which 
colour bins are more strongly associated with a particular 
cluster is not known. Surprisingly, there is little existing 
research which tries to answer following questions: Why are 
certain images grouped together? What features do the 
images fall in the same cluster have in common? To be able 
to answer these questions will be helpful in gaining deeper 
understanding of image database management problems and 
in developing better solutions.  

Base on the duality of images and their features, we 
attempt to answer these questions and to develop advanced 
content-based image retrieval (CBIR) technology through the 
idea of images and features co-clustering [2]. We use 
quantized image patches as image features [1] and use 
spectral bipartite graph partitioning [3] to perform co-
clustering. We will first present results of spectral images and 
features co-clustering and then present a scheme for 
exploiting the results of image and feature co-clustering for 
developing advanced content-based image retrieval 
technology. 

II. BIPARTITE GRAPH MODEL AND IMAGES AND FEATURES CO-
CLUSTERING 

Many works in a variety of discipline have used graph model 
to do clustering, for example, Pothen et al used it for sparse 
matrix partitioning [4], Hagen and Kahng used it for circuit 
partitioning [7], Shi and Malik used it for image segmentation 
[6], Dillon used it for word-document clustering [3] and Qiu 
used it for CBIR [2]. Here we use a model similar to the one 
proposed in [2], where images and their representation 
histograms are modeled as a bipartite graph.  

An image descriptor is usually in the form of a feature 
vector, we call each vector entry a feature prototype. Given 
an image set I and a set of feature prototypes P, treating each 
image and each feature prototype as a vertex, we can form a 
weighted bipartite graph G = <I, P, W>, where W ={wij}, wij 
is the weight connecting the ith image and the jth feature 
prototype vertices. In this context, images and features co-
clustering refers to dividing images and their feature 
prototypes into associated groups where each group of images 
is associated with certain feature prototypes, which can be 
translated to a graph partitioning problem [2].  

III. SPECTRAL CO-CLUSTERING 
We use a term defined in graph theory: Consider a special 
case for graph partitioning, Graph Bisection, which divide a 
graph into 2 subsets of vertices, V1 and V2, 
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where I1 U P1 = V1, I2 U P2 = V2, I1 ∩ I2 = φ, I1 U I2 = I, P1 ∩ 
P2 = φ, P1 U P2 = P. Our goal is to minimize the association 
between two different partitions. With this definition, it is 
clear that the problem is equivalent to the MinCut in graph 
theory. As many others e.g., [3], have pointed out, MinCut 
could produce unbalanced partitioning result. Statistically, 
when the image database is very large, we would prefer that 
image numbers in different clusters are close and, so are the 
feature numbers. Taking the size of cluster into consideration, 
Ratio Cut [7] and Normalized Cut [6] are more suitable. In 
this paper, we use the criteria of Normalized Cut for its 
robustness [9].  

We further refine the definition for the graph and 
introduce weight for each vertex. G = <I, P, W, WI, WP>, 
where WI={wi} is the weight for image vertices and 
WP={wp} is the weight for feature prototype vertices. We 
choose the weight for each vertex as the sum of the weights 
of its indent edges. It is important to note that, most image 
features, e.g. the features used in this paper, color histogram, 
CPAM histogram and Spatial CPAM, have already 



introduced the mechanism of normalization, thus weights for 
all image vertices are the same, while the values of wp’s may 
vary. This means all images are treated equally, while some 
features are more important than others, which is exactly 
what we want.  

Based on Normalized Cut, we can write the cost function 
as: 
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Clearly, by minimize J, we will minimize inter-cluster 
connection as well as maintaining balance between the 2 
clusters. References [3] and [5] have given an approximate 
solution to Equation (2), which naturally leads to SVD. Let 
D1 and D2 be diagonal matrices where D1(k, k)=wik , D2(l, 
l)=wpl. We have following algorithm for images and features 
co-clustering: 
 
1. Given an image set I and their feature vectors {di}, form a 

graph G = <I, P, W, WI, WP>, where W=[d1; d2; d3;…dn]. 
2. Compute D1 and D2, let M=D1

-1/2W D2
-1/2. 

3. Do SVD on M, let u2 and v2 be the left and right singular 
vectors corresponding to the second largest singular value. 

4. Form the partition vector 
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, each entry in p is 

sequentially associated with a vertex, an image or a feature 
prototype. 

5. Find a cut point c which divides p into 2 parts, V1={i | pi≤ c} 
and V2={i | pi> c}, such that  
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whereby the images and feature prototypes are divided into 2 
clusters as well.  

6. If necessary, 2 sub-graphs can be formed based on the 2 subsets 
of images and feature prototypes respectively, run the algorithm 
recursively to obtain desired partitioning. 

IV. CLUSTERING PERFORMANCE 
Above all, spectral co-clustering itself is a clustering 
technique. We have performed extensive experiments against 
a classical clustering method, k-means, on 2 large image 
datasets. One dataset consists of 12710 color photos from the 
commercially available Corel Photo CDs and the other one is 
the Columbia Object Image Library (COIL) with 7200 
images [11]. Features used in the experiments include simple 
joint RGB color histogram (64 bins) and CPAM histogram 
(384 bins, 64 chromatic and 64 achromatic appearance 
prototypes at 3 resolutions, some examples of the prototypes 
are shown in Fig. 1). Details on how to build these features 
can be found in  [10] and [2].  

 
 

Fig. 1: Examples of chromatic and achromatic feature prototypes  

For a dataset of K images and each represented by L 
feature prototypes, to perform spectral co-cluster, we only 
need to calculate a few singular vectors of a K x L matrix, 
hence the method is computationally very efficient. Also, the 

algorithm needs only to store a K x L matrix [3] instead of 
(K+L) x (K+L) matrix as in normalized cut [6]. Our 
implementation is based on Lanczos algorithm with partial 
reorthogonalization [8]. Fig. 2 shows a comparison of 
computational times of spectral co-clustering method and the 
k-means method. It is seen that for low dimensional features, 
the two methods have similar computational times, however, 
when the feature dimension is high and the number of cluster 
is large, the spectral co-cluster method converges much 
faster. Another advantage of the spectral method is that it is 
deterministic, unlike k-means, which greatly depends on the 
initial conditions.  
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Fig. 2: Comparison of spectral co-clustering and k-means using 
CPAM Histogram (feature vector length: 384) and color histogram 
(feature vector length: 64). The x-axis is the number of clusters and 
the y-axis is time the algorithms took to converge on an Intel 
Pentium IV 1.8GHz PC with 256M RAM.  

How to measure the clustering quality is an open issue. 
For the Corel colour photo dataset, although the 12710 photos 
are from 128 hand-label categories with various themes, some 
images in different categories actually contain very similar 
contents while some images in the same category looks rather 
different. A simple (and informal) way to evaluate the 
clustering quality of this dataset is via subjective judgement. 
If the visual appearance of the images in each cluster is 
homogeneous, we can say the method gives good clustering 
results. Fig. 3 shows two clusters obtained by the spectral co-
clustering method and k-means method, where it is seen that 
although both clusters contain homogeneous images, the 
spectral co-clustering cluster contains more images (which 
obviously belonging to the same category), this means that 
the k-means algorithm has split similar images into different 
groups (an undesirable result). Fig. 4 shows another two 
clusters obtained by the spectral co-clustering and k-means 
methods respectively. In this example, the cluster of the co-
clustering contains 5 images and 4 of them contain the same 
object; in contrast, the cluster obtained by k-means containing 
the same object has 18 images, of which there are no less than 
6 different objects/scenes. At an informal level (which may 
be the best one can do to judge the clustering quality of data 
of this nature), spectral co-clustering seems to give more 
sensible solutions. 



  
Fig. 3: Examples of clustering results. Database: 12710 color photos. 
Features: 64-bin color histogram. Cluster: 128. Left: one of the 
clusters from the spectral co-clustering technique. Right: a similar 
cluster from k-means clustering. Note that images in both groups 
contain homogeneous colors, the cluster obtained by spectral co-
clustering contained more images which should indicate a better 
performance. 

 

 
Fig. 4: Examples of clustering results. Database: 12710 color photos. 
Features: 384-bin CPAM histogram. Cluster: 1024. Top: one of the 
clusters from the spectral co-clustering technique. Bottom: a similar 
cluster from k-means clustering. Note that images in the cluster 
obtained by spectral co-clustering contained images that are more 
homogeneous than those in a similar group obtained by k-means. 

In order to evaluate the clustering quality more 
objectively, we have performed clustering on the COIL 
dataset [11]. This dataset contains images of 100 different 
objects and for each object there are 72 images. Ideally, we 
would like the clustering algorithms to automatically group 
images of the same object into the same cluster. Therefore, 
we assume that the number of objects (hence the number of 
clusters) is known. For each cluster, we count the percentage 
of images belonging to the same object. Obviously, the higher 
the percentage, the more homogeneous is the cluster, and the 
better the performance. Several test subsets are built on 
COIL-100, each with different numbers of objects, e.g. 
COIL20 is a test set with 20 objects. Table 1 shows the results 
of the spectral co-clustering method against k-means method. 
It is seen that, on average, the spectral co-clustering gives 
better performances.  

Table 1. Average clustering results of spectral co-clustering and k-
means using joint RGB colour histogram (64 bins) as feature 

 COIL20 COIL40 COIL60 COIL80 COIL100 
Spectral 91.36% 94.32% 92.42% 90.57% 92.00% 
K-Means 90.00% 91.14% 86.21% 88.07% 83.27% 

V. CO-CLUSTERING FOR CONTENT-BASED IMAGE RETRIEVAL 
By co-clustering, we have simultaneously grouped images 
and features together. We can now identify that certain 
features are more important for a certain set of images. This is 
unlike most previous methods where each feature prototype is 
treated as equally important for every image, and the 
importance of a given feature prototype to a given image is 
unknown. It is generally agreed that to associate meaningful 
semantic meanings to low-level features is difficult. Through 
co-clustering, we have automatically associated certain 

features with certain images. Since the meaning of images is 
more apparent to humans, we can (to some extent) derive the 
“semantic” meaning for these features. This is exact the case 
in linguistic where “semantic” is possible only within certain 
context. For example, the co-clustering result of Fig. 3 and 
the joint RGB color histogram bin [R(0-64), G(0-64), B(192-
255)] has been grouped together. Without the images, what 
can be said about this bin is that it is some kind of ‘bluish’ 
color. Now, within the context of this image cluster, we can 
say this bin indicates blue sky and ocean. In addition, the set 
of feature prototypes will give us clues about the images 
grouped with them, which could potentially provide a more 
effective way to index and search image database. Base on 
above simple reasoning, we believe that the images and 
features co-clustering framework offers many new 
opportunities for developing better and more effective 
technologies for content-based image retrieval. In this section, 
we present an example for such a potential. 

A. Spatial CPAM 
Note that in previous sections, the features did not contain 
spatial information. In many cases, image contents may be 
better characterized by also recording the spatial relations of 
the feature prototypes. Here we introduce a new image 
content descriptor termed Spatial CPAM (SCPAM). Given an 
image, we first zoom it out (reduce it) to a certain small size. 
Humans can recognize images of objects at very coarse 
resolutions or small image sizes such as those printed in 
Figures 3 and 4. Philosophically speaking, if humans can 
recognize coarse resolution (small size) images, then for 
computer recognition, it is also only necessary to represent 
images at a coarse resolution. After reducing the image, we 
divide it into m × n blocks. For each block, we can use the 
algorithm of [1] to associated it with 2 CPAM feature 
prototypes (see Fig. 1), 1 for achromatic and 1 for chromatic 
information respectively. In this way, we define a 3-
dimensional binary image descriptor S as follow: S(x, y, i) = 1 
and S(x, y, j+N) = 1 iff the block in x column of y row is 
associated with the ith achromatic CPAM prototype and the 
jth chromatic CPAM prototype, where N is the total number 
of achromatic CPAM prototypes; otherwise S(x, y, i) = 0, ∀ x, 
y, i.  

Another purpose of introducing SCPAM is to facilitate 
the visualization of the association of features and images in 
the same cluster. Note that the SCPAM descriptor S contains 
all necessary information to reconstruct the image with the 
CPAM feature prototypes. An example image constructed 
with 64 achromatic and 64 chromatic CPAM feature 
prototypes is shown in Fig. 5. Note in the Figure, although it 
is a distorted version of the original, it is still recognizable. 
This property of SCPAM may be helpful in developing new 
content-based image retrieval methods. 

  
Fig. 5: Left: Original image. Right: Reconstructed image using 
CPAM appearance prototypes. 



B. Co-Clustering SCPAM Features and Images 
To perform co-clustering use the SCPAM descriptor, the 3-
dimensional matrix S can be collapsed to a vector, say, in a 
column first manner. Note that in this scheme, the feature 
prototype set P consists of m × n copies of CPAM feature 
prototypes. Use the spectral graph partitioning method 
described in previous sections, we can co-cluster the features 
and images.  

For each cluster of images obtained by co-clustering, it is 
associated with certain blocks of the images, and of course 
those blocks are encoded by certain CPAM feature 
prototypes. Using only those blocks that are associated with a 
given cluster of images, we can visualize the important image 
parts for that cluster of images, as illustrated in Fig. 6. In this 
example, each image is resized to 16 (4 x 4) blocks of 4 x 4 
pixels. Each block is then encoded using 64 achromatic and 
64 chromatic CPAM prototypes, thus, a 2048 dimensional 
binary SCPAM vector represents each image. For each cluster 
of images, we draw those blocks that are associated with the 
cluster on the image on the left, which we call a cluster 
visualization image. Note that the same block of the 
visualization images may be associated with different CPAM 
feature prototypes; we simply average them for visualization 
purpose. 

From Fig. 6, it is seen that the visualization image 
reflects the common attributes of the objects in the images 
within the cluster. This demonstrates that our features and 
images co-clustering technique has successfully associated 
important and meaningful features prototypes with images, 
and from this association, we can infer the predominant 
object shape of the images. This example demonstrates that 
with co-clustering, we have more information available to 
offer more flexibility for developing image database 
management technology. How to fully exploit the extra 
information most effectively is a topic that has never been 
explored. 

  

  
Fig. 6: Left column: cluster visualization image where only image 
blocks associated with the image cluster (on the right) are displayed. 
Right column: image clusters obtained from co-clustering. 

C. Use Co-Clustering Results for Image Retrieval 
One possible way to exploit the co-clustering results for 
image database management is schematically illustrated in 
Fig. 7. From Fig. 6, we see that it is possible to use those 
feature prototypes associated with a given cluster to construct 
a visualization image of the cluster. For each cluster, we can 
construct its associated visualization image. All visualization 
images then form a cluster object palette, which can be 
incorporated into the graphical user interface (GUI) of an 
image database management system. Note that each item in 

the palette is associated with a cluster of images that contain 
objects similar to the visualization image and at a similar 
spatial position within the image. Such visual cues in the GUI 
should be helpful to users looking for their desired images.  
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Fig. 7: One possible ways to exploit co-clustering results for 
developing image database management technology. 

VI. CONCLUDING REMARKS 
In this paper, we have first introduced spectral graph 
partitioning for the co-clustering of images and features. We 
have demonstrated that spectral co-clustering has a 
computational advantage over traditional k-means algorithm, 
especially when the feature vectors are of high dimensional. 
We have presented informal subjective and formal objective 
comparisons of image clustering results of spectral co-
clustering and k-means and shown that spectral co-clustering 
has better performances. We have illustrated that the images 
and features co-clustering framework may offer new 
opportunities for developing advanced image database 
management technology and presented a possible scheme for 
exploiting co-clustering results for content-based image 
retrieval. 
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