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Interactive Image Matting using Optimization 

 
Jian Guan and Guoping Qiu 

 
School of Computer Science and Information Technology, University of Nottingham  

Figure 1: For a given image we want to segment the foreground/background and compute its alpha matte. Our one-step segmentation and 
matting algorithm solves for the alpha matte by optimizing a quadratic matting cost function subject to user input constraints. From left to 
right: (a) Input image with user indicated background and foreground pixels. (b) Projecting the pixels onto their photometric feature space 
where geometrically (spatially) adjacent pixels are not necessarily close to each other and spatially far away pixels may be very close to 
each other. (c) Pixels of the alpha matte are linked to their geometric and photometric neighbors by the strength of their pixels photometric 
similarities, and the alpha matte is obtained by minimizing a quadratic matting cost function defined by the links of the matting neighbors. 
(d) After obtaining the alpha matte, the foreground of the input image can be estimated; here the obtained foreground is displayed against a 
uniform background. (e) The alpha matte can also be used to composite a new image with a complex new background. 

 
Abstract 
 
In this paper, we formulate interactive image matting as a 
constrained optimization problem. We first make some simple and 
reasonable assumptions about the alpha matte and assume that, 
geometrically, the closer two pixels are, the more likely they will 
have similar alpha values, conversely, the farther apart two pixels 
are, the more likely they will have different alpha values; 
photometrically, the more similar two pixels are, the more likely 
they will have similar alpha values, conversely, the more different 
two pixels are, the more likely they will have different alpha 
values. We then formulate these assumptions in a quadratic 
matting cost function and obtain the alpha matte by minimizing 
the matting cost function. User interaction in the form of a few 
scribbles indicating a few definite background and foreground 
pixels is used to provide constraints to make the problem well 
posed. For a given set of constraints the matting cost function has 
a unique global minimum and can be solved efficiently using 
standard methods. With the computed alpha matte we then 
estimate the background and foreground pixels. Results show that 
the new method works effectively and provides an alternative 
computational algorithm for building interactive image editing 
tools. 

Keywords: interactive image segmentation, alpha matting, 
constrained optimization.  

1. Introduction 
 

Interactive background foreground segmentation and image 
matting are two closely related problems that have wide 
applications in computer graphics. The key feature of recent 

methods [Boykov and Jolly 2001, Chuang et al. 2001, Li et al. 
2004, Rother et al. 2004 Sun et al. 2004, Wang and Cohen 2005] 
is that they all consist of two main parts, the user interaction part 
and the computational part. These two parts are closely linked, on 
one hand, user interaction provides strong constraints to make the 
computational problem well conditioned, and on the other hand, 
the computational methods determine the amount of user labor 
required to generate a good matte. Some methods require user 
input in the form of a well-drawn trimap [Chuang et al. 2001, Sun 
et al. 2004] and others require user effort in the form of a few 
scribbles [Boykov and Jolly 2001, Li et al. 2004, Rother et al. 
2004, Wang and Cohen 2005]. The computational algorithms 
used in previous interactive image segmentation and image 
matting work can be classified into four main categories, Graph 
Cut [Boykov and Jolly 2001, Li et al. 2004, Rother et al. 2004], 
Bayesian [Ruzon and Tomasi 2000, Chuang et al. 2001], Poisson 
Equation [Sun et al. 2004] and Belief Propagation [Wang and 
Cohen 2005]. 

This paper presents a new interactive algorithm for image 
foreground background separation and matting. Our method also 
requires minimal user interaction in the form of a few scribbles, 
but we introduce an alternative computational algorithm to 
compute a good alpha matte. We formulate image matting as a 
constrained optimization problem. We define a quadratic form 
matting cost function based on the assumptions that, geometric or 
spatial neighbors are likely to have similar alpha values, 
photometrically similar pixels are likely to have similar alpha 
values, and the similarity (dissimilarity) in alpha values are related 
to their geometric closeness and photometric similarity. We 
employ the user input as constraints to make the problem well 
posed and the matting cost function has a unique global 
minimum. We obtain the alpha matte by minimizing the matting 
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cost function, which yields a large, sparse system of linear 
equations that can be solved using standard numerical 
computational tools. 

 

2. Related Work 
 

In this section, we give a very brief review of related recent 
literature in interactive image segmentation, image matting, and 
unified image segmentation and matting. 

Interactive image segmentation: Image segmentation has been 
studied for a long time and interactive approach have recently 
attracted increasing interest because it can help overcome the 
inherent difficulties of automatic image segmentation. The 
interactive graph cut method of [Boykov and Jolly 2001] and the 
segmentation given partial grouping constraints method of [Yu 
and Shi 2004] are representatives of recent progress. The GrabCut 
method of [Rother et al. 2004] and the Lazy Snapping system of 
[Li et al.] have extended the graph cut algorithm of [Boykov and 
Jolly 2001] to develop simpler and easier to use image editing 
tools.  

Image Matting: Software systems for image matting include 
Magic Wand [Adobe 2002] and Knockout [Corel Corporation 
2002]. Recent computational approaches to image matting include 
the Bayesian approach of [Chuang et al. 2001] which was based 
on [Ruzon and Tomasi 2000] and Poisson Matting [Sun et al. 
2004]. These methods use a well-drawn trimap to obtain a good 
matte. The GrabCut method [Rother et al. 2004] which was 
designed to simplify user interaction uses graph cut to segment the 
background and foreground first and then performs border 
matting in the border areas between segmented foreground 
background regions.  

Integrated Image Segmentation and Matting: A recent work 
that performs interactive image segmentation and image matting 
was introduced in [Wang and Cohen 2005] where they unified 
image segmentation and matting and generated a matte directly 
from a few user specified foreground and background strokes. 
They proposed a Belief Propagation solution to iteratively 
estimate a discrete (25 levels) matte.  

 

3. Algorithm 
 

The image composition and matting problem can be summarized 
by following equation:  

( ) ( ) ( ) ( )( ) ( )uBuuFuuI αα −+= 1    (1) 

where u denotes the pixel co-ordinate vector (x, y), B(u) denotes 
the background image and F(u) denotes the foreground image and 
α(u) ∈  [0, 1] denotes the alpha matte image used to linearly blend 
between foreground and background  

In the case of matting, or pulling of matte, the image I(u) is given, 
the task is to find the alpha image α(u) ∈  [0, 1], the background 
image B(u) and the foreground image F(u) such that the given 

image I(u) can be modeled as a linear combination of B(u) and 
F(u) by α(u).  

It is well known that matting is an under constrained problem and 
user interaction has been previously used to compute good quality 
mattes, see e.g. [Rother et al. 2004, Sun et al. 2004, Wang and 
Cohen 2005]. We have developed a new computational approach 
to interactive image matting. Our method also requires minimal 
user interaction and we introduce a new alternative computational 
method to generate a good quality matte. 

 

3.1. Algorithm Overview 

We first define a quadratic matting cost function of α(u) based on 
some simple and reasonable assumptions. We assume that, 
geometrically or spatially, the closer two pixels are, the more 
likely they will have similar alpha values; conversely, the farther 
apart two pixels are, the more likely they will have different alpha 
values; photometrically, the more similar two pixels are, e.g., 
similar colors, similar texture neighborhoods, the more likely they 
will have similar alpha values; conversely, the more different two 
pixels are, the more likely they will have different alpha values. 
Image matting is formulated as an optimization problem and the 
task becomes that of minimizing the deterministic quadratic 
matting cost function. 

We then use an interactive approach [Boykov and Jolly 2001, 
Rother et al 2004, Wang and Cohen 2005] to solve the (under 
constrained) optimization problem. A user scribbles on the image 
indicating certain pixels that are definitely background, i.e., α(u) 
= 0 and certain pixels that are definitely foreground, i.e., α(u) = 1. 
Using these user inputs as constraints makes the problem well 
posed and the matting cost function has a unique global 
minimum. The optimization problem yields a large, sparse system 
of linear equations, which can be solved efficiently using a 
number of standard methods. 

The deterministic global solution to the quadratic matting cost 
function yields a continuous alpha matte α(u) ∈  [0, 1] which can 
be used directly to estimate the background and foreground 
pixels. If α(u) = 0 then it corresponds to a definite background 
pixel B(u) = I(u). If α(u) = 1, then it corresponds to a definite 
foreground pixel F(u) = I(u). If 0 < α(u) < 1, then within a 
neighborhood of u, N(u), we find ∀ s∈ N(u) and α(s) = 0; ∀ t∈ N(u) 
and α(t) = 1, and estimate B(u) and F(u) from the set {B(s), F(t)} 
using a method similar to that of [Wang and Cohen 2005]: 

In summary, our algorithm starts from the definition of a 
deterministic quadratic matting cost function, and then with the 
aid of user interaction, it then solves a large, sparse system of 
linear equations using standard numerical methods to obtain a 
continuous alpha matte, and finally, it uses the alpha matte to 
estimate the background and foreground pixels. 

 

3.2. Matting as Constrained Optimization 

Let G(u) = Φ(I(u)) be image features (such as color, texture, etc), 
computed around the pixel at location u, where Φ is the feature 
extraction operator. We call G(u) the photometric features. Let 
Ng(u) be the set that contains the geometric neighbors of u, then 
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v∈ Ng(u) if |v – u|<Rg, let Np(u) be the set that contains the 
photometric neighbors of u, if |G(v) - G(u)|<Rp then v∈ Np(u), 
where Rg and Rp are some preset constants determining the size of 
the neighborhoods. Let Nm(u) = Ng(u) ∪  Np(u) denote the set that 
contains the matting neighbors of u and which includes all pixels 
that are either the geometric neighbors or the photometric 
neighbors of u. Note that if the pixel I(v) is a geometric neighbor 
of the pixel I(u), I(v) can also be the photometric neighbor of I(u), 
but if I(v) is a photometric neighbor of I(u), I(v) may not 
necessarily be the geometric neighbor of I(u). 

Based on some reasonable assumptions about the alpha matte and 
assuming that two spatially adjacent pixels should have similar 
alpha values, two photometrically similar pixels should also have 
similar alpha values, and the difference in alpha values between 
two pixels should be proportional to the pixels’ photometric 
distance, the alpha matte may be obtained by minimizing the 
matting cost function defined as  

( ) ( ) ( ) ( )( ) ( )
( )
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where wg(u, v) is the geometric neighbor similarity weighting 
function between two pixels u and v, wp(u, v) is the photometric 
neighbor similarity weighting function between two pixels u and 
v, and λ is a constant that measures the relative importance of the 
geometric neighbor similarity and the photometric neighbor 
similarity, all similarity weightings inside a matting neighborhood 
sum to one. 

( ) ( )( )
( )

1,, =+∑
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m
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To reflect the assumptions that geometrically close pixels are 
likely to have similar alpha values and geometrically far apart 
pixels are likely to have different alpha values, and 
photometrically similar pixels are likely to have similar alpha 
values and photometrically different pixels are likely to have 
different alpha values, the neighbor similarity functions wp(u, v) 
and wg(u, v) should be small if |u - v| is large and small if |u - v| is 
large, and they should be small if G(u) and G(v) are different and 
large if G(u) and G(v) are similar. We use a function that has been 
used in the image segmentation literature, e.g., [Yu and Shi 2004] 
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where σgg and σgp, σpg and σpp are the variances of the geometric 
co-ordinates and photometric features inside Np(u) and Ng(u) 
respectively.  

With user interaction, a set of alpha matte pixels at locations ui are 
specified as background (α(ui) = 0) and as foreground (α(ui) = 1). 
We minimize the matting cost function E(α(u)) in (2) subject to 
these constraints. The cost function is quadratic and the 
constraints are linear, the cost function has a unique global 
minimum. This optimization problem yields a large, sparse system 
of linear equations, which may be solved efficiently using a 
number of standard tools [Hackbusch 1985, Press et al. 2002]. 
The colorization work of [Levin et al. 2004], the machine learning 

work of [Roweis and Saul 2000] and normalized cut of [Shi and 
Malik 2000] solve a similar optimization problem.  

 

3.3. Implementation Procedure 

The implementation of our matting algorithm consists of several 
straightforward steps. First we need to decide the types of 
photometric features to use and find the photometric neighbors for 
each pixel, and then we compute α(u) by optimizing E(α(u)) 
using user input as constraints, which is achieved by solving a 
large, sparse system of linear equations. With the computed alpha 
matte, we estimate the background and foreground pixels for 
image matting or segmentation. See Figure 1 for the work-flow of 
our algorithm. 

Step 1: Selecting Matting neighbors 

The selection of geometric neighbors is straightforward and in all 
our experiment we use the 8 spatially connected pixels as 
geometric neighbors. 

We then need to select the photometric features for finding the 
photometric neighbors and for computing the similarity weighting 
measures (4) in the feature space. In all our experiment, we 
convert the color image into La*b* color space [CIE 1986] 
because it has been shown that the color distance in this space 
corresponds well with perceptual difference. Although there are 
many possibilities to extract compact features, we simply use all 
pixels from the 3x3 window that center on a pixel to form the 
photometric feature for that pixel. Therefore, the photometric 
feature of a pixel at location u, G(I(u)), is a 27-d vector (9 pixels x 
3 color channels inside a 3x3 window centered on u). Note that 
other features, for example, multi-channel texture features 
[Bovick et al. 1990], can also be used, which may be helpful in 
difficult cases such as separating highly textured foreground and 
background regions.  

As will be discussed later in Section 3.4, we cannot and should 
not have too many photometric neighbors for each pixel. 
Fortunately, it turns out that it is only necessary to have several 
photometric neighbors for each pixel (we use 4 in all our 
experiments). We use a very simple method to efficiently search 
the photometric neighbors. For each pixel, we randomly sample Κ 
pixels from an M x N window center on the pixel1. From these Κ 
pixels, we find 4 that are the closest to the pixel as its photometric 
neighbors. Each pixel will have 8 geometric neighbors and 4 
photometric neighbors. Therefore each alpha pixel is linked to 12 
(or fewer) matting neighbors via their similarity weightings (4). 
The relative geometric and photometric weighting constant λ  is 
determined by experiment, which may vary from image to image. 
We found setting λ = 1 works well for most images. 

Step 2: Solving constrained optimization problem 
                                                                 
1 In theory, we should sample as large a window and as many pixels as 

possible, at the extreme, sample the whole image and include all pixels, 
but that will be more time consuming and turns out not necessary since 
all matting neighbors are linked. In practice, we only need to sample a 
small region and a small number of random samples. In all our 
experiments, w use Κ = 150 and M x N = 17 x 17, which work well for 
all images we tested. 
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Solving the minimization problem of (2) using the user inputs as 
constraints yields a large, sparse system of linear equations of the 
form Wa = c, where W is a sparse matrix containing the 
connection weights of matting neighbor pixels, a = {α(u)} is the 
vector containing all alpha pixels, and c is a constant vector. In 
our current implementation, we use Matlab’s build-in least 
squares solver for sparse linear system to directly solve for α(u). 
On a Pentium 4 PC with 1.8GHz CPU, our current 
implementation takes about 6 minutes to compute a matte for a 
500x300 image. However, fast methods and even dedicated 
hardware are available to solve this problem much faster 
[Backbusch 1985, Press et al. 2002, Geiselmann et al. 2005]. 

Step 3: Estimating Background and Foreground 

After obtaining α(u), we can now find F(u) and B(u) in (1). If 
α(u) = 1, then F(u) = I(u). If α(u) = 0, then B(u) = I(u). If 0 < α(u) 
< 1, then within a neighborhood N(u) (for which we use a 17 x 17 
window centered around u in all our experiments), we find 
∀ s∈ N(u) and α(s) = 0 and ∀ t∈ N(u) and α(t) = 1, and then 
estimate B(u) and F(u) using a method similar to that of [Wang 
and Cohen 2005]: 

[ ] ( ))())(1()()()(minarg)(),(
,

sButFuuIuBuF
ts

αα −−−=
∀

 (5) 

 

3.4. Algorithm Analysis 

Unlike previous methods [Chuang et al. 2001, Boykov and Jolly 
2001, Rother et al. 2004, Wang and Cohen 2005], in our solution, 
the user marked background foreground pixels are not explicitly 
modeled or directly used to match the pixels, but rather, these user 
provided seed pixels are used as constraints to solve a quadratic 
cost function. The user inputs are implicitly propagated to the 
whole image by the optimization process.  

It is important to note that even though the pixels are only linked 
to a few of their matting neighbors, the process of optimizing (2) 
computes all alpha values together by solving a large, sparse 
linear system of equations, a global operation that couples all 
alpha pixels that lie in the same connected component of the 
graph defined by the matting neighbors. The algorithm 
incorporates the user input to find a globally coherence alpha 
matte by integrating information from overlapping neighbors.  

Note also that we divide the neighbors of a pixel into two 
categories – geometric neighbors and photometric neighbors. The 
reasons that it is necessary to have these two types of neighbors 
are as follows. 

The value of α(u) is influenced by it’s geometric neighbors 
(spatially adjacent pixels) α(v) to ensure that the alpha matte is 
smooth. Using a weighting function in (4) we ensure that if G(u) 
and G(v) are similar, then α(u) and α(v) should be similar also. 
However, if G(u) and G(v) differ significantly, then α(u) is not 
affected by α(v) even though they are spatial neighbors. This is to 
ensure that the alpha matte is not overly smooth especially in 
areas where the image changes significantly, because a large 
change in the image may signify the changes from background to 
foreground, or vice versa, therefore the value of alpha should 
change accordingly.  

The value of α(u) is also influenced by its photometric neighbors. 
Two pixels having similar photometric features would be very 
likely belonging to the same background or the same foreground 
even though they may be very far away spatially. Using a 
weighting function in (4) we ensure that if G(u) and G(v) are 
photometrically very similar, even though they may be 
geometrically very far apart, minimizing E(α(u)) in (2) will favor 
α(u) and α(v) have similar values.  

In an interactive approach to foreground background separation, 
the introduction of the photometric neighbors will greatly simplify 
user input as illustrated in Figure 2. If only geometric neighbors 
are used (geometric neighborhoods are usually small, typical sizes 
are 3 x 3 or 5 x 5, we will discuss shortly why we cannot have 
large geometric neighborhoods), then the user input will have to 
be placed in every hole of the net to indicate the background 
because the links between holes would have been cut off by the 
net hence the user input will not be able to propagate from one 
hole to the next. On the other hand, the photometric features 
inside all the holes are very similar and they will be very likely to 
be photometric neighbors. Therefore, it is only necessary to put 
one stroke inside one hole and this user input will be propagated 
through to all the holes via photometric neighbors. In this way, 
user effort is greatly reduced while achieving the same good 
quality matting.  

   
(a)  (b)  (c) 

Figure 2: (a) A net image with many holes, the blue scribble 
indicates background, the red scribbles indicate foreground. (b) 
The alpha matte pulled with photometric neighbors and (c) The 
alpha matte pulled without the use of photometric neighbors (note 
that the blue stroke failed to propagate outside of its hole). 

At a first glance, it may seem that separating pixels into geometric 
neighbors from photometric neighbors is unnecessary if one only 
wants to bring spatially far away pixels to have influence on each 
other’s alpha values. Indeed, if this were the case, all we have to 
do is to make the geometric neighborhood larger (at the extreme 
to include the whole image). However, this will have two 
problems. Firstly, a larger neighborhood will make the problem 
less sparse thus making the problem computationally much more 
demanding. Secondly, making a pixel influenced by too many 
pixels (with unknown status), it may also risk introducing 
inaccuracy and uncertainty into the model. 

Using the concept of photometric neighborhood, we can select 
only those pixels that are very similar to each other to have an 
influence on each other’s alpha value. In this way, we can cover a 
much larger spatial area and at the same time still ensure the 
problem is sparse thus can be solved efficiently using standard 
numerical tools. Fortunately, our experiences show that only 
using a few photometric neighbors (about 4) suffice to ensure 
good results. With the concept of photometric neighborhood, we 
can also ensure that if two pixels are spatially far away from each 
other, then in order to have an influence on each other’s alpha 
values, they have to be photometrically very similar. In other 
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words, we can ensure that only those pixels that are highly likely 
to belong to the same background or foreground to have an 
influence each other’s alpha values, therefore reducing the 
uncertainty in the model. We consider the photometric 
neighborhood concept and implementation procedure a 
noteworthy feature of our algorithm.  

Table 1 shows a comparison of the features of our algorithm and 
those of several state of the art methods. We did not show 
computational speeds in the table as these may depend on 
implementation details. In terms of complexity, graph cut has a 
low order polynomial complexity, however, it can be computed 
very efficiently and therefore the algorithm can be considered fast 
[Boykov and Kolmogorov 2004]. Belief Propagation is slow 
because of its iterative nature but [Wang and Cohen 2005] 
reported that dramatic speed up was possible with fast algorithms. 
Our algorithm solves a large, sparse linear system of equations, 
which when implemented using advanced techniques [Hackbusch 
1985, Press et al. 2002] has a complexity scales linearly with the 
number of pixels. It is interesting to note also that recently, special 
hardware has been developed to solve large, sparse linear system 
of equations [Geiselmann et al. 2005]. 

 

4. Results 
 

We have tested our method on a variety of images. Figure 3 shows 
some typical examples of the interaction process of our algorithm. 
Normally, an initial set of scribbles will miss some small details, 
then the user can add a few more scribbles and the result normally 
comes out satisfactorily in 1 – 2 rounds of interaction. In some 
more complex cases, for example, if the foreground and 
background contain textured patterns, a few interactions may be 
necessary. It is seen that these images contain some very 
complicated textures, the tiger’s skin, for example, contain 
different colors and texture patterns. It is seen that our technique 
works satisfactorily.  

    

    

    

    

    
Figure 3: 1st column, original image with initial scribbles put on 
by the user indicating foreground (red) and background (blue). 2nd 
column, user interaction. 3rd column, alpha matte. 4th column the 
foreground images viewed against a uniform blue background.  
 

Algorithms Trimap Requirement Cost Function/Model Computational Method Alpha Values 

Graph Cut1 Simple/Interactive Deterministic One shot/Graph cut Binary 

GrabCut2 Simple/Interactive Statistical/GMM Iterative/Graph cut Binary/Continuous 

Bayesian3 Complex Statistical/GMM Iterative/MAP Continuous 

Poisson Matting4 Complex Deterministic Poisson Equation Continuous  

Wang Cohen5 Simple/Interactive Statistical/MRF/GMM Iterative/Belief propagation Discrete (25levels) 

Ours Simple/Interactive Deterministic Quadratic One shot/Linear equations Continuous 

1[Boykov and Jolly 2001] 2[Rother et al 2004] 3[Chuang et al 2001] 4[Sun et al 2004] 5[Wang and Cohen 2005] 

Table 1: A comparison of typical features of several state of the art foreground background segmenting and image matting algorithms.  
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Figure 4: Examples of image composition. In each case, the input 
image with the total scribbles put on by the user to extract the 
matte, the final matte and the new composite image formed with 
the matte and a new background is shown. 

 

   

  
Figure 5: Top row, here we show that our method is capable of 
removing unwanted objects from the image, also shown is the 
extracted matte and the estimated foreground. Bottom row, here is 
a difficult case to draw a good trimap, our method has succeeded 
in pulling out the spider web. 

 

 

Figure 6: Our method copes with confusing background and 
foreground colors very well. In this example, the red coat of the 
Queen and the red color on top of the image are very similar. 
Especially pay attention to the white Plume the Queen was 
wearing and the white colors surrounding the white Plume. Our 
technique has successfully separated these similar color 
foreground and background.  

 

Figure 4 shows examples of image composition using our 
interactive segmentation and matting algorithm. We first 
estimated the alpha matte and then combined the extracted 
foreground with a new background to form a new image. Again 
the results are satisfactory. 
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Figure 5 shows that our method is capable of removing unwanted 
complicated objects from the image and pulling out complicated 
features such as a spider’s web with low to moderate user effort. 
More examples of complex foreground extraction are shown in 
Figure 7. 

Figure 6 shows that our method is capable of separating confusing 
foreground and background with similar colors. In statistical 
based models, [Wang and Cohen 2005] noticed that this could 
cause a problem. Because our method not only taking the 
photometric features (colors in this case) of the pixels into 
consideration but also explicitly modeling their geometric 
locations, it has succeeded in separating two similar colors located 
in different places.  

Figure 8 shows the interactive process of extracting the 
foreground of an image and compared with the GrabCut result. 
Figure 9 shows another of our result as compared with Bayesian 
matting, Graph Cut and GrabCut. It is seen that our results are 
comparable with those of state of the art methods.  

 

5. Summary 
 

In this paper, we have presented a new interactive algorithm for 
foreground background segmentation and for image matting. 
Based on a set of reasonable assumptions about the alpha matte, 
we formulated the matting problem as a constrained optimization 
problem and presented a method to construct the matting cost 
function and solve the optimization problem. We have presented 
results which show that our method works effectively and is 
competitive to state of the art methods. We also show that our 
method can cope with difficult cases that existing algorithms may 
fail. In conclusion, we have presented an alternative approach to 
interactive image segmentation and matting which may provide a 
building block for constructing powerful image editing tools.  
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Figure 7: More examples of extracting complex patterns from image using our method. The left images show the original with 
user indicated foreground (red) and background (blue). The right images are extracted alpha matte. The middle images show the 
composition of the extracted foregrounds with new backgrounds.  

 
               (a)                                 (b)                                  (c)                                  (d)                           (e)                       (f) 

Figure 8: A comparison with GrabCut [Rother et al. 2004]. (a) Original image with initial scribbles. (b) 2nd interaction based on 
the result from (a). (c) Foreground image extracted by our algorithm. (d) Result of GrabCut. (e) Zoomed sub-image of (c) and (f) 
zoomed sub-image of (d). Acknowledgement: This image was used in [Rother et al 2004], the original image was downloaded 
from Berkeley Image Database2. The results of GrabCut were cutouts from the electronic paper of [Rother et al. 2004]. 

 

     
               (a)                                 (b)                                  (c)                                  (d)                                    (e) 

Figure 9: A comparison of results. (a) Bayesian Matte. (b) Graph Cut. (c) GrabCut. (d) Our result. (e) The original image with 
initial user input to generate (d). Acknowledgement: (a) to (c) are direct cutouts from the electronic paper of [Rother et al 2004] 
and the original image was down loaded from: http://research.microsoft.com/vision/cambridge/i3l/segmentation/GrabCut.htm. 

                                                                 
2 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/BSDS300-images.tgz 


