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Abstract 
 

In this paper, we present a method that adaptively 
computes a contrast gain control map for the image 
through the use of a novel technique termed linear 
neighborhood embedding (LNE) which first computes a 
locally linear relation for each pixel and its neighbors and 
then embeds these relations globally in the gain map 
image. We borrow the “think globally fit locally” concept 
and computational techniques from locally linear 
embedding (LLE) and compute the gain control image in 
closed forms by solving constrained optimization 
problems. We constrain the gain map locally following a 
gain contrast control mechanism similar to that found in 
the visual cortex to ensure that weak local contrasts are 
boosted and strong local contrasts are compressed, and 
propagate these local constraints globally following the 
original image pixels’ locally linear relations. We have 
applied our technique to compress high dynamic range 
images for reproduction in low dynamic range media and 
to enhance ordinary digital photographs. Results 
demonstrate that our technique is capable of preserving 
local details while avoiding artifacts such as halo 
 

1. Introduction 
Today, digital cameras are ubiquitous. However, when 

imaging scenes containing wide variations of illumination 
intensities, the picture quality often turns out to be less 
than satisfactory and image enhancement has to be applied 
to improve the image. Although the situations can be 
remedied by using high dynamic range (HDR) imaging 
technology [4 – 21] where the so called HDR radiance 
maps record the actual dynamic range of the scenes, there 
is still the problem of faithfully reproducing the image in 
conventional low dynamic range (LDR) reproduction 
media such as print paper and CRT. 

In this paper, we present a technology that adaptively 
computes a contrast gain control image for a given image 
through the use of a novel technique termed linear 
neighborhood embedding (LNE). LNE computes the gain 
map by solving constrained optimization problems using 

the concept and computational techniques similar to those 
of a recent high dimensionality reduction method called 
local linearly embedding (LLE) [22]. We introduce the 
idea of “think locally, fit globally” which computes the 
gain control image at local and global scales 
simultaneously. We show that our technology can be 
applied to compress the dynamic range of HDR radiance 
maps for visualization in LDR reproduction devices and to 
enhance low quality ordinary LDR digital photographs. 

In section 2, we briefly review previous work. In section 
3, we introduce our linear neighborhood embedding 
technology for adaptively computing a contrast gain 
control image for a given image. In section 4, we present 
implementation details. We present our results in section 5 
and conclude our presentation in section 6. 

2. Previous Work 
In the past several years, there has been tremendous 

interest in high dynamic range imaging, from capturing [9 
– 13], to storage [20] to display [3-8, 10-12, 14-19, 21]. 
Although new high dynamic range display devices are 
being developed, e.g., [19], the dominant reproduction 
media for HDR images are traditional monitors and print 
paper having a limited dynamic range between only one to 
two orders of magnitude. Therefore, how to best compress 
the dynamic range of the HDR radiance map so that the 
information in the original scene can be faithfully 
reproduced in LDR devices is one of the important 
technical challenges in HDR imaging workflow, and a 
variety of HDR image display techniques have appeared in 
the literature. Extensive reviews can also be found in 
previous works such as [14-18, 21].  

There are mainly two categories of techniques: global 
(spatially invariant) and local (spatially variant). In a 
global method, a nonlinear function T is used to map each 
pixel of the input image I(x, y) independently to form an 
output image I’(x, y) = T(I(x, y)). The key to this type of 
method is to find the appropriate mapping function T, 
which can be some power functions [5, 18] or mapping 
curves derived from the image’s histogram [8]. The 
advantage of the global method is that it is computational 
efficient but it can destroy local contrasts making the 
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image look washed out. In a local method, how a pixel is 
mapped will depend on both the pixel value and its spatial 
context. Local methods are significantly more complex 
and can be very difficult to implement in practice. Earlier 
methods such as [3] introduce “halo” artifacts, improved 
methods such as [12] can reduce the visibility of halos, and 
newer methods such as [15, 21] can avoid halo artifacts. 

One type of successful local methods that avoid halo 
estimate edge preserving gain control image. The key 
observation is that the gain map should have sharp edges at 
the same points that the original image does, thereby 
preventing halos [15, 17, 21]. In [17], the authors compute 
a gain map using the bilateral filter and have achieved very 
good results. In [15], the authors compute the gain map in 
the gradient domain that compresses strong edges and 
boosts weak edges. The reduced low dynamic range image 
is then retrieved by solving Poisson’s equation using an 
approximated solution which achieves satisfactory results 
with reasonable computational cost. In [21], the authors 
introduce a method that computes a gain map for 
multiscale subband images and they have successfully 
avoided halos that are often associated with multiscale 
methods. We have developed a method that computes a 
gain map image in the intensity image domain by solving 
constrained optimization problems and we have applied 
the method to compress high dynamic range image for 
display and to the enhancement of ordinary images and 
have achieved good results. 

3. Contrast Gain Control by LNE 
For a given image I(x, y), we seek a gain map image 

G(x, y) to produce a new image I’(x, y) = I(x, y) + G(x, y) 
for high dynamic range compression and/or image 
enhancement. Our basic idea is illustrated in Figure 1, 
which consists of two steps; we first compute a linear 
relation for each pixel and its local neighbors in the 
original image and then embed these linear relations in the 
gain map image. We sparsely constrain the gain map 
image locally by using a “contrast gain control” 
mechanism similar to that found in the visual cortex [25] 
and propagate these sparse local gain controls globally 
throughout the entire image following the locally linear 
pixel neighborhood relations of the original image. We 
compute the locally linear relations and solve the global 
embedding problem by borrowing the computational 
techniques of the “think globally, fit locally” framework 
[22]. In fact, as will become clear later in the paper, our 
work can be more accurately described as “think locally, 
fit globally” strategy. 

3.1. Gain Map by Neighborhood Embedding 

An image I(x, y) can be regarded as a product of the 
surface reflectance image R(x, y) and illumination image 

L(x, y) [1], we can write (in logarithmic domain): 

( ), ( , ) ( , )I x y R x y L x y= +         (1) 
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Figure 1: Schematic of linear neighborhood embedding (LNE) 
and its application to computing the gain map image. The locally 
linear neighborhood relations of the original image are used to 
compute the gain map image subject to some appropriate 
constraints. 
 

The largest variation of the image comes from the 
illumination image since real world reflectance images are 
unlikely to have contrast greater than 100:1. The 
illumination image tends to vary slowly across the image 
[2] and large intensity variations tend to mostly occur 
between regions rather than locally within a small area. If 
the image can be separated into the product of R and L, 
then high dynamic range compression can be achieved by 
compressing the illumination image L only. This way, the 
large contrast between brightly illuminated regions and 
dark shadow areas can be reduced while the contrast 
caused by reflectance of local texture features is preserved. 
However, separating the reflectance from the illumination 
is an ill-posed problem and it is almost impossible to 
completely separate L from R.  

Assume that we can compute a gain map G(x, y) for the 
image I(x, y) to produce a new image I’(x, y) for 
applications such as high dynamic range compression 
and/or image enhancement, we can write 

( ), ( , ) ( , ) ( , )I x y R x y L x y G x y′ = + +     (2) 

The gain map should serve at least two objectives, at a 
coarse scale it should reduce the high contrast between 
very brightly illuminated regions and dark shadow areas; 
and at a local scale, it should enhance or preserve the 
details within local regions. As well as achieving these two 
objectives simultaneously, it must avoid introducing 
artifacts such as halo. Therefore, G(x, y) should compress 
strong edges caused by illumination variations (high 
dynamic range compression), preserve or boost local edges 
(image enhancement) and protect original edge signs 
(avoiding halo).  

We have developed a “think locally, fit globally” 
technology to compute the gain map image to achieve 
these goals simultaneously based on following rationale. 
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Because human visual system is most sensitive to local 
intensity variations, then it is most important to preserve 
maybe even enhance local intensity contrasts. However, 
processing local contrasts will have to be done at a global 
scale in the sense that when putting locally processed 
regions together, the whole image should preserve the 
original scene’s visual integrity. Therefore, we cannot 
process local regions independently, but rather, local 
regions contrasts should be processed such that they will 
fit together globally. Equally important, the gain map 
should protect the directions of the intensity changes 
across the whole image to avoid halo which also requires 
that local processing fit into global relations. Therefore, 
the gain map image must be computed at local and global 
scales simultaneously.  

Our method first “think locally”, it strategically picks a 
few local patches of the image, finds the largest and the 
smallest intensities within each patch and processes the 
min/max pixel pairs according to a contrast gain control 
mechanism similar to that found in the visual cortex. The 
processed min/max pixel pairs from these local patches are 
then “fit globally” to whole image. To achieve such “think 
locally, fit globally” strategy, we borrow the concept and 
computational techniques similar to those of the “think 
globally, fit locally” framework – locally linear embedding 
(LLE) [22].  

At a coarse scale, the regional intensity variations within 
the image may be characterized by locally linear pixel 
relations. One possible approach to characterizing the 
locally linear spatial pixel relation is to construct a linear 
model that reconstructs the pixels from a linear 
combination of their neighbors. To build such model, we 
can perform following constrained optimization: 

 
Minimizing 

( ) ( ) ( ) ( )
2

, ,

, , ,xy
x y u v

E W I x y w u v I u v
 

= − 
 

∑ ∑    (3) 

Subject to  

( ) ( )
,

, 1 , 0 ( , )xy xy xy
u v

w u v and w u v if u v N= = ∉∑
where Nxy denotes a local neighborhood surrounds the 
pixel at location (x, y), wxy(u, v) is the weight which 
quantifies the contribution of the neighborhood pixel at 
location (u, v) to reconstructing the pixel at (x, y). Note 
that the relation is made local by setting the weights of 
pixels outside a local neighborhood of the pixel to zero. 
All weights summed to 1 to be invariance to the absolute 
intensity of the image.  

The locally linear spatial relation at pixel location (x,y) 
in the original image is captured in the weight matrix Wxy = 
{wxy(u, v)}. These weight matrices should also capture the 
spatial variations of the gain map G because from (2) it is 
clear that the gain map G should follow the variations of I. 

Therefore, we can construct G by embedding Wxy’s in the 
gain map by solving following constrained optimization 
problem: 

 
Minimizing 

( ) ( ) ( ) ( )
2

, ,

, , ,xy
x y u v

E G G x y w u v G u v
 

= − 
 

∑ ∑   (4) 

Subject to  

G(xi, yi) = gi, i = 1, 2, … 

where gi’s are pre-determined values of the gain map at 
location (xi, yi). 

Note that although the reconstruction weight matrix for 
each pixel is computed from a local neighborhood in the 
original image and is independent of the weights of other 
pixels, the embedding is a global operation that couples all 
gain map pixels. Therefore, G should follow I locally and 
globally as well. However, because the local weights only 
capture the linear relations, they can only capture the slow 
changing components of I that should reflect regional 
variations of the image. Local scale processing can be 
realized by setting the constraints locally. Informally, we 
can view (4) as globally fits the local constraints G(xi, yi) 
to the whole image globally. Clearly, G will be greatly 
dependent on the numbers, the locations and the values of 
the constraints G(xi, yi) and setting the constraints is a 
crucial step in our algorithm. 

3.2. Setting Constraints 

To get some insight into how the constraints should be 
set, it may be helpful to consider how the human visual 
system performs gain control. The visual world is hugely 
complex and the visual system is constantly exposed to 
scenes of huge dynamic ranges. Apparently, the visual 
system performs various types of automatic control to cope 
with the high dynamic ranges and noisy environments to 
keep it within the optimal operating range. At a global 
level, there seems to be a gain control mechanism at the 
retina, where the photoreceptors rapidly adapt to the 
ambient light level. In computational vision, this type of 
gain control is normally modeled by taking the log of the 
input intensity. It is widely accepted that the logarithm of 
the luminance is a (crude) approximation to the perceived 
brightness. Therefore, displaying the log image directly 
should give reasonably correct brightness but such image 
will be lack of details1. It is also widely accepted that 
human visual system is not very sensitive to absolute 
luminance reach the retina, but rather responds to local 

 
1 Logarithm itself incurs no information loss, the details are destroyed 

by numerical quantization. When the log image is scaled down to within 
the dynamic range of the reproduction devices, pixels with similar values 
will be quantized to the same level thus destroying details. 
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(a)         (b)        (c)        (d)        (e) 

Figure 2. (a) The original high dynamic range signal with a dynamic range of 6218 : 1. (b) Logarithm of (a). (c) The gain map, 
where the * are the constrained points. (d) The result signal = (b)+(c). (e) Linearly scale (a), (b) and (d) to the same dynamic range 
of 10 : 1. It is seen that in the result signal, local details are well preserved (slightly enhanced) in the low dynamic range image. 

intensity variations. In the visual cortex, there are neurons 
that operate a gain control mechanism known as “contrast 
gain control” in which moderately low contrasts are 
boosted while high contrasts are compressed [25].  

These important properties of the human visual system 
may provide us with some important clues to set the local 
constraints for equation (4) to achieve our goals. Firstly, 
we should set the constraints G(xi, yi) sparely scattered 
across the image to enable the embedding process to 
enforce G to follow the variations of I thus protecting the 
visual integrity of the original image. Secondly, we should 
set the values of these constraints such that they will boost 
weak local contrasts and compress local high contrasts. In 
this paper, we use following strategy to set the constraints: 

Constraints Setting Procedure 
i) Segment the image into coarse regions 
ii) Within each segmented region, randomly pick non-

overlapping patches of certain size (in this paper 17x17 
patch size is used, other patch sizes are possible). 

iii) For each patch Pi, find the smallest and the largest 
pixel within the patch 

( ) ( ) ( ){ }( )max( ) max( ), arg max , ; ,
i ip p ix y I x y x y P= ∀ ∈  

( ) ( ) ( ){ }( )min( ) min( ), arg min , ; ,
i ip p ix y I x y x y P= ∀ ∈  

and compute the patch’s contrast as 

( ) ( ) ( )max( ) max( ) min( ) min( ), ,
i i i ii p p p pC P I x y I x y= −       (5) 

iv) Within each patch, set two constraints for G, one at 
(xmax(Pi), ymax(Pi)) and the other at (xmin(Pi), ymin(Pi)) 
according to 

( ) ( ) ( ) ( )min( ) min( ) max( ) max( ), 0 ,
i i i i

i
P P P P i

C P
G x y G x y C P

β

α
α

 
= = − 

 

 (6) 

where α determine which local contrasts are boosted or 
compressed. If the local contrasts are smaller than α then 
they are boosted and if they are greater than α then they 
are compressed (assuming 0 < β < 1). A similar function 
was used in [15] and [21] for gradient domain gain 
contrast control and subband domain gain control. In all 
results presented in this paper, α is set to 0.3 times the 
average local patch contrast of the image and β between 
0.6 – 0.8.  

From the above contrast setting procedure, we can make 
following observations. The purpose of coarsely 

segmenting the image is to identify the strongest changes 
across image regions. Because the edges across these 
regions are so important in protecting the visual integrity 
of the image, we do not want to set constraints across these 
strong edges, rather we want to set constraints away from 
these strong edges and prefer to find the gain map pixels 
for these strong edges through embedding. For each local 
patch, we only fix two pixels for the gain map, one at the 
smallest pixel’s position and the other at the largest pixel 
position. Basically, we fix the smallest pixel and increase 
or decrease the largest pixel. Although we in effect assume 
that logarithm will make the smallest pixel in each patch 
have the right brightness (gain map value equals zero) and 
set the gain map value at the largest pixel position, these 
constraints are rather mild because, firstly, only two pixels 
within a 17x17 window are fixed (in practice <0.1% pixels 
are used as constraints), secondly, these pixels are only 
“borrowed” to constrain the optimization and over 99.9 % 
of the pixels are found through global embedding. The 
gain map pixels within each local patch are not only 
affected by the constraints of its own patch but are also 
influenced by ALL constraints from different patches, 
therefore, these locally set constraints will propagate 
globally. In fact, in the final gain map, the pixels at the 
constraint positions can be replaced by averaging or 
majority voting thus removing the hard constraints initially 
put on for computational purpose.  

3.3. Algorithm Summary 

The LNE gain map construction method and its 
application can be summarized in following steps:  

1 Compute the logarithm of the input I 
2 Compute linear pixel neighborhood relations 

according to (3) 
3 Set gain map constraints according to the 

constrain setting procedure 
4 Compute the gain map G according to (4) 
5 Compute the output image I’ = I + G and linearly 

scale it to within the dynamic range of the 
reproduction media.  

The procedure of our method is illustrated in Figure 2. 
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4. Implementation 
Implementation of the LNE gain map algorithm is 

relatively straightforward. Because it is only necessary to 
segment the images into coarse regions and accurate image 
segmentation is not necessary, we first down scale the 
original image by a factor of 4 in both dimensions, and 
then use the mean shift robust computational segmentation 
method [23] to automatically segment the image into 
regions. Since our main purpose is to identify where the 
strong edges are likely situated, we then rescale the 
segmented image into full resolution and produce “thick” 
boundaries where constraint pixels should not be placed 
across. Inside each segmented region, we place a 17 x 17 
window at non-overlapping positions and at each position 
identify the smallest and the largest pixels within the 
window and set the constraints for G at these min and max 
locations according to (6).  

To solve the constrained least squares fit problem of (3), 
we follow the computational method of LLE [22] by 
solving a linear system of equations. However, since in our 
case, the data is 1-d and there will always be more 
neighbors than input dimensions, the least squares problem 
for finding the weights does not have a unique solution. 
We follow the method of [22] by adding a regularization 
term to the reconstruction cost function to solve the 
problem. The computational complexity of this step scales 
as O(mn3) where m is the number of pixels and n is the 
neighborhood pixels (n = 8 in all our results) 

For the embedding problem of (4), since the cost 
function is quadratic and the constraints are linear, this 
optimization problem yields a large, sparse system of 
linear equations, which may be solved using a number of 
standard methods. The embedding step of LLE solve a 
similar optimization problem but under different 
constraints. Without special optimization, the complexity 
of this step scales as O(m3), where m is the number of 
pixels. To speed up the computation, there are several 
alternative methods for solving the embedding problem, 
such as multigrid solver [24, 27] which will lead to a 
complexity scales as O(m). 

For high dynamic range compression, like all other 
methods in the literature we only work on the luminance 
channel, and color of the image is untouched. After 
compressing the luminance, color is put back to the image 
in a way similar to those in [15]. For ordinary image 
enhancement, we also only process the achromatic 
channel.  

5. Results 
High dynamic range image compression. We have 

applied our technique to compress high dynamic range 
radiance maps for display in low dynamic range device. 
Figure 3 shows the segmented regions, the locations of the 

constraint pixels, the gain map image, the log image and 
gain map modified image of the Memorial Church HDR 
radiance map. Figure 4 shows a comparison of our result 
with those of three other recent high dynamic range 
compression techniques for the Memorial Church image. 

  
(a)            (b) 

  
(c)            (d) 

Figure 3. (a) Segmented regions and constraints. The thick black 
curves shows the region boundaries found by the segmentation 
algorithm where constraints should not be placed across. 
Constraints positions are shown in different colors within the 
regions. (b) The gain map image computed by LNE. (c) The 
achromatic channel of the log image in which local details is lost 
due to scaling. (d) Result image = (b) + (c). Radiance map 
courtesy of Paul Debevec.  
 

Figure 5 shows the segmented coarse regions and the 
locations of the constraints used for constructing the gain 
map, the gain map image, our result and the result of the 
gradient domain method [15] for the Belgium House 
image. Figure 6 shows more examples of our result as 
compared with other methods in the literature.  

These results demonstrate that our technique works 
effective in compressing high dynamic range image for 
display. It is seen that in all our results, local details are 



   
 
 

 7

well preserved and in some case slightly enhanced. 
Compared our method with those state of the art shows 
that our method works equally well. Visually, there are 
some differences amongst the results of different 
techniques, such as the overall brightness, contrast and 
color of the images, however, as has been very well stated 
in [21], these differences should not be over-interpreted 
since they may change depending on the detail 
implementation. 
 

  
(a)            (b) 

  
(c)            (d) 

Figure 4. (a) Our result. (b) Result of gradient domain technique 
[15]. (c) Result of subband technique [21] (d) Results of bilateral 
filtering method [17]. Radiance map courtesy Paul Debevec. 
 

A very important property of our technique is that it is 
completely free from halo artifacts since it will not reverse 
the edges. In fact, the way in which our technique works 
can be understood in this way: it enhances the contrasts 
everywhere in the image, but enhances small contrasts 
more and large contrast less. Therefore, the directions of 
intensity changes will be protected while the magnitude of 
changes are either boosted or attenuated. Because strong 
changes are enhanced relatively less and weak changes are 

enhanced more, when the image is scaled down to fit the 
reproduction device, the end effect is that local small 
details are relatively enhanced while large changes 
between regions are relatively compressed. Figure 7 shows 
a scanline form the Belgium House image in Figure 5, 
which perfectly illustrates the behavior of our technique. 

  
(a)            (b) 

 
(c) 

 
(d) 

Figure 5 (a) Coarsely segmented regions and the constraints used 
for constructing the gain map. (b) The gain map image (c) our 
result (d) Result of gradient domain technique. Radiance map 
courtesy of Raanan Fattal, Dani Lischinski and Michael 
Werman. 

Image enhancement. Our technique can be equally 
applied to the enhancement of ordinary images. Figure 8 
shows an example of applying our technique to the 
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enhancement of an ordinary image. As a comparison, 
result of the gradient domain technique is also shown. We 
see that our technique works well. The two results are 
slightly different, again, the differences should not be 
over-interpreted because they may change depending on 
the details of implementation. 

 

  
(a)            (b) 

  
(c)            (d) 

  
(e)            (f) 

  
(g)            (h) 

Figure 6 more examples. Our results (a), (c), (e) and (g). Results 
of gradient domain technique [15] (b) and bilateral filtering 
technique [17] (d), (f) and (h). Radiance map courtesy of Raanan 
Fattal, Dani Lischinski and Michael Werman, and Paul Debevec. 
 

It is interesting to note that the colorization using 
optimization work of [26] solves a similar optimization as 
eq. (4). However, they use the W’s directly computed 
using the squared difference or normalized correlation of 
neighboring pixels, rather than computed using eq. (3). 
These directly computed weights are not suitable for 
computing the gain map image because they fail to capture 
the local changes of the image. Figure 9 shows a scanline 
and its processed results by using gain maps constructed 
weights from eq. (3) and those from squared difference 
and normalized correlation. It is seen that while the result 

using weights computed using LNE clearly follows the 
original signal and preserves and enhances local details, 
those using weights from squared difference and 
normalized correlation clearly loss track of the signal and 
smear local details. 

I

G

I' = I + G

 
Figure 7 A scanline from the Belgium House image, all three 
signals are scaled to 0 ~ 255. It is seen that the gain map image 
(bottom line) strictly follows the changes of the original image 
(middle line). The result image (top line) and the original image 
(middle line) have exactly the same edge directions. It is also 
seen that I’ (top line) has more local details than I (middle line) 

  
(a)            (b) 

  
(c)            (d) 

Figure 8 (a) Original image, (b) The gain map image (c) Our 
result (d) Result of gradient domain technique [15]. Image data 
and gradient domain result courtesy of Raanan Fattal, Dani 
Lischinski and Michael Werman. 

6. Concluding remarks 
In this paper, we have presented a novel technique for 
computing a contrast gain control image for a given image. 
We introduce the idea of “think locally, fit globally” to 
construct the gain map image to achieve local detail 
enhancement/preservation and global visual integrity 
protection simultaneously. We have developed techniques 
to compute the gain map image in closed form by solving 
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constrained optimization problems. We have demonstrated 
that image gain map constructed by our method can be 
used to compress high dynamic range images and enhance 
ordinary images without introducing visual artifacts. 

I

LNE

Squared
Difference
Normalized
Correlation

 
Figure 9 An original image scanline (I) and the processed results 
using gain maps constructed from weights computed in different 
ways. It clearly shows that using squared difference or 
normalized correlation between neighborhood pixels to compute 
the local pixel relations are unsuitable for computing the gain 
map. 
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