Benchmark Datasets in Capital Budgeting
Problem Description
The basic model of capital budgeting problems is 0-1 multidimensional knapsack problems. Given a profit vector P = {p1, .., pn} for n projects, a cost vector C = {c1, .., cn} associated with a binary vector X = {x1, .., xn}, xi = 1 if project i is selected; xi = 0 otherwise, and a budget vector B = {b1, .., bm} defining the capital budget bounding the overall cost of selected projects xi in X over m periods, the problem is to
Max{PX: CX ≤ B, X = {x1, .., xn}, xi ∈ {0, 1}}
Two sets of problem instances in capital budgeting with a range of interdependencies constraints has been generated, with m = 1 and m > 1, details given in Table 1 and Table 2, respectively.
The datafiles can be downloaded here: multiple periods and single period.
Table 1. Problem characteristics of single time period capital budgeting problem instances (m = 1). "x(y)" de-notes the number of corresponding constraints (x) and the number of projects involved (y), respectively, i.e. "2(2, 3) denotes two interdependencies, involving 2 and 3 projects, respectively". "-" de-notes an absence of the corresponding constraint.
Problems | p30_1 | p30_2 | p30_3 | p30_4 | p30_5 | p30_6 | p30_7 | p30_8 | p30_9 | p30_10 |
No. of projects | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Budget B | 1412600 | 655200 | 979200 | 1207800 | 687900 | 802000 | 641700 | 995600 | 994600 | 1109400 |
Best NPV | 5582140 | 3549600 | 4802600 | 5677000 | 3445220 | 3827950 | 3525280 | 5010060 | 4731830 | 5202060 |
Exclusive | 2(2, 3) | 2(2, 3) | 2(2, 3) | 2(2, 3) | 1(2) | 1(3) | 1(2) | 1(2) | 1(2) | 2(2, 3) |
Complement | 2(2, 3) | 1(3) | 1(2) | - | 2(2, 3) | 2(2, 3) | 2(2, 3) | 1(3) | 1(2) | 2(2, 3) |
Contingency | 1(2) | 1(2) | 1(2) | - | 1(2) | - | 1(2) | 1(2) | - | 1(2) |
| | | | | | | | | | |
Problems | p50_1 | p50_2 | p50_3 | p50_4 | p50_5 | p50_6 | p50_7 | p50_8 | p50_9 | p50_10 |
No. of projects | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Budget B | 170500 | 122100 | 207500 | 203800 | 158900 | 1738600 | 1589000 | 2091100 | 1376700 | 1860800 |
Best NPV | 811320 | 613800 | 974800 | 888100 | 752000 | 8389900 | 8374000 | 9215700 | 6428660 | 7844660 |
Exclusive | 2(2, 3) | 2(2, 3) | 2(2, 3) | 2(2, 3) | 1(2) | 1(3) | - | 1(3) | 1(2) | 2(2, 3) |
Complement | 2(2, 3) | 1(3) | 1(2) | - | 2(2, 3) | 2(2, 3) | 2(2, 3) | 1(3) | 1(2) | 2(2, 3) |
Contingency | 1(2) | - | 1(2) | 1(2) | 1(2) | - | 1(2) | 1(2) | 1(2) | 1(2) |
Table 2. Problem characteristics of multiple time period capital budgeting problem instances (m > 1). "x(y)" de-notes the number of corresponding constraints (x) and the number of projects involved (y), respectively. "-" de-notes absence of the corresponding constraint. For mknap1, only an average ratio of budget to the overall costs of all periods can be calculated due to the different budget limits in multiple periods.
Problems | mknap1_1 | mknap1_2 | mknap1_3 | mknap1_4 | mknap1_5 | mknap1_6 | mknap1_7 |
No. of projects | 6 | 10 | 15 | 20 | 28 | 39 | 50 |
No. of periods | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Best NPV | 4140 | 8352 | 3940 | 6780 | 12080 | 14185 | 22155 |
Exclusive | 1(2) | 1(3) | 2(2, 3) | 1(3) | 2(2, 3) | - | 2(2, 3) |
Complement | 1(2) | 1(2) | 1(3) | 2(2, 3) | - | 2(2, 3) | 2(2, 3) |
Contingency | 1(2) | - | 1(2) | 1(2) | 1(2) | 1(3) | - |
Selected Results
Table 3 Fitness distance correlation for single time period capital budgeting with and without interdependencies. "Infeasible %" denotes range of the percentage of infeasible solutions of 1-30/50 distance to the best know solu-tion. "Budget/all %" denotes the ratio between the capital B to the sum of costs required for all projects.
| Problems | p50_1 | p50_2 | p50_3 | p50_4 | p50_5 | p50_6 | p50_7 | p50_8 | p50_9 | p50_10 | average |
| Budget/all % | 53 | 38 | 66 | 69 | 45 | 72 | 69 | 85 | 50 | 67 | |
without | fdc | -0.49 | -0.81 | -0.42 | -0.44 | -0.62 | -0.47 | -0.46 | -0.53 | -0.52 | -0.43 | -0.52 |
| s.d. | 0.16 | 0.21 | 0.11 | 0.11 | 0.17 | 0.1 | 0.11 | 0.07 | 0.16 | 0.12 | 0.13 |
| Infeasible % | 30~49 | 48~98 | 1~25 | 1~27 | 44~83 | 1~20 | 1~29 | 1~13 | 42~63 | 1~31 | |
with | fdc | -0.74 | -0.87 | -0.69 | -0.69 | -0.76 | -0.6 | -0.58 | -0.7 | -0.64 | -0.71 | -0.7 |
| s.d. | 0.19 | 0.17 | 0.16 | 0.16 | 0.17 | 0.13 | 0.13 | 0.15 | 0.18 | 0.16 | 0.16 |
| Infeasible % | 40~90 | 49~99 | 33~91 | 31~90 | 50~95 | 21~61 | 28~56 | 19~86 | 45~89 | 33~89 | |
| | | | | | | | | | | | |
| Problems | p30_1 | p30_2 | p30_3 | p30_4 | p30_5 | p30_6 | p30_7 | p30_8 | p30_9 | p30_10 | average |
| Budget/all % | 80 | 44 | 65 | 89 | 41 | 50 | 41 | 67 | 66 | 74 | without | fdc | -0.58 | -0.66 | -0.5 | -0.6 | -0.74 | -0.59 | -0.76 | -0.5 | -0.51 | -0.5 | -0.59 |
| s.d. | 0.1 | 0.22 | 0.14 | 0.99 | 0.18 | 0.16 | 0.18 | 0.14 | 0.12 | 0.12 | 0.24 |
| Infeasible % | 2~4 | 44~80 | 4~24 | 2~8 | 48~88 | 36~65 | 43~89 | 11~27 | 3~27 | 9~28 | |
with | fdc | -0.83 | -0.88 | -0.75 | -0.7 | -0.74 | -0.67 | -0.79 | -0.65 | -0.51 | -0.77 | -0.73 |
| s.d. | 0.13 | 0.13 | 0.16 | 0.13 | 0.18 | 0.17 | 0.22 | 0.16 | 0.16 | 0.15 | 0.16 |
| Infeasible % | 19~87 | 44~95 | 33~88 | 12~73 | 48~88 | 40~84 | 46~96 | 30~74 | 19~37 | 26~88 | |
|
Table 4 Fitness distance correlation for multiple periods capital budgeting with and without interdependencies
| Problems | mknap1_1 | mknap1_2 | mknap1_3 | mknap1_4 | mknap1_5 | mknap1_6 | mknap1_7 | average |
| Budget/all % | 73 | 72 | 71 | 57 | 74 | 67 | 63 |
without | fdc | -0.74 | -0.63 | -0.63 | -0.61 | -0.46 | -0.43 | -0.36 | -0.55 |
| s.d. | 0.32 | 0.24 | 0.19 | 0.26 | 0.19 | 0.22 | 0.21 | 0.23 |
| Infeasible % | 41~65 | 31~63 | 24~42 | 50~66 | 15~45 | 23~45 | 27~49 | |
with | fdc | -0.91 | -0.64 | -0.89 | -0.76 | -0.68 | -0.50 | -0.51 | -0.70 |
| s.d. | 0.19 | 0.26 | 0.20 | 0.25 | 0.26 | 0.27 | 0.21 | 0.23 |
| Infeasible % | 71~84 | 52~71 | 36~93 | 50~90 | 42~91 | 28~76 | 30~80 | |
|