
Generic Types and their Use in Improving the Quality of Search Heuristics

Andrew Coles and Amanda Smith
Department of Computer and Information Sciences,

University of Strathclyde,
26 Richmond Street,
Glasgow, G1 1XH

email:firstname.lastname@cis.strath.ac.uk

Abstract

This paper presents techniques for improving the quality of
the search heuristics used to guide forward-chaining plan-
ning. The improvements in heuristic quality are made by us-
ing a static analysis of the planning problem to identify com-
monly occurring ‘generic types’, and providing additional
heuristic guidance based on their known properties. The re-
sults presented show that the use of this additional informa-
tion as part of the popular relaxed-plan heuristic improves the
performance of the planner in domains with recognised ‘mo-
bile’ and ‘resource’ generic types.

Introduction
Forward-chaining planning guided by a heuristic has proved
to be an effective planning strategy in a range of domains. At
recent international planning competitions, many of the par-
ticipating planners followed this search approach; of particu-
lar note is FF (Hoffmann & Nebel 2001), which participated
with great success in the 2002 and 2000 competitions. Work
on HSP (Bonet & Geffner 2000) and Downward (Helmert
2004) has explored alternative heuristics. What all these
planners share, however, is that the heuristic goal-distance
estimate they provide is obtained from a ‘relaxed’ version of
the original problem, i.e. one from which some constraints
have been removed. The relaxation of the original problem
in this manner is necessary to allow a heuristic value to be
obtained in a reasonable time; however, it does reduce the
accuracy with which the relaxed problem is able to model
certain aspects of the original problem.

Using static analysis techniques, such as those performed
by TIM (Long & Fox 2000), it is possible to identify
‘generic types’ of objects within planning problems: for
instance, self-propelled mobile objects capable of moving
from one location to another. These generic types form sub-
problems with known properties with which type-specific
heuristics can be used: for instance, using the Floyd Wal-
shall algorithm to calculate the cost of moving a mobile from
one location to another. HybridSTAN (Fox & Long 2001),
a forward-chaining heuristic planner, took the approach of
isolating these known sub-problems when planning, remov-
ing all predicates pertaining to the location of mobiles from
the domain. Once a solution plan to the newly created prob-
lem was found, actions were inserted into the plan to move

the mobile objects to the locations needed for the actions
used.

The decomposition approach of HybridSTAN relies on
being able to cleanly isolate the sub-problem, which is only
possible if it is wholly described by the generic type. For
example, if the move action for the mobile requires another
condition to be satisfied (such as one defining whether a door
is open between the two locations) then the subsolver cannot
handle the additional constraints imposed. In these cases,is
not possible to add the missing actions to the plan as required
once the remainder of the problem has been solved, as it is
no longer clear which actions are needed.

To this end, this work is concerned with investigating
whether the static domain analysis used to discover sub-
problems can be used to improve the quality of the relax-
ation heuristic used, in this case the Relaxed Planning Graph
heuristic, without relying on being able to solve the identi-
fied subproblems in isolation. By improving the heuristic,
and the guidance it provides through state space, the aim is
to reduce the time taken to find solution plans.

Background
Generic Types
First proposed by Fox and Long (Long & Fox 2000) as part
of the domain-analysis tool ‘TIM’, generic type inference is
a process whereby commonly occurring entity types within
a given planning problem can be identified.

TIM, a ‘type-inference machine’, was first conceived as
a tool for automating the process of partitioning the entities
present in a planning problem by analysing the functional
relationships between them. To determine the types present,
Finite State Machines (FSMs) are built. These are based on
the transitions between the properties each entity can holdin
a reachability analysis, performed forwards from the initial
state in the planning problem. States are labelled according
to the predicates in which the entity is participating and the
parameter of the predicate to which the entity is assigned.
For instance, consider the proposition:

(at x y)

From this, the FSMs for entitiesx andy will contain a state
labelledat1 andat2 respectively.

A reachability analysis forwards from the initial state adds
additional states to the FSMs, indicating the transitions be-



at1 move at1

in1

load unload

Figure 1: Finite State Machines Built in a Simple Logistics
Domain (truck on the left; package on the right)

tween the properties an entity can hold arising through the
application of actions. Figure 1 shows the the finite state
machines built in a simple logistics problem containing one
package and one truck. The left-most finite state machine
corresponds to the truck, which can move from beingat one
location to beingat another; the right-most finite state ma-
chine corresponds to the package, which can either bein the
truck orat a location.

After the FSMs have been built, two entities are said to
be of the same type if their associated finite state machines
are identical. If additional identical trucks were added tothe
aforementioned logistics problem, they would each give rise
to the same FSM and would thus be considered to be of the
same type.

Once the basic type information was discovered by gener-
ating Finite State Machines, as described, TIM was extended
to report not only the types discovered in the planning prob-
lem, but also whether each of the types corresponds to a
known ‘generic type’ (Long & Fox 2000). A generic type
is a recognisable entity type occurring in a range of plan-
ning problems; it is defined by a certain Finite State Ma-
chine topology. If the FSMs of a group of objects discov-
ered in a given domain match that of a known generic type,
TIM reports the match and provides additional information,
depending on the generic type in question.

In this work, the following two recognised generic types
are used:

• mobiles—entities capable of moving directly from being
at one location to beingat another;

• resources—a special-case of mobiles, whose map consists
of a series of linearly interconnected nodes, with the loca-
tion of a resource denoting its current level.

The Relaxed Planning Graph Heuristic
The relaxed planning graph heuristic, as first used in FF, has
proved to be a useful heuristic for guiding forward-chaining
planning. The relaxation used as a basis for the heuris-
tic is to ignore the delete lists (negative effects) of the do-
main actions—a search algorithm based on that in Graph-

Plan (Blum & Furst 1995) is then used to solve this relaxed
problem. Only a subset of the GraphPlan algorithm needs to
be implemented as, due to the removal of delete effects, the
planning graph does not contain mutexes.

When ignoring delete effects, once a fact has been estab-
lished by an action it is available for use as a precondition
to all the subsequent actions in the plan. This has some in-
teresting effects on how well the relaxed problem is able to
model some aspects of known generic types within planning
problems. When the move actions of mobile objects are in-
voked, the effects of the action normally establish two facts:
the mobile is now located at the destination; and the mobile
is no longer located at the source. Similarly, when actions
increasing or decreasing resource levels are invoked: the re-
source level is now that resulting from the action; and no
longer holds the previous value. Ignoring the delete effects
of move actions (or resource-level-altering actions), as done
when forming the relaxed planning problem, removes the
effects that establish that once a mobile has moved it is no
longer at its previous location. Effectively, when executing a
relaxed plan, mobiles are simultaneously available at all the
locations they have ever been, and resources are available at
all levels they have held.

When dealing with resources, this can have a substantial
impact on how well the relaxed planning problem models
the original problem: if a resource level is non-zero in the
initial state from which a relaxed-plan is built, it is available
at that non-zero level throughout. In FreeCell, for instance,
if there is one free cell available in a given state, the relaxed
plan to the goal from that state can make use of an effec-
tively unlimited number of free cells. No action is able to
reduce the number of free cells available for use by subse-
quent actions, as the delete effect that would establish that
the free cell count is lowered when a card is placed in a free
cell has been removed. This can lead, for instance, to relaxed
plans which state that as many cards as necessary should be
moved to a free cell and then the cards should be moved to
the home cells in the correct order.

The presence of a non-zero resource level has a profound
effect on the profile of the search landscape when search-
ing with the relaxed-plan heuristic. Up to, and including the
point, where there is still a non-zero resource level, as much
of the resource as desired is available, so a relaxed solution
plan can be found. However, as soon as an action reduces a
resource level to zero, the nature of the relaxed plan changes
dramatically: if that resource is required then actions must
be added to the relaxed solution plan to increase the resource
level, assuming such resource-increasing actions are avail-
able. This weakness causing the sudden change in relaxed
plan can lead to unforeseen dead-ends, or a sudden increase
in relaxed plan length - both of which have a negative impact
on search performance.

The effect of the multi-locatedness of mobiles under the
ignore-delete-lists relaxation—that is, a mobile is available
at all the locations it has ever been at thus far in the relaxed
plan—can lead to some relaxed plans being formed which
differ substantially from solution plans to the original prob-
lem. Consider, for instance, a logistics problem in which a
truck, beginning in location A, must collect a package from



location E and deliver it to location A. The locations A and
E are connected through three other locations B, C and D, in
a chain A-B-C-D-E. The relaxed plan forwards from the ini-
tial state moves the truck from A to E (via B, C and D), loads
the package into the truck and immediately unloads it at A.
This ‘teleportation’ of the package from E to A, without the
truck having to move back again, occurs because the fact
that the truck is in location A was never deleted and, thus,
the unload action placing the package at A is immediately
applicable.

Relaxed Plan Refinement for Generic Types
In many cases, one can identify actions that are logically
missing from relaxed plans; that is, those that would need
to be inserted in order to make the plan executable if delete
lists were considered. Through analysis of the behaviour
of known-typed objects in the plan, it is possible to suggest
what some of the missing actions are, and produce a relaxed
plan which is somewhat ‘less relaxed’ than it was previously.

When computing the relaxed plan heuristic, a solution to
the relaxed planning problem is obtained by performing a
greedy regressive search backwards from the goal within a
planning graph. Each fact layer has a set of goals for which
achievers must be found in an earlier action layer. Initially,
the goal facts of the planning problem are added to the set
of goals to be achieved in the last fact layer in the relaxed
planning graph. A relaxed plan is extracted by regressing
through the layers, finding achievers for each of the goals at-
tributed to that layer. For each goal, the first recorded action
achieving that goal (found when the plan graph was built)
is greedily chosen as the achiever to use for the fact, and is
added to the solution relaxed plan. The preconditions of the
achieving action are added to the goal sets at the fact lay-
ers in which they first appeared. Plan extraction terminates
when actions in the first action layer are chosen as achiev-
ers: the preconditions of these are satisfied in the initial state,
therefore no additional actions are needed to achieve them.

The relaxed plan is rarely executable under the seman-
tics of the original planning problem, where delete effects
are considered. Ideally, the relaxed plan should be as close
as possible to a candidate solution plan under the original
semantics in order to give the best possible heuristic mea-
sure. Attempting to repair all of the cases in the plan where
a deleted fact has been used, is as computationally expensive
as planning itself: doing so would lead to a solution plan to
the original planning problem, and thus requires an algo-
rithm of the same complexity. Selective refinement of the
relaxed plan is, however, possible by monitoring the states
of generic typed objects through a simulated execution run.
For both mobile and resource types, the analysis provided
by TIM indicates which actions can be used to satisfy the
location and resource-level properties of objects of the cor-
responding type.

Refining the Behaviour of Mobiles
When dealing with mobiles, if a precondition of one action
demands that a mobile be in one location, and the precon-
dition an action immediately following it demands that it be

in another, then it is clear that actions to move the mobile
from the former location to the latter would be necessary.
As the map describing how the mobile can traverse between
its locations is known, a path between all possible pairs of
locations that may arise can be determined in a pre-planning
step using the Floyd Walshall algorithm. As an example,
consider the following relaxed plan built in the logistics do-
main:

0: drive-truck t1 l0-1 l0-2 c1
0: drive-truck t1 l0-1 l0-3 c1
1: load-truck p1 t1 l0-2
1: load-truck p1 t1 l0-3
2: drive-truck t1 10-2 l0-4 c1
2: drive-truck t1 10-3 l0-5 c1
3: unload-truck p1 t1 l0-4
3: unload-truck p1 t1 l0-5

After refinement, the relaxed plan will be as follows:

0: drive-truck t1 l0-1 l0-2 c1
1: drive-truck t1 l0-2 l0-1 c1
2: drive-truck t1 l0-1 l0-3 c1
3: drive-truck t1 l0-3 l0-2 c1
4: load-truck p1 t1 l0-2
5: drive-truck t1 l0-2 l0-3 c1
6: load-truck p1 t1 l0-3
7: drive-truck t1 l0-3 l0-2 c1
8: drive-truck t1 10-2 l0-4 c1
9: drive-truck t1 10-4 l0-3 c1

10: drive-truck t1 10-3 l0-5 c1
11: drive-truck t1 10-5 l0-4 c1
12: unload-truck p1 t1 l0-4
13: drive-truck t1 10-4 l0-5 c1
14: unload-truck p1 t1 l0-5

In cases where the move actions can be cleanly abstracted,
such as in the logistics domain, it is then possible to post-
filter the refined relaxed plan to eliminate some of the re-
dundant drive actions. This is not possible in the general
case, and although the relaxed plan is somewhat unwieldy it
is still ‘less relaxed’.

Refining the Behaviour of Resources
Resources require a different refinement to mobiles. Con-
sider the following relaxed plan segment:

0: sendtofree spade2 heart3 n4 n3
0: sendtofree diamond4 clubA n4 n3

Here, two cards are moved to the free cells. Each requires
a free cell in which to store the card, and decreases the num-
ber of free cells available by one. The last two parameters
of each action denote the old and new resource level for the
number of free cells. However, under the ignore-delete-lists
relaxation, once the first action has been applied ignoring its
delete lists, the predicate stating that there are four freecells
has persisted; thus, the parameters of the second action are
still concerned with reducing the resource level from four
to three. If the same reasoning used for mobiles was consid-
ered at this point, an action sequence to increase the resource
level from three to four prior to the second action would be
sought. Intuition, however, suggests a different approach
here: the important aspect is the change in resource level
signified by the action parameters, not the absolute values



they indicate. The two actions illustrated, both of which
have a−1 effect on the resource level, can be sequenced
if the resource level is at least+2 initially. Only if it were
lower than+2 would actions to increase the resource level
be necessary.

The level of a resource as identified by TIM is denoted
by an assignment to a series of ranked objects. Actions that
increase the level of the resource change the variable assign-
ment recording the resource level to a higher-ranked object;
actions that decrease the level of the resource change the as-
signment to a lower-ranked object. All resources have lim-
its: a maximum and minimum ranked assignment that they
can take. No resource-decreasing actions are applicable ina
state in which the resource level is at its minimum. If such
actions are to be applied, a resource-increasing action must
be applied in order to increase the resource level.

It is possible to identify where resource-level-altering ac-
tions are missing from the relaxed plan by starting with the
resource level in the initiate state, and monitoring the cu-
mulative effect of the actions within the relaxed plan on this
resource level. Resource-increasing actions move the cur-
rent resource level one place higher up the rank; resource-
decreasing actions move it one place lower. If at any point
an action attempts to move the resource level to what would
be off the top of the rank or off the bottom of the rank, a de-
creasing or increasing action needs to be inserted as appro-
priate. As when reasoning about mobiles, these additional
actions can be inserted into the relaxed plan to make it a
closer approximation to a non-relaxed plan.

In some cases, the additional action necessary is clear: for
instance, it may be a simple ‘refuel’ action; in other cases,
however, it is not so clear. For instance, in FreeCell if the
free cells are all taken and it is not possible to move a card
currently in a free cell to elsewhere, then there is no sin-
gle applicable action available to increase the resource level.
In other domains, there are no resource-increasing actions
available to replenish a resource when it is consumed, and
no remedial actions can be specified. It can, however, be
noted that the relaxed plan would use non-existent resources
upon execution; and a penalty of 1 added to the heuristic
value taken from the relaxed plan length for each action
making use of non-existant resource, thus dissuading search
from pursuing such paths. This is similar to the adjusted
cost heuristic used in Sapa (Do & Kambhampati 2003), but
as TIM provides finite bounds on the resource levels it is
possible to penalise resource flows through the relaxed plan
that would take the resource level both below and above its
bounded values.

Using the Refined Relaxed Plan
Having now described how a relaxed plan can be refined to
make it somewhat less relaxed, the remaining issue is how
such a plan should be used. In FF, the relaxed plan is used
for search guidance in two ways:

• its length is taken as a heuristic goal distance estimate for
each state;

• the actions chosen from the first action layer in the relaxed
planning graph are used to determine the ‘helpful actions’

in each state.

Refining the relaxed plan as discussed will, however, be
invariably more expensive than computing only the base-
line, unrefined, relaxed planning graph heuristic. The ‘less-
relaxed’ plans found are, however, closer to being solu-
tions to the original planning problem than unrefined relaxed
plans; this suggests that it would be beneficial to use the plan
as a source of further guidance.

YAHSP (Vidal 2004), a planner which competed at the
2004 international planning competition, extracts further in-
formation from the relaxed plan by using a lookahead ap-
proach to generate an additional successor to each state. The
additional successor state is formed by applying as many of
the sequenced actions from the relaxed plan as possible to
the current state. In YAHSP, in an attempt to satisfy some
of the unsatisfied preconditions of the actions in the relaxed
plan, an attempt is made to find one action that would add the
unsatisfied precondition. Adding action sequences to sat-
isfy preconditions is not, however, considered: if satisfying
a precondition requires more than one action, lookahead ter-
minates.

Performing lookahead on the refined relaxed plan, rather
than the conventional relaxed plan, should allow more ac-
tions to be applicable in domains with recognised generic
types. Within the refined plan, move action sequences to
satisfy locatedness preconditions have been added; some-
thing which the lookahead procedure itself cannot do, as
it only considers adding single actions to satisfy precondi-
tions. The combination of these two techniques allows the
low-cost of the lookahead procedure to be maintained, by
only considering adding single actions, whilst allowing ac-
tion sequences to be inserted where these can be determined
using the generic types analysis. These action sequences
potentially allow lookahead to be able to apply more of the
actions within the relaxed plan, and reach a state closer to
the goal; increasing its usefulness.

Results
To assess the effects on performance of making use of re-
fined relaxed plans, the planner Marvin (Coles & Smith
2006) has been extended to make use of TIM, perform
lookahead over relaxed plans, and perform the necessary
heuristic refinements. To isolate the effects the use of re-
fined relaxed plans and/or lookahead have on its perfor-
mance, Marvin was configured to search in the same manner
as FF: macro-actions, concurrency and symmetry-breaking
were disabled.

Four domains in which TIM recognises generic types
were chosen for evaluation, taken from the first, third and
fifth planning competitions (McDermott 2000; Long & Fox
2003; Gereviniet al. 2006): logistics, DriverLog, TPP and
FreeCell. The evaluation problems in each of these domains
were:

• the competition problems for the DriverLog and TPP do-
mains;

• 25 problems of increasing size in the logistics domain,
the smallest with 1 aeroplane, 5 cities, 5 locations in each



0.01

0.1

1

10

100

1000

10000

5 10 15 20 25

se
c.

task nr.

Refined Relaxed-Plan Estimate
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate
Relaxed-Plan Estimate, EHC

Figure 2: Time Taken to solve Twenty Five logistics Prob-
lems using Refined/Non-Refined Relaxed Plan Estimates

city and 5 packages, and the largest with 3 aeroplanes, 20
cities, 15 locations within each city and 20 packages;

• 20 full-sized problems in the FreeCell domain, generated
using the IPC3 problem generator and random seeds in
the range 1–20.

The performance of the planner in domains containing
no recognisable generic types is unaffected by the modifi-
cations made; other than the overhead occurred due to the
static analysis performed by TIM, which generally takes less
than 1 second. All tests were performed on a Linux com-
puter, with a 2.6GHz Pentium IV CPU, and were subject to
a limit of 30 minutes of CPU time and 800Mb of memory.

Use of the Refined Relaxed Plan Length as a
Heuristic Value
One possible use for the refined relaxed plans is to take their
length as a goal-distance estimate, in place of taking the
length of a non-refined relaxed plan. To assess the effect of
relaxed-plan refinement on the performance of the planner
when used in this manner, four configurations of the planner
were used: two in which the refined relaxed-plan was used,
and two in which it was not; with one configuration making
use of best-first search, and another using EHC (with best-
first search should this fail). The results of the planner in
these configurations is presented in Figures 2 to 5.

In the logistics domain, results for which are shown in
Figure 2, it can be seen that the use of a refined heuristic
value increases the runtime of the planner across the board.
Inspecting the number of nodes evaluated by each configu-
ration in finding a solution, little difference is made to the
proportion of the search space explored by the use of the
refined heuristic; as such, given its increased computational
cost, no increase in performance is realised.

In the DriverLog domain, results for which are shown in
Figure 3, it can be seen that the number of problems solved
by the planner is decreased by the use of the refined heuris-
tic. On some of the larger problems there is a slight reduc-
tion in the number of nodes evaluated, but not enough to

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

se
c.

task nr.

Refined Relaxed-Plan Estimate
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate
Relaxed-Plan Estimate, EHC

Figure 3: Time Taken to solve the Benchmark DriverLog
Problems using Refined/Non-Refined Relaxed Plan Esti-
mates

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30

se
c.

task nr.

Refined Relaxed-Plan Estimate
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate
Relaxed-Plan Estimate, EHC

Figure 4: Time Taken to solve the Benchmark TPP Problems
using Refined/Non-Refined Relaxed Plan Estimates

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

se
c.

task nr.

Refined Relaxed-Plan Estimate
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate
Relaxed-Plan Estimate, EHC

Figure 5: Time Taken to solve Twenty Full-Sized Free-
cell Problems using Refined/Non-Refined Relaxed Plan Es-
timates



make a significant impact on performance given the over-
heads incurred through heuristic refinement.

In the TPP domain, results for which are shown in Fig-
ure 4, it can be seen that on the larger problems there is gen-
erally a slight performance improvement through the use of
a refined heuristic estimate; particularly on problems 20–29.

In the FreeCell domain, results for which are shown in
Figure 5, it can be seen that the performance of the planner is
improved by the use of the refined heuristic estimate: for the
two best-first search configurations, 17 problems are solved
when the refined heuristic is used; compared to 14 when it
is not. As well as the improved performance, comparing
the time taken to the number of nodes evaluated, the node
evaluation time is very similar when using both the refined
and non-refined heuristic estimates.

Overall, across all the domains, it appears that the the
overheads incurred in calculating the refined heuristic does
not produce an improvement in performance in domains
with recognised ‘mobile’ generic types; other than slight
benefits in the TPP domain. The refined relaxed plan is not
being used to provide sufficient search guidance, outweigh-
ing the cost of refinement; or the length of the refined relaxed
plan is not as effective as guidance search. In the FreeCell
domain, however, with a recognised ‘resource’ generic type,
an improvement in performance is realised.

Use of the Refined Relaxed Plan with Lookahead
As discussed previously, it is also possible to use the refined
relaxed plan with a ‘lookahead’ algorithm, in which an addi-
tional successor is added to each state based on the relaxed
plan from it to the goal. To assess the effect of relaxed-
plan refinement on the performance of the planner when
used with lookahead, five configurations of the planner were
used. Two of these use the refined relaxed plan length for
a heuristic value, with and without lookahead; and three us-
ing a non-refined relaxed plan length as the heuristic value,
with either no lookahead, lookahead over non-refined plans
or lookahead over refined plans. The results of the planner
in these configurations is presented in Figures 6 to 9.

In the logistics domain the use of lookahead with the re-
fined relaxed plan allows the goal state to be reached after
the evaluation of a single node (see figure 6). When ignor-
ing delete effects in building the relaxed plan for each pack-
age, a number of actions are included in the relaxed plan,
depending on its status:
• packages in their goal location contribute no actions;

• packages in the correct city but not the correct location
contribute actions to load the package into a truck in its
current location (if it is not already in a truck) and unload
the package from that truck in the package’s goal location;

• packages in the wrong city and at an airport location con-
tribute actions to load the package onto a plane in its cur-
rent location, unload it in an airport location in the desti-
nation city, and then if necessary load/unload onto/from a
truck to move it to the correct location in the destination
city;

• packages in the wrong city and at a non-airport location
contribute actions to load/unload the package onto/from a

truck to move it to an airport location in its current city,
followed by the actions contributed for packages in the
wrong city and at an airport location.
Amongst these are various move actions to satisfy the

preconditions relating to truck and aeroplane locations. All
preconditions other than those pertaining to the locationsof
mobiles are satisfied in the unrefined relaxed plan. When
refined, the plan becomes executable, and used with looka-
head is thus able to reach a goal state. It can be seen in Fig-
ure 6 that the use of lookahead over a refined relaxed plan
provides the best performance across the evaluation prob-
lems in terms of planner execution time. It also provides
better performance than when lookahead over a non-refined
relaxed plan is used, indicating that the extra route-planning
actions which can be added due to the known generic type
information are able to enhance the effectiveness of looka-
head.

Figure 7 shows results for the DriverLog domain. Here,
it can be seen that the best performance is obtained by the
configuration in which the refined relaxed plan is used for
lookahead and the non-refined relaxed plan is used to give
a heuristic goal distance estimate. The performance of this
configuration is closely followed by that in which the non-
refined relaxed plan is used for lookahead. As in logistics,
this indicates that the extra route-planning actions addedto
the refined relaxed plan are able to enhance the effective-
ness of lookahead. Unlike the logistics domain, the refined
relaxed plan is not executable under the original domain
model, so more than 1 node needs to be evaluated. In gen-
eral, though, it can be seen that fewer nodes are evaluated
by the configurations in which lookahead over the refined
relaxed plan is used.

In the TPP domain, results for which are shown in Fig-
ure 8, it can be seen that the use of lookahead over the
refined relaxed plan provides substantial performance im-
provements over the other configurations. Lookahead over a
non-refined relaxed plan evaluates similar number of nodes
and exhibits runtimes similar to the two illustrated no-
lookahead configurations. This indicates that the perfor-
mance gains obtained by the configurations using a refined
relaxed plan with lookahead are clearly attributed to the use,
during lookahead, of the additional route-planning actions
included. As in the DriverLog domain, the relaxed plan is
not always executable under the original domain model, but
it can be seen that very few nodes need to be evaluated.

In the FreeCell domain, the analysis of resource generic
types leads to the identification of single actions to add to the
relaxed plan in order to to increase/decrease resource levels
as required. As the lookahead algorithm itself is able insert
single actions to satisfy missing preconditions, the recogni-
tion of resources does not contribute actions that the looka-
head algorithm would not have inserted without the recog-
nition of resources. As can be seen in Figure 9, this leads
to identical performance being obtained from the two con-
figurations making use of lookahead over either a refined or
non-refined relaxed plans whilst using the non-refined re-
laxed plan length goal distance estimate. As such, in this
domain, the identification of resource generic types does not
not affect the performance of lookahead.



0.01

0.1

1

10

100

1000

10000

5 10 15 20 25

se
c.

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC

Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate, EHC
0.01

0.1

1

10

100

1000

10000

100000

5 10 15 20 25

N
od

es
 E

va
lu

at
ed

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC

Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate, EHC

Figure 6: Time Taken and Nodes Evaluated when solving TwentyFive logistics Problems using Different Lookahead Configu-
rations

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

se
c.

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC
Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC
Relaxed-Plan Estimate, EHC

0.1

1

10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16 18 20

N
od

es
 E

va
lu

at
ed

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC

Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC

Relaxed-Plan Estimate, EHC

Figure 7: Time Taken and Nodes Evaluated when solving the Benchmark DriverLog Problems using Different Lookahead
Configurations

0.01

0.1

1

10

100

1000

10000

5 10 15 20 25 30

se
c.

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC
Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC
Relaxed-Plan Estimate, EHC

0.01

0.1

1

10

100

1000

10000

100000

5 10 15 20 25 30

N
od

es
 E

va
lu

at
ed

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value, EHC
Non-Refined Relaxed-Plan Lookahead and Heuristic Value, EHC
Refined Relaxed-Plan Estimate, EHC
Relaxed-Plan Estimate, EHC

Figure 8: Time Taken and Nodes Evaluated when solving the Benchmark TPP Problems using Different Lookahead Configu-
rations



0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

se
c.

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value

Non-Refined Relaxed-Plan Lookahead and Heuristic Value
Refined Relaxed-Plan Estimate

Relaxed-Plan Estimate
0.1

1

10

100

1000

10000

100000

2 4 6 8 10 12 14 16 18 20

N
od

es
 E

va
lu

at
ed

task nr.

Refined Relaxed-Plan Lookahead and Heuristic Value
Refined Relaxed-Plan Lookahead, Non-Refined Heuristic Value

Non-Refined Relaxed-Plan Lookahead and Heuristic Value
Refined Relaxed-Plan Estimate

Relaxed-Plan Estimate

Figure 9: Time Taken and Nodes Evaluated when solving TwentyFull-Sized Freecell Problems using Different Lookahead
Configurations

Overall, across all the evaluation domains, it can be seen
that the identification of mobile generic types and the subse-
quent refinement of the of the relaxed plan allows lookahead
to provide good search guidance; reducing both the number
of nodes visited and the time taken to find a solution plan. As
the identification of resource generic types does not suggest
actions to add to the relaxed plan that would not have been
included by lookahead without a refined plan, identification
of resources does not affect the performance of lookahead.
Nonetheless, as has been observed in the previous section,
the more accurate relaxed plan length is able to provide im-
proved search performance in these cases.

Conclusions
In this paper, it has been shown that refinements made to the
relaxed plan, effected through the identification of generic
types, can be used either to provide a more accurate heuristic
goal distance estimate, or used as the basis of a relaxed plan
over which to perform lookahead. The results obtained for
these two cases indicate that:

• in general, the use of the length of the refined relaxed plan
as a heuristic value when mobile generic types are identi-
fied often increases the time taken to solve each problem;

• the use of the length of the refined relaxed plan as a heuris-
tic value in the FreeCell domain, where a resource generic
type is identified, allows 17 rather than 14 of the test prob-
lems to be solved within the time limit imposed;

• the use of lookahead over the refined relaxed plan, whilst
using the non-refined relaxed plan as a heuristic estimate,
improves the performance of the planner—dramatically
reducing the time taken to find a solution plan in some
cases.

References
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Inteligence (IJCAI-
95).

Bonet, B., and Geffner, H. 2000. HSP: Heuristic search
planner.Artificial Intelligence Magazine21.
Coles, A., and Smith, A. 2006. MARVIN: A heuristic
search planner with online macro-action learning.Journal
of Artificial Intelligence Research. Accepted for publica-
tion.
Do, M. B., and Kambhampati, S. 2003. SAPA: A multi-
objective metric temporal planner.Journal of Artificial In-
telligence Research20:155–194.
Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. InProceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), 445–452.
Morgan Kaufmann.
Gerevini, A.; Dimopoulos, Y.; Haslum, P.; and Saetti,
A. 2006. Benchmark domains and problems of IPC-5.
http://zeus.ing.unibs.it/ipc-5/domains.html.
Helmert, M. 2004. A planning heuristic based on
causal graph analysis. InProceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2004), 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. InProceedings of the 5th In-
ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS-2000), 196–205.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis.Journal of Artifi-
cial Intelligence Research20:1–59.
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine21(2):35–55.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. InProceedings of the 14th International Con-
ference on Automated Planning and Scheduling (ICAPS-
2004), 150–159.


