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Abstract

This paper considers a production lot sizing and scheduling
problem at an animal feed plant with sequence-dependent
setup times that do not satisfy the triangular inequality.
A multi-period model based on the Asymmetric Travelling
Salesman Problem (ATSP) is formulated, initially for the sit-
uation at the feed plant where the setup state is zeroed be-
tween periods, and then further developed for the case where
the setup state is preserved from one period to the next. An
iterative solution procedure based on subtour elimination is
developed, and then enhanced by the inclusion of a subtour
patching procedure. Computational tests with plant data that
include other models and methods show that the subtour elim-
ination is practicably fast where the setup state is zeroed be-
tween periods, but needs the patching procedure when the
setup state is preserved. In this latter case the elimination and
patching of ATSP-type subtours is very fast indeed, given the
company’s particular setup times, but needs further testing for
other setup time configurations.

Key Words: Lot sizing, Production scheduling, Sequence-
dependent setup times, Asymmetric travelling salesman
problem, Subtour elimination, Subtour patching.

Introduction
In many manufacturing systems, production lots correspond
to specific orders and so have a predetermined size. How-
ever a product may instead feed into many distinct orders
with different deadlines. In such a situation, it can make
economic sense to relate the product’s lot-sizes to its total
demand aggregated from the different orders, particularly
when there is a setup cost or time charged for each lot. Such
setups are often sequence-dependent, that is, the size of the
setup charge depends on the product processed immediately
beforehand in the sequence of production lots.

A good example is provided by the subject of this paper,
namely, Anifeed, an animal-feed company (whose real name
has been altered to protect its identity). Anifeed’s production
schedule needs to specify the lot sizes and setup sequence of
many different feed mixes. The capacity-time needed for
a setup is sequence-dependent, so that scheduling produc-
tion to efficiently use capacity and still meet demand results
in a problem which can be computationally too complex to
solve exactly. The temptation is to deal with lot sizing and

sequencing independently of each other, but in the animal
feed industry, as in similar processes, this creates difficul-
ties in being able to flexibly meet changing market demand
and order due dates within the available production capacity.
Thus an integrated modelling approach is needed, but there
still remains the challenge of how to solve such a model ef-
fectively.

Anifeed currently produces about 200 animal feed supple-
ments which can be grouped into about 20 families. Prod-
ucts within the same family do not contaminate each other
and have the same production time per batch. All animal
feed supplements follow the same basic production route,
and make use of the same key resources: silos, dosing
machines, pre-mix machines, a single mixer, and post-mix
packaging, as shown in Figure 1. The amount of time spent
at these operations varies somewhat between product fami-
lies.

Once a batch has been processed at a given stage, it can
then move onto the next stage, thus freeing the previous
stage for another batch. The exception to this is that, to
avoid contamination, the first batch of a new product family
cannot enter the dosing machine until the last batch of the
previous family has left the mixer. The mixer is considered
to be the bottleneck that determines productive capacity and
flow. Technically, the mixer must only be at least half-full to
ensure efficient mixing, but there are economic advantages
to producing a full batch. Thus lot size is restricted to be a
whole number of batches.

Product changes are frequent, typically about 30 to 40
per week, but inter-family changeovers are far fewer. Some
product families can cause contamination of other families,
and so the feed mix blending equipment must sometimes
be cleaned, resulting in substantial setup time of about 100
minutes and consuming scarce production time. The amount
of cleaning can be minimised by the effective sequencing of
production batches.

Most of Anifeed’s products follow a seasonal pattern of
demand, with peaks in certain months. Since employee
turnover is high, manpower levels can be adjusted to cope
with this seasonality, thus determining basic (pre-overtime)
production capacity.

The demand in a particular period often exceeds capac-
ity, and so overtime is frequently worked to satisfy demand.
The animal feed market is highly competitive, and so deliv-
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Figure 1: Production Process at Anifeed

ery delays to clients must be avoided if possible. A further
possibility to avoid delivery delays is to produce some feeds
ahead of demand when slack capacity is available. How-
ever, animal feed products are perishable and so cannot be
produced too far in advance. Anifeed aims not to produce
feeds more than about a month in advance of shipping to
clients.

This paper develops and tests a modelling and solution
approach for Anifeed’s lot sizing and scheduling problem
based on a formulation related to the Asymmetric Travel-
ling Salesman Problem (ATSP). Following a brief review
of previous research, the paper develops two ATSP-based
models with non-triangular setup times, a feature of many
animal feed plants. The first model represents the situation
where it is possible to prepare setups between productive pe-
riods, which is the case at Anifeed. The second model con-
siders the more difficult situation where the setups state is
carried over between periods. Optimal solution methods are
then developed, based on iterative subtour elimination and
patching. After outlining an alternative model and solution
approach for experimental comparison, computational tests
are carried out on all models and methods using randomly
perturbed data based a typical month at Anifeed. The paper
concludes with a discussion and pointers for future research.

Review of previous research
Research into lot sizing and scheduling research has been
carried out for many years, as shown by the surveys of
Wolsey (1995), Drexl and Kimms (1997) and Karimia et al.
(2003). However, lot-sizing andsequencinghas been stud-
ied by fewer researchers. The Capacitated Lot-Sizing Prob-
lem (CLSP) in Drexl and Kimms (1997), for example,
does not include sequencing decisions. Smith-Daniels and
Smith-Daniels (1986) formulated models for the CLSP with
sequence-dependent set-up times, but their solution meth-
ods were restricted to small problems. Arosio and Sianesi
(1993) proposed a complex heuristic algorithm for simulta-
neous lot-sizing and sequencing on a single machine with
sequence-dependent set-ups, but made no comparisons with
optimal solutions in their computational tests. This paper
does make such comparisons for a mid-sized real problem.

The General Lotsizing and Scheduling Problem (GLSP),
developed by Fleischmann and Meyr (1997), minimises in-
ventory and sequence-dependent setup costs on a single ma-
chine with finite capacity, allowing multiple setups in each
single “large-bucket” time period. The GLSP was extended
by Meyr (2000) who formulated the General Lot Sizing
Problem - Setup Times (GLSP-ST) model for simultane-
ous lot-sizing and scheduling on a single production line
with sequence-dependent setup times. He divided the plan-
ning periods into a predetermined number of “small-bucket”
micro-periods which contain at most one setup. Meyr did
not model the backlogging of demand (a consequence of in-
sufficient capacity). The wide-ranging review on capacitated
lot sizing by Karimia et al. (2003) notes that, surprisingly,
there is very little literature on problems with backlogging,
a feature of the model developed in this paper.

The Asymmetric Travelling Salesman Problem (ATSP)
has been very extensively researched (Lawler et al.; 1985;
Laporte; 1994; Junger et al.; 1995; Carpaneto et al.; 1995;
Zhang; 1997; Glover et al.; 2001; Cirasella et al.; 2001;
Johnson et al.; 2002; Buriol et al.; 2003) and can be adapted
to model the problem of sequencing a set of lots with se-
quence dependent setups between them. For example, Sa-
lomon et al. (1997) transformed the Discrete Lotsizing and
Scheduling Problem with sequence dependent set-up costs
and set-up times (DLSPSD) into a TSP with Time Windows
(TSPTW) and used dynamic programming to solve it. As
will be shown below, the adaptation in this paper is not di-
rect, since the production system is often already setup for
a particular product (i.e., starting at a given city) and some
products may not be produced in a given period if the de-
mand is sufficiently small or the capacity tight.

A method that has been found to be successful in practice
for optimally solving the ATSP is to quickly solve the corre-
sponding Assignment Problem (AP) as a linear programme,
identify the resulting subtours, and then resolve the AP, ex-
plicitly prohibiting these subtours. The method carries on
iteratively in this manner until no subtours result. It can
be used heuristically (and its convergence rate sometimes
accelerated) by patching the subtours into a single tour at
each iteration (Karp; 1979; Karp and Steele; 1985; Frieze
and Dyer; 1990; Frieze et al.; 1995; Zhang; 1997), thus pro-
viding a feasible solution (and an upper bound). This pa-
per adapts the subtour elimination method to lot sequenc-
ing first over single periods, and then over multiple peri-
ods with setup carryover between periods. An extension of
the method then successfully uses the patching heuristic to
greatly accelerate convergence to an optimal solution.

Modelling Approaches
A model to help Anifeed schedule production more effi-
ciently is now formulated as a mixed integer linear pro-
gramme (MIP) with continuous inventory & backorders
variables, integer lot-size variables, and binary setup-
sequence variables. The model minimises inventory, back-
orders and overtime, three criteria of major importance to
the company, while keeping within available capacity and
overtime limits.

The following indices are used:



i : Product family,i = 1, ...,N

t : Time period,t = 1, ...,T

where:

N = the number of families

T = the number of periods in the scheduling horizon

The input data required by the model are:

Ct Available capacity time in each periodt.

pi Time needed to produce one batch of each product
family i.

lmi Minimum lot size of product familyi (an integer
number of batches).

hi Cost of holding one week’s inventory of product
family i.

cot Unit cost of overtime for weekt.

stji Setup time needed to changeover from product fam-
ily j to family i

dit Forecast of demand for product familyi at the end
of weekt.

Ii0 Inventory of product familyi at the start of the plan-
ning horizon.

ut Upper limit on the number of overtime hours per-
mitted in periodt.

The decisions output by the model are:

I+
it Inventory of product familyi at the end of periodt.

I−it Backlogs of product familyi at the end of periodt.

qit (Integer) production lot size of product familyi in
periodt. Since demand occurs only at the end of the
periods, each family need only be produced once (or
not at all) in any period.

yjit = 1 if production is to be changed over from product
family j to family i in periodt, otherwise = 0.

Ot Number of overtime hours needed in periodt.

Modelling setup preparation between periods
In many companies, including Anifeed, the setup of the ini-
tial family produced in a period takes place in the elapsed
time gap between planning periods (for example, at the
weekend), without eating into productive capacity. This sit-
uation is modelled first. The carry-over of a setup configu-
ration from one period to the next is modelled afterwards.

Let i0 represent a “phantom” family from which there is
zero setup time to any other family. If the setup state at the
start of a period isi0, then production of any other family
can begin immediately sincesti0,i = 0 for all familiesi. In
reality the setup to the first family may not have time zero,
but since it occurs between periods, it should not be included
in capacity requirement calculations (such as in constraints
(3) below). This is the only purpose of familyi0, so setups to
it from any family are prohibited by settingsti,i0 = ∞ ∀ i.
In addition, it has zero production time and demand, i.e.,
pi0 = 0 anddi0,t0 ∀ t.

A mixed integer programming (MIP) formulation based
on the Asymmetric Travelling Salesman Problem (ATSP)
now follows.

Model AtspAnifeed: The objective function minimizes
heavy backlog penalties, and the costs of inventory & over-
time:

Minimise
∑

i

∑
t

hi

(
I+
it + 1000 I−it

)

+
∑

t

cot Ot (1)

Differently to Hax and Candea (1984) and Meyr (2000), ex-
pression (1) does not consider setup costs, the reason being
that setups basically consume just labour and time, neither
of which incurs an immediate direct cost. Setup times are
not directly penalized in the objective function (1), but indi-
rectly though their use of overtime. Thus the minimisation
of overtime in the objective function will prevent superflu-
ous setups via the capacity constraints (3) below.

Constraints (2) balance inventory, backlogs, production
and demand over consecutive weeks:

I+
i,t−1 − I−i,t−1 + qit − dit = I+

it − I−it

∀ i, t (2)

The capacity constraints (3) take into account the setup times
as well as actual production times, and the possibility of a
limited amount of overtime:

∑

i

pi qit +
∑

j

∑

i

stji yjit ≤ Ct + Ot ∀ t (3)

Note that the first setup will be from the “phantom” family
i0 and so have setup time zero.

Constraints (4) ensure that production of a family can oc-
cur in a period only if the line is set up accordingly:

pi qit ≤ (Ct + ut)
∑

j

yjit ∀ t, i 6= i0 (4)

Constraints (5) enforce a minimum lot size and are needed
as setup times do not always satisfy the triangular inequality:

qit ≥ lmi

∑

j

yjit ∀ t, i 6= i0 (5)

To better understand why constraints (5) are needed, con-
sider a familyi whose production contaminates that of fam-
ily k unless a thorough cleaning occurs as part of the sub-
stantial setup timestik. In the animal feed industry, such
cleaning can sometimes occur during the production of an
intermediate familyj whose setup timestij from i and setup
timestjk to j are jointly short enough thatstik > stij+stjk.
Thus the triangular inequalitystik ≤ stij + stjk does not
hold in this case. Without constraints (5) to impose sufficient
production ofj to allow proper cleaning ofi’s contaminants,
an optimal schedule could setup fromi to k via zero produc-
tion of j rather than directly.

Note that the disobeying of the triangular inequality im-
plies that it could be optimal in certain circumstances for any
intermediate “cleansing” familyj to be produced in more



than one lot within the same period. The model’s assump-
tion of at most one lot per family per period would not hold
in such a situation. The development of an appropriate op-
timal model is not tackled in this paper, but flagged as a
subject for future research.

Note also that the triangular inequality always holds for
the zero-valued setup times from phantom familyi0, but that
constraints (5) will, in effect, not apply to the first product
produced in a period given such zero-valued setups.

Constraints (6) prohibit setups between the same family:

yiit = 0 ∀ i, t (6)

Constraints (7) permit a setup to a family only if there is
a setup from the family already setup at the start of each
period:

∑

j

yi0,j,t ≥
∑

k

ykit ∀ i 6= i0, t (7)

Constraints (8) permit a setup from a family (other thani0)
only if it has been setup to:

∑

i

yijt ≥
∑

k

yjkt ∀ j 6= i0, t (8)

Constraints (9) prohibit more than one setup from a family:
∑

j

yijt ≤ 1 ∀ i, t (9)

Constraints (10) prohibit family subtours in each period:
∑

i→j ∈S

yijt ≤ |S| − 1 ∀ subtoursS, t (10)

as adapted from the ATSP subtour exclusion constraints in
Orman and Williams (2004) and Carpaneto et al. (1995). By
summing the reverse as well as the forward arcs of each sub-
tour, constraints (10) can be replaced by:

∑

i→j ∈S

(yijt + yjit) ≤ |S| − 1 ∀ subtoursS, t (11)

which are at least as strong as (10) for the following rea-
son: for a given subtourS, any combination of the variables
{yijt , yjit | i→j ∈ S} that disobeys constraint (11) will
either (i) beS, (ii) be its reverse subtour, or (iii) have a fam-
ily i ∈ S for which yijt = 1 for two j ∈ S. All three of
these possibilities are prohibited.

Constraints (12) impose limits on overtime working:

0 ≤ Ot ≤ ut ∀ t (12)

Constraints (13) prohibit the inventory and backlogs vari-
ables to be negative:

I+
it , I−it , ≥ 0 ∀ i, t (13)

Constraints (14) ensure the setup changeoveryijs variables
are binary:

yijt = 0 or 1 ∀ i, j, t (14)

Constraints (15) require the production to be a whole num-
ber of batches.

qit ≥ 0 and integer ∀ i, t (15)

Given that the setup times of some cleansing families may
break the triangular inequality, the above formulation is not
guaranteed to produce an optimal solution.

Note the huge number of subtour prohibition constraints
(11). However, the vast majority will not be binding at
the model’s optimal solution so, imposing the constraints
selectively just for those subtours that occur, a series of
Assignment-type problems can be solved, as shown later in
this paper.

Given thatsti,i0 = ∞ ∀ i, constraints (16) below are
redundant, but can be added to speed up the solution time.
They ensure that there is no setup to the “phantom” family
i0 already setup at the start of each period:

yi,i0,t = 0 ∀ i, t (16)

Modelling setup carryovers between periods
Until now in this paper, the initial setup state at the start of
each periodt has been the phantom familyi0 rather than a
variable. This accords with the context and practice of many
companies (including Anifeed) where the initial setup can
occur between planning periods without eating into capacity.
For example, the Anifeed plant operates from Monday to
Saturday only, enabling the first family produced in a period
to be setup in advance on Sunday by maintenance personnel.

However, many companies restart production with the
same setup state as at the end of the previous period. In this
case, the carry-over of a setup state from the end of one
period to the start of the next can [and should] be treated as
a variable. This is modelled as follows.

Model AtspCarryover: Declare the following new variable:

zit = 1 indicates that familyi is the setup state at the start
of periodt, otherwise = 0.

The existing setup configurationzi1 is known and so is a
parameter rather than a variable.

The objective function (1) and constraints (2), (3), (6), (9)
and (11)-(15) remain unchanged from model AtspAnifeed.
However, other constraints must be modified or added in or-
der to model the carryover of a setup state from the end of
one period to the start of the next, as follows.

Clearly, only a single family can be the setup configura-
tion at the start of a period, enforced by a new constraint:

∑

i

zit = 1 t = 2, ..., T (17)

Constraints (4) are replaced by (18) below, still ensuring that
production of a family can occur in a period only if the line
is set up accordingly. Note that constraints (18) permit the
production of the family already setup at the start of period
t.

pi qit ≤ (Ct + ut)


zit +

∑

j

yjit


 ∀ i, t (18)

Constraints (5), which enforce a minimum lot size, need not
apply to the family already setup at the start of a period, and



so are replaced by (19) below:

qit ≥ lmi


∑

j

yjit − zit


 ∀ i, t (19)

Constraints (7) are replaced by (20), permitting a setup to a
family only if it is set up from, or is the family already setup
at the start of the next period:∑

i

yijt ≤
∑

k

yjkt + zj,t+1 ∀ j, t = 1, ..., T−1 (20)

Constraints (8) are replaced by (21), permitting a setup from
a family only if it has been setup to or is already setup at the
start of a period:

zjt +
∑

i

yijt ≥
∑

k

yjkt ∀ j, t (21)

The redundant constraints (16) are replaced by the now nec-
essary constraints (22) which prohibit a setup to the family
already setup at the start of a period:

1 − zit ≥
∑

j

yjit ∀ i, t (22)

Additional constraints (23) and (24) are needed, both to pro-
hibit a setup from the family already setup at the start of the
next period:

1 − zi,t+1 ≥
∑

j

yijt ∀ i, t = 1, ..., T−1 (23)

and to ensure there must be a setup from the family already
setup at the start of the period. The rare case of no setups
at all in that period is an alternative possibility that is not
modelled in constraint (23).

zit ≤
∑

j

yijt ∀ i, t = 1, ..., T (24)

Solution Approaches
Subtour Elimination
The initial optimal solution to models AtspAnifeed or Atsp-
Carryover will consist of zero or more subtours and a single
sequence starting with the family already setup at the start
of the period and ending with the last family setup in the
period. In the following solution method, the subtours that
arise in one period are prohibited in all periods in subsequent
iterations.

Methods AtspAnifeed and AtspCarryover

Repeat{
Solve Model AtspAnifeed or AtspCarryover prohibiting
only those subtours encountered so far in any period.
Comment: provides alower bound to optimal solution.
For t = 1, . . . , T do {

Identify any subtours in periodt and prohibit them
in all periods from now on;

}
Resolve;

} While subtours exist in any period;
Comment: the solution is now optimal.

Note that an eventual feasible solution with no subtours will
not feature a circular tour in each period, but rather a sin-
gle unbroken sequence of up toN families starting with the
family already setup at the start of the period and ending
with the last family setup in the period.

Patching as well as prohibiting the subtours after
optimising all periods simultaneously
A fast procedure that can give good and often near-optimal
results for the ATSP is to solve an assignment problem and
then use apatching heuristic(Karp; 1979; Karp and Steele;
1985; Frieze and Dyer; 1990; Frieze et al.; 1995; Zhang;
1997) to gather (i.e., patch) the optimal assignment subtours
into a single salesman tour.

The following extension of Method AtspCarryover
patches the subtours in each period to obtain a single unbro-
ken sequence, and thus a feasible solution, at each iteration.

Method AtspPatching

Repeat{
Solve Model AtspCarryover with no subtour constraints
using least patching upper bound as initial incumbent;
Comment: provides alower bound to optimal solution.
For t = 1, . . . , T do {

Identify any subtours in periodt and prohibit them
in all periods from now on;

}
Resolve;
For t = 1, . . . , T do {

Patch any subtours in periodt into a single
unbroken sequence;

}
Fix theT single-tour sequences and resolve;
Comment: The resulting feasible solution provides an
upperbound to the optimal solution of the model.
Unfix the single-tour sequences;

} While subtours exist in any period;
Comment: the solution is now optimal.

The patching operation gradually joins the single sequence
and the subtours together so that the increase in total setup
time is minimised, starting with the two subtours or se-
quence that have the most families, as in Karp (1979) and
Karp and Steele (1985).

The GLSP model and Relax-&-Fix
The relax-&-fix method (Wolsey; 1998) solves a sequence
of partially-relaxed MIPs, each one with a reduced set of
integer variables whose number is small enough to quickly
obtain optimal MIP solutions (Clark and Clark; 2000). As
the series progresses, each set of integer variables is per-
manently fixed at their solution values. The procedure is
broadly similar to a depth-first identification of an initial in-
teger solution for a MIP model in a large branch-&-bound
search. It is fast, but solutions are sometimes poor.

The computational tests below include two types of the
relax-&-fix method, applying it to an alternative MIP formu-
lation developed in Toso (2003) and Toso et al. (2006), in
which the setup configuration at the start of each period is a



variable rather than a parameter, similar to theGeneral Lot
Sizing Problem - Setup Times(GLSP-ST) proposed by Meyr
(2000). The tests also try to solve the exact model optimally
as a benchmark (Method Glsp).

The first type ofrelax-&-fix method relaxes the binary
setup-state variables in periods 2 onwards, solves the model,
permanently fixes the period 1 setup values, restores the inte-
grality constraints to the setup variables in period 2 keeping
them relaxed for periods 3 onwards, solves the model again,
permanently fixes the period 2 setup values, and so on until
periodT (Method GlspRFSetup). The second type ofrelax-
&-fix method relaxes the integrality of the lot-size variables,
solves the model for the binary setup variables, permanently
fixes them, restores the integrality constraints to the lot-size
variables and solves the model again (Method GlspRFSize).
Details can be found in Toso et al. (2006).

Computational Tests
The tests now compare the quality and run time of the fol-
lowing six models and methods:

1. ATSP Model [Anifeed’s situation: the inter-period setup
state is aparameter]

(a) Method AtspAnifeed: Solve in all periods simultane-
ously then prohibit subtours.

2. ATSP Model [inter-period setup state is avariable]
(a) Method AtspCarryover: Solve in all periods simultane-

ously then prohibit subtours.
(b) Method AtspPatching: Patch as well as prohibit the

subtours after solving in all periods simultaneously.

3. Toso (2003) Model [similar to GLSP-ST, inter-period
setup state is avariable]

(a) Method Glsp: Exact.
(b) Method GlspRFSetup:Relax-&-Fixon lot setup-state.
(c) Method GlspRFSize:Relax-&-Fixon lot size.

The test data was taken from Anifeed, comprising demand
for 21 families overT=4 weeks. The sequence-dependent
inter-family setup times were either 0 or 100 minutes. For
each of the 20 runs, the demand pattern was randomly per-
turbed around the actual values taken from a rainy season
month. Each MIP solved within the methods was allowed
to run for a maximum of one hour of CPU time, with the
exception that the GlspRFSetup method’s 4 separate MIPs
each had a limit of 15 minutes. The models and methods
were implemented in the AMPL mathematical programming
language (Fourer et al.; 2003). The MIPs were solved using
Cplex 9.1 (Ilog; 2004). The tests were run on a 2.00 GHz
798MHz Pentium M processor with 1.5Gb of RAM.

Figure 2 shows box & whisker plots for the solution val-
ues produced by six methods. As expected, method AtspAn-
ifeed has a lower value than the other five methods, since the
first setup is carried out at the weekend between production
periods (and so is a different problem than the other five).

The other 5 methods solve the same problem (where the
setup state is carried over between production periods). Note
from Figure 2’s plots (which show medians, quartiles, and
extremes) that method GlspRFSetup clearly performs worse

AtspAnifeed AtspCarryover AtspPatching Glsp GlspRFSetup GlspRFSize
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Figure 2: Solution Box & Whisker plots for each Method

than the other four. The solution values of these remaining
four methods differ very little, but an Analysis of Variance,
with the run as a random factor, showed highly significant
differences between the four (p-value< 0.001), with the At-
spCarryover and AtspPatching methods being equally best.
All 20 runs produced identical values for these two methods
with mean 597.14, while GlspRFSize and Glsp had means
600.47 and 605.88 respectively.

Figure 3 shows box & whisker plots for the solution CPU
times of six methods. Note immediately the fast times of the
AtspAnifeed and AtspPatching methods, contrasting with
the slowness of the other four methods.

AtspAnifeed AtspCarryover AtspPatching Glsp GlspRFSetup GlspRFSize
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Figure 3: CPU time Box & Whisker plots for each Method

The only MIP of method Glsp and the first MIP of the
GlspRFSize method never converged within their CPU time
limit of 1 hour. The second MIP of the GlspRFSize method
usually converged very quickly, generally within a few sec-
onds. The GlspRFSetup method’s 4 separate MIPs very
rarely converged converged within each’s CPU time limit of
15 minutes. Thus the GLSP-based methods all took about 1
hour, occasionally less.

The AtspCarryover method had a very variable CPU time
performance. Each iteration’s MIP was also limited to 1
hour of CPU time. Although this limit was reached infre-
quently, it was sufficiently often to result in a median total
solution time of just over an hour. A median 66.35 iterations
and 189 subtours were required for convergence. The final
MIP always converged to optimality within the time limit,
thus guaranteeing optimality of the no-subtours solution.

Remember that the AtspCarryover method is optimising
linked sequences over T=4 periods simultaneously, while the
AtspAnifeed model is optimising 4 delinked sequences of 1



periods each. Thus it is not surprising that the AtspAnifeed
method converged far more quickly than the AtspCarryover
with mean time of 297.5 seconds (i.e, under 5 minutes) and
median 52.6 seconds (i.e., under a minute). These are oper-
ationally acceptable times for Anifeed’s schedulers.

The most encouraging result of all is the very fast conver-
gence afforded by the use of the patching algorithm at each
iteration of method AtspPatching. In fact, the algorithm al-
ways gave a patched solution with the same value as the un-
patched subtour solution. In other words, the first iteration’s
upper and lower solution bounds were identical, thus prov-
ing the optimality of the patched solution. This resulted in
a mean solution time of 193.5 seconds, and a very low me-
dian of just 2.1 seconds, essentially the solution time of the
starting assignment-type MIP. However, the convergence af-
ter just one iteration is quite possibly due to the existence of
many alternative optimal solutions, resulting from the 0 or
100-minute setup times.

Future computational tests will randomly perturb the 100-
minute setup times values to lie in [80, 120], and thus test the
methods under circumstances of varying setup values.

Conclusions
The experimental results showed that the GLSP-based meth-
ods were able to produce near-optimal solutions within an
hour’s CPU time, but almost always without proven con-
vergence. The ATSP-based methods were more successful.
When there was inter-period cleansing without setup carry-
over, the ATSP subtour elimination method was able in 19
of the 20 runs to converge to a provably optimal solution,
without patching. However, the adaptation to include setup
carryover resulted in a larger MIP that took much longer
to solve, generally not converging within 1 hour. The way
around this was the patching of subtours to produce a fea-
sible solution and upper bound that enabled the setup car-
ryover model to converge extremely rapidly, almost always
within 1 subtour elimination iteration. This rapid conver-
gence, however, was possibly due to the fact that all non-
zero setup times have the same value of 100 minutes, thus
supplying not only multiple optimal solutions, but also sub-
tour solutions with the same (optimal) solution value.

The next step in the research is to extend the computa-
tional tests to randomly perturb the 100-minute setup times
values to lie in the interval [80,120], and thus test the meth-
ods under circumstances of varying setup values. The rela-
tive performance of the methods could be quite different to
the test results above.

Future research includes further testing with different
data, and the development of models that recognise that the
disobeying of the triangular inequality implies that it could
be optimal in certain circumstances for any intermediate
cleansing family to be produced in more than one lot within
the same period.
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