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Abstract

In this paper, the non preemptive multi-mode resaur
constrained project scheduling is considered. \We a18i-
objective approach to solve the mono-objective lprabof
makespan minimization. Our main focus is to propase
high-performance algorithm that solves the prob&trand.
A new evolutionary algorithm is developed. The eticg
procedure is based on feasible activity list andhede
assignment. We define two new fitness functionsliniga
with clustering tools, namely k-means and hieramhi
clustering algorithms. Results of the implementatare
emphasized to decide on the best algorithm cordtgr.
The latter is used to compare our algorithm peréoroe to
other recent heuristics and metaheuristics. Stdndar
instances sets included in PSPLIB are tested. €helts
testify the good performance of our new hybrid atiohary
algorithm.

Introduction

The Multi-mode Resource-Constrained Project Sclieglul
Problem (MRCPSP) is one of the most studied
generalizations of the well known Resource-Cornstai
Project Scheduling Problem (RCPSP). It is closeretl
problems since each activity may be performed ie out

of several modes and it deals with more than ond kif
resources.

Noticeably, the MRCPSP is more complex than the
RCPSP, which is itself NP-hard. Sprecher and Drexl
(1998) prove that highly resource-constrained gtsjevith

at least 20 activities and 3 modes per activity sahbe
solved by exact optimization procedures within a
reasonable computation time. Furthermore, Kolisdd a
Drexl (1997) demonstrate that, if at least 2 noeveable
resources are taken, even the problem of whethéinfy a
feasible solution for the MRCPSP is NP-complete.
Consequently, one can deduce how crucial the rdsort
heuristic and metaheuristic algorithms is. Thes¢hous
provide near-optimal solutions for large-sized pctg
within relatively little time. The literature abouthe
MRCPSP is exceptionally rich with these algorithms.
According to Boctor (1996a) and (1996b), the pionee
studies of the MRCPSP were carried out by Elmaghrab
(1977), Slowinski and Weglarz (1978) and Weglarz
(1980). These authors studied the preemptive dasen,
Talbot (1982) tackled the nonpreemptive case t@ giv

mathematical formulation (on which many post-stadiee
based, like Sprecher (1994), Sprecher et al. (12@i0)
Hartmann (2001), etc.). This formulation enableg ¢o
handle renewable, nonrenewable and doubly consttain
resources. It also permits either the minimizatidnthe
project duration or cost, or the maximization of itet
present value.

Talbot (1982) proposes a deterministic enumeration
scheme. The method provides optimal solutions ricalls
sized problems, and is able to find heuristic sonsg for
large-sized ones. Other exact procedures have been
proposed, we quote Hartmann and Drexl| (1998), $erec
and Drexl (1998) and Sprecher et al. (1997). Trase
different variants of Branch-and-Bound method.

Heuristic methods have been conceived to solve the
MRCPSP. Talbot (1982) proposes his exact procetture
heuristically solve large-sized problems. Bocto®93)
presented a comparison of 21 heuristic schedulingsr
The same author (1996a) proposes a new efficiantstie
algorithm. The latter is a particular heuristic &ese it
allows scheduling more than one activity at a tiBienco

et al. (1998) treat the MRCPSP, but they resttiet hon
renewable resource constraints to the unique badget
constraint. Drexl and Gruenewald (1993) propose a
stochastic scheduling method.

Several metaheuristic procedures have been deiroted
literature. J6zefowska et al. (2001) present twisigas of
simulated annealing approach: with and without figna
function. Likewise, Bouleimen and Lecocq (2003)
conceive a new simulated annealing algorithm fog th
RCPSP and its multi-mode version. Ozdamar (1999)
conceive a new hybrid genetic algorithm for the MFSP;

the main particularity of the algorithm appears tire
solutions encoding by the mode assignment and the
priority rules. Hartmann (2001) proposes a genetic
algorithm which is, in the best of our knowleddes most
efficient to solve the MRCPSP; the algorithm isezsally

rich with two local search procedures already psapioby
Sprecher et al. (1997). Alcaraz et al. (2003) atalBni et

al. (2006) apply a similar framework; they tried to
overcome Hartmann's GA drawbacks and to improve it.
Analogously, in this paper we propose a hew Evahatry
Algorithm (EA) approach dealing with MRCPSP whdre t
objective is the minimization of the project duvati Tasks
can not be interrupted once begun, and variousskafd



resources are considered. Our main focus is togsmp
high-performance algorithm that solves the outlined
problem.

The remainder of this paper is organized as folicthe
first section is devoted to the presentation of ghablem.
The second section deals with the new EA stepsitand
features. The third section is oriented towardsathalysis

of the algorithm computational results. Hence, wesent
the experimental framework. Then, we determinebtbst
configuration of our proposed Evolutionary Algorithin

the end of this section, we exhibit results drawomf the
comparison of our Evolutionary Algorithm with other
metaheuristics proposed in the literature of MRCPSP

In the remaining, we mean by MRCPSP the non-
preemptive Multi-mode Resource-Constrained Project
Scheduling Problem with the objective of minimizitige
project duration, unless contrarily mentioned.

Problem description

We consider a project consisting of J activitigselad j =
1...J. These jobs are partially ordered, i.e. there a
precedence relations between some of them.
precedence relations are expressed by sets Pjnoddiate
predecessors of job j. We assume that the actviie
numerically labeled, that is an activity j has ajgaa
higher number than all its predecessors.

For simplification sake, the precedence relatioas be
depicted by an acyclic activity-on-node network. \8&
additional activities j = 0 and j = J + 1 which regent
respectively unique dummy source and sink nodes.
Three most used categories of resources are coedide

« Renewable resources (whose set is referred taBy:
in our study, we are interested in constant peiegder
availability. This availability of a renewable resoe k
is denoted bR £ ;

* Nonrenewable resources (whose set is referredhyto
K"): for each resourckl] XY, this availability is
designated by | ;

» Doubly constrained resources: recall (as mentionghe
first section) that we deal with this type of resms by
representing it in both kinds of constraints: the
renewable and nonrenewable resources.

Each activity may be executed in one out of sevaales.

A mode is a scenario of performing a job. It reledor

the activity in question, first the consumption each

resource k belonging to either category of res@jraed
second the related duration. Once started, anitycthay
not be interrupted, and its mode may not be alteFed
each activityj = 1...J, we distinguish a set, of different
modes; the latter is denoted BY; = 11,...,M j}. The job

j performed on a modm LI :MJJ has a processing time

referred to byp,,, it requires rfmk units of each

renewable resourde LI % ” during its process, ar‘m‘j’mk
units of each nonrenewable resoukde % “.

The dummy activities represent a special casdydarsénse

characterized by no request on any resource, arafichu
equal to zero. Let us set T an upper bound forptiogect
makespan. T may be obtained for example by addiag t
maximum durations of all the activities.

The objective of this study is to find a mode anfinash
time for each activity so that the schedule is ildasand
the makespan of the project is minimal with resgedhe
precedence and resource constraints.

Proposed Evolutionary Algorithm

In this section, we propose a new evolutionary ritigm to
solve the MRCPS problem. To personalize an EA, @ane
more components may be altered. The variation neay d
with (@) the solution encoding: different kinds of
representation are available in the literature objget
scheduling; a brief survey is given by Alcaraz afaroto
(2001); (b) operators: there is a large spectrum of
crossover, mutation and selection operators ititérature

so choosing one or other alternatives from the eaofy
these operators leads to a special EA; (¢) Evalnaif the

chromosomes: this component reflects the ability of

The chromosomes to survive and contribute offspringha

next generation; to measure this ability, a fitnesxtion
must be conceived for each chromosome. Besides, the
introduction of new components leads to a persoeahli
(even hybrid) EA.

In the following, we define the proposed algoritetages:
encoding, crossover, mutation and selection inteadio
further proposed procedures particularizing theppsed

Basic scheme

Generate initial population consistingrP®F
chromosomes;

Apply a local search procedure;

Initialize the current generation number to O;
WHILE generation number < GEAND run-time <
CPU time limitDO

BEGIN

Increment the generation number;

SelectPOP individuals for crossover;
ProducePOP children ¢#1) from pairs of the selecte
individuals bycrossover

Apply mutation toc#(1 with a probabilitypmu,
Compute fithess values;

Reproduce population := selected individuals ftbm

last populationU CHI.
END

Figure 1: Proposed EA

First of all, a preprocessing procedure is appliedroject
data to reduce the search space efficiently. Afiat, the
EA starts with generating an initial populationogans of
a suitable encoding; the number of individuals in a

that each of them is supposed to have a unique modepopulation is constant through generations, B&P, we



assumePOP to be an even integer. Then, for each
individual the makespan and a penalty values are
computed; a local search procedure is applied &iarate

the generated solution by trying to reduce persltie our
case, the constraints to be respected are the abtew
resource and precedence constraints only. Thetiziolaf
nonrenewable resource constraints is penalizeddeytain
measure that will be defined latePOP2 pairs of
individuals are randomly selected. Resulting chitdr
undergo mutation with a probabilip.... Once again, the
makespan and a penalty values are computed forethiyy
produced individuals and the fitness values arerdehed.
Here intervenes the reproduction operator to mairR® P
individuals ready to contribute in the next genieratThis
procedure is repeated for a determined number of
generations, say GEN, or until the CPU time lingt i
reached. Figure 1 depicts the proposed EA scheme.

Preprocessing

This step is introduced before the beginning of EAein
order to reduce the search space. The reducticreguoe
was first developed by Sprecher et al. (1997) telecate
their branch-and-bound algorithm for the MRCPSPe Th
idea behind this procedure is to exclude modesoand/
renewable as well as nonrenewable resources fram th
input data. Because of the interdependency between
elimination of these contents, the latter are deét as
follows:

Step 1: Remove all non-executable modes from tbgegr
data.

Step 2: Delete the redundant nonrenewable resaurces
Step 3: Eliminate all inefficient modes.

Step 4: if any mode has been erased within Stagp 3o
Step 2.

For more details of the components interdependemcly
the merit of the procedure, we refer the readeSgoecher
et al. (1997) and Hartmann (2001).

Definition of individuals

The encoding chosen for individuals is activityt lis
representation. Since we are dealing with the rnodtde
version of the standard RCPSP, individuals mustakat
the same time activities order and mode assignrhente,
the finish times of activities and, therefore, akespan of
the project can be deduced. Obviously, activitiessh
times depend at the same time on the two aboveionedt
individual elements. So, our EA deals simultanepusth
both sequencing and mode assignment problems.

The representation opted for is a gair (A, m) of two
vectors. The first vectdr = ( ,...,J;) denotes a precedence
feasible activity list. The second vector m symbadi the
modes relating to the corresponding jobs in the. lis
Accordingly, the notation which will be used is the

following:
|:( [E J
m (j,)..m (j,)

Individuals are obtained by fixing the activitiesodes
randomly from the remaining set of modes after the
preprocessing procedure. Then, the activity list is
constructed as if we deal with a traditional singiede
RCPSP with respect to the resulting mode assignrtreatt

is, we start with the source dummy activity at tilheand

we successively repeat the following: we consither get

of eligible jobs and, after that, we randomly adltec an
activity from the set at its earliest start timegasling
precedence and renewable resources constraints.
Observe that the ensuing schedule is precedence and
renewable resource feasible, but it is not necigsar
nonrenewable resource feasible. Recall that, agedrby
Kolisch and Drexl (1997), “already finding a fedsib
schedule is an NP-complete problem if at least two
nonrenewable resources are given”. So, to overdhige
difficulty, we find it practical to introduce schaés which
violate the nonrenewable resource constraints the
search space.

Fitness computation

Recall that Kolisch and Drex| (1997) demonstrats, th at
least 2 nonrenewable resources are taken, evgirdbiem

of whether finding a feasible solution for the MREHPis
NP-complete. So, in our algorithm, we allow the
introduction of nonrenewable resource infeasible
individuals. Note that all individuals are necesgar
precedence and renewable resource feasible.

Although we are dealing with a single performance
measure, our fitness function behaves by consigleaim
additional performance measure to be minimized. The
latter takes its favor from introducing solutionkich are
infeasible with regard to nonrenewable resource
constraints; it consists of a penalty value atteduo these
solutions. The fitness of a given individual | %,(m ) is
computed in the following manner:

We set T an upper bound for the project makespam. W
choose T the sum of the maximum processing timéseof

jobs. Formally,
J
™= ( MaxPmy )
j=1 m( )0
Like Hartmann 52001), let us assign for each nomnatle
resourcek LI K~ a penalty measure:

J
Licm)= R = D e
=1

L, (m) designates the leftover capacity of the
nonrenewable resourckll X relating to the mode
assignment m. A negative value of (m) implies that the
availability of the nonrenewable resource k is exisel
and, consequently, the mode assignment m is ifeasi
with respect to the nonrenewable resource on hEmeh,
we propose an aggregation measure L(m) given by:



|Lk(m)|><TJ_
Lm)= > {—
ac LR

That is, L(m) considers the negative, (m); in other
words, it takes into account only nonrenewable usses
whose total requirement exceeds the capacity. lignfe
sum of the absolute values of adjusted negatiyént).
These are adjusted by dividing each of them bydteted
resource availability, the purpose being to remiheeunit
effect; then, the result is multiplied by T to centvall into
time measure.
Clearly, L(m) > 0 if there is any excess of an &kility
of nonrenewable resource;
= 0 otherwise.
The penalty is considered as a second criteriorbeto
minimized in addition to the makespan. Hence, the
problem becomes bi-objective. To solve it, we cdasiat
each generation the whole set of parents and ehildr
distributed regarding the makespan and the peraltye
criteria. Then, to compute the fithess value, wstlfi
adopt the rank-based fithess assignment methodib
Objective Genetic Algorithms (MOGASs) conceived by
Fonseca and Fleming (1993); secondly, we propose
different density computation methods borrowed froetl
known clustering heuristic procedures.
Rank-based fithess assignment methodThe method
consists in assigning a rank value to each indalidu
depending on its position within the population,dan
considering the criteria to be optimized. A givadividual
is better ranked as it is little dominated.
Suppose that, at a given generation t, an individiua
dominated by a number p(t) of individuals in the
considered population. Its rank will be determinasl
follows:

Rank(1,t) =1+ p(t).
Remark that all non dominated solutions have a eaplal
to 1. Note also that, for a given individual, tmetric may
varies through generations because of the popnolatio
distribution changes.
Clustering heuristics for density computation.To avoid
a premature convergence of the algorithm, we iniced
density evaluation into the fitness computatione Tietric
will penalize individuals grouping within the pojtibn.
To identify the potential groups of neighbor saus, we
propose using k-means or hierarchical clusterinthaus.

» K-means algorithm: The algorithm was first coneel by
MacQueen (1967). With a predefined fixed number of
clusters, say K. in our case we choose K equahéo t
worst rank value (the largest), the algorithm confmsn
to the next steps:

Step 1: From the population, choose randomly K {goin
that represent the "centroids".

Step 2: Assign individuals to the cluster that héve
closest centroid. With this intension, we chooseply
the Euclidian distance.

Step 3: After assigning all individuals, recalcaldhe
positions of the new centroids by computing, fochea
criterion, the average value of individuals withime
same cluster.

Step 4: repeat Steps 2 and 3 until the centroiderbe
steady or after performing a maximum number
iterations.

Finally, the density D of an individual amountstke
total number of individuals within its cluster.

 Hierarchical method: In the hierarchical clustigri a
limit distance, say dlimit, is fixed instead of d#ng the
number of clusters. Here, we choose to apply the
Manhattan distance. dlimit can be the mean valubef
distance matrix, it can be also the median.

The hierarchical clustering algorithm is performasl
follows:

Step 1: identify the minimum value, say dmin, witktie
matrix distance, and join the two corresponding
individuals into the same cluster.

Step 2: compute the centroid of the new cluster.

Step 3: Update the distance matrix by introducimg t
new centroid considered as a new individual and
removing the two old ones.

Step 4: Repeat steps 1-3 until dn@ndlimit.

Similarly, the density D of an individual is thetdb
number of individuals within its cluster.

Fitness function. A fitness function of an individual | is

given by:

f(1,t) =

of

1
rank(l,t) x D(l,t)
and,

when the density is computed

fly=—>
rank(l, t)
comes to fix the density to 1 for all individualstivin
generations.
Note that the fittest individual that may occurasnot
dominated solution which is alone within its cluste
Consequently, this individual would have a rank and
density equals to one. Therefore, the fithess valiliebe,
in its turn, equal to one. Other individuals whadgreater
rank and/or have a higher density would be assigmed
fitness value less than one.

when the density is not computed, which

Initial population

The initial generation is obtained by repeating tiext
steps POP times.

Firstly, a mode assignment is generated by randomly
selecting m(j)D M; for activities j=1...J.

Secondly, the resulting mode assignment is cheded
nonrenewable resource feasibility. If L(m) > 0, axdl
search procedure is applied trying to improve theent
mode assignment. The process consists in randomly
selecting a job which has more than one mode altiee)

and its current mode is changed by randomly selgcti
m'(j) L Mj \ {m()}. The result is a new mode assignment
m'. If there is improvement, that is if L(m’) < LOmthen



m’:=m, namely m(j) is replaced by m’(j). This preseis
repeated until J consecutive unsuccessful trialsmfrove

the mode assignment have been made or, in thechsst
untii L(m)=0 that is until the individuals become
nonrenewable resource feasible.

Thirdly, we adopt the mode assignment and constauct
precedence feasible schedule by randomly choosing
activities from the eligible set at each stage.

Finally, activities finish times are computed anide t
makespan of the project is derived from them.

Crossover

In this phase, we repeat successively the following
selection until we get POP/2 pairs of individuaady for
crossover. We randomly select two individuals frtme
current population. Individuals should not be skdc
twice within one generation. For our algorithm, e for
the one point crossover for both components of the
chromosome: the activity list and the mode assignime
Let us consider the adapted one point crossoveroapip
used by Hartmann (2001). We select two paréffsand
I” embodied as follow:

Pr=( e jY)and = (] 5.
A random numbegess1iS generated randomly, such that
1< 4crossl< J.
A daughter/? and a sor?® are produced!? is defined as
follows: the gcossifirst jobs are taken from the mother; so,
for the positions i = 1,...gcossiwe set jiD = ji"’I )
For the remained positions (i.e. i Feoss1 +1,...,d),
activities are taken from the father from the Jedativities
not already scheduled. That is

i’ = ji, where k is the lowest index such thgf [J

{j>/h=1..1}.

rl1]3]2[5]4]6|
x v xv x v

[2]al1l6]3]s]

"{2]al1]3]5]6]

Figure 2: One-point crossover for activity list regesentation,
producing the daughter; Gtoss1=3

Figure 2 illustrates the operation by an exampés;¢goss1
=3. The first three activities of the daughter @len from
the mother; the remaining is taken from the fathee:
begin by the first job (1); it is already scheduldde
second job (3) is not yet scheduled, so we petadt,

We proceed similarly for the son by replacing thether
by the father and the father by the mother.

After applying the operation on the activity lisfyoss2 IS
drown randomly such that £ Qcoss2 < J-1; SUPPOSE fhss2

= 4. Figure 3 illustrates the process.

The first gross2 modes in the daughter are taken from the
mother; however the remained modes are taken ffam t
father. Similarly, the son takes thg.g, first modes from

the father and the remaining from the mother. More
explicitly, modes of activities in the daughtBrare defined
as follows:

™ r

L2NAN1N3 |56
2(2(1/1{1]2

Figure 3: One-point crossover applied on mode assigients,
producing the daughter mode. @uss2=4

]D

() = G 7) =1 rossi

PG 7) = 0 ) 1= Goross L.,

In the example above, the first 4 activities in glater 1°
are defined from the mother, even if the fourth fub 3)

is taken from the father. The fifth and sixth jdtzve their
modes from the father.

Mutation

The mutation operator is applied on newly generated
individuals with a probability of mutation .. This
operator is applied, first, on activity list striagd, second,

on the mode assignment one.

In the first sub-stage, we choose a positign such that 1

< gmut £ J-1; then we check whether jobs in the positions
Omut @nd Gl can be permuted; that is if the job in
position .1 is not an immediate successor of the job in
position g, we can permute the jobs; otherwise, we
choose another position ¢ We repeat the procedure
until two jobs are permuted or until J unsuccesaftdmpts
are made. Note that at this stage, the mode assignis
not affected; that is permuted jobs keep theiridtyt
assigned modes.

Afterwards, we randomly select a job which has nbes
one mode alternative. From the set of modds, we
randomly assign a mode m'(% m(j).

Selection

Now, the selection operator intervenes. We apply th
ranking and the roulette wheel methods. The presess
consist in considering both the current and the Ipew
generated populations. Then, POP individuals dextsel.
Note that with roulette wheel method, an individocah be
chosen more than once.

Left shift procedure

The multi-mode left shift is introduced by Sprecle¢ral.
(1997) in their exact algorithm. It is also applied
successfully in Hartmann (2001) genetic algorithfhe



heuristic considers at the same time modes antltstes

of activities. It is applied on feasible individaainly. Each
job is considered lone. Then, without disturbinge th
remainder of the schedule, the change of the joble as
well as its start time are checked simultaneoustg new

job position must evidently respect the precedence
relations as well as the per period renewable resou
consumption. The purpose is to obtain an improved
makespan feasible schedule. Hence, each modedkethe

Impact of the local search procedureNext, the first local
search procedure improving the mode assignmenesdsc

in considerably improving the number of feasible
individuals within the initial population. Indeedithout

this procedure only 53% of the individuals are
nonrenewable resource feasible, whereas with keaich

this portion passes to 94%. Besides, the procedure
improves, in average, penalties of 99.5% of unfdasi
individuals within the population. Hence, we decite

in such a way that the new schedule mode assignmentapply the local search on nonrenewable resouraasififie

remains nonrenewable resource feasible. Then, bfeasi
positions are checked. The first makespan improving
feasible alternative is applied, and the procedige
repeated with next jobs on the resultant schedule.

Computational results

Test problems

In this section, we present and analyze experirhenta
results, the outcome of carrying out the EA preseimt the
last chapter. The experiments have been performed o

mode assignments.

Impact of the left shift procedure. The procedure is
tested on the algorithm with both preprocessing lacdl
search procedures, but without density computafidrat

is the fitness function is based on the rank valoey.
Since it consists in computing new individuals, the
procedure requires a considerable additional coatiput
time. The population size is also a determinant tme
consuming criterion. Hence, we experiment, like
Hartmann (2001), simultaneously the impacts of the
procedure and the population size.

Pentium4-based IBM-compatible personal computeh wit
3.00 GHz clock-pulse and 512 Mo RAM. The GA hasbee

Population size

compiled in with the Microsoft Visual C++ 6.0 cortgpi

and tested under Windows XP professional.

30 60 90 120
Without left shift  1.83% 1.24% 1.02% 0.88%
With left shift 157% 1.25% 1.16% 1.18%

We ran the GA program on standard test instances Table 1: Impact of left shift schedules improvementl second, J=20.

developed by Kolisch et al. (1995), by means ofgiagect
generator ProGen. These problems as well as thesir b
found solutions are available in the project schiedu
problem library PSPLIB; for more details, we refae
reader to the article of Kolisch and Sprecher (3996

In our study, we have used MRCPSP instances $aty; t
contain instances with 10, 12, 14, 16, 18, 20 a@hd@én-
dummy activities, named respectively J10, J12, J18,
J18, J20 and J30. J10-20 are sets entirely soleed t
optimality, whereas no optimal solutions are fouod)30
instances. The performance of our algorithm is regsky

Table 1 summarizes the results. Visibly, the best
alternative until now is a population size of 12@haut
improvement by left shift heuristic. The investigat on
mutation probability leads to best results withp 90%.

To our mind, the unusual high probability of mudatiis
due to the nature of the selected mutation variantact,

the latter leads to taking another individual, bat wholly
different from the first. The second solution bejsrio the
neighborhood of the initial one.

Impact of the clustering alternatives. The clustering

measured in terms of average and maximum percentagetools used in computing the density are exploreth wi

deviation from the optimum, as well as the numbér o
instances the optimal solution is found.

Configuration of the algorithm

This subsection reports the best configuration aof o
algorithm through a numerical investigation. Thepguse

is to decide on the procedures adopted and the best

numerical pattern. Following Hartmann (2001), weade

different stopping criteria. We cote for instancénaiting
distance which is function of the average distaoc¢he
median distance. These measures are computed frem t
distance matrix between the individuals of the whol
population and children. The stopping criteria nmaso
consist in a limiting number of clusters. In théda case,
the number of different ranks and different funeti®f the
maximum rank value are tested

to make this investigation on J20 instances sinegdsults
of smaller projects are not very divergent.

Impact of the preprocessing procedureThese steps are
already applied by Hartmann (2001). The experiméets

Maximum number of clusters
maximum rank 1.5 maximum

conducts on the same instances set show that, with K-means clustering

preprocessing, 4.4% of the modes are removed. &gsid

value rank value
8.04% 0.91%
Hierarchical clustering 4.08% 1.01%

29 % of the instances have their both nonrenewable
resources redundant. Moreover, our experiments shatv
the procedure is not time consuming.

Table 2: Impact of clustering tools. 1 second, J=20

Table 2 shows results of some of these experimdis.
population size is fixed to 120. The left shift pedure is
not applied. Obviously, the best average deviation



obtained with the k-means clustering when the stapp
criterion is equal to 1.8the maximum rank value. This
configuration will be used in the comparison.
Comparison with other algorithms. In this subsection,
we compare our EA with the GA of Hartmann (200} t
EA of Elloumi et al. (2006), the simulated annegliof
Bouleimen and Lecocq (2003), and finally with the
truncated branch-and-bound (B&B) of Sprecher anexDr
(1998).

The computational time stopping criterion suppdkasall
algorithms are tested using similar computer fraorés;
this is not the case. Analogously, the number offmated
schedules criterion presumes that schedules redo@e
same computational effort in all algorithms; thasniot the
case either. Hence, results are displayed usirge theo
stopping criteria types.

J Av. Max. Feasible Optimal
Dev. dev.
New EA 10 0.09 1304 1000 98.6
(a) 12 0.13 8.69 100.0 97.3
14 043 1213 1000 90.0
16 046 1379 1000 88.9
18 0.67 1324 1000 84.1
20 091 2153 1000 7852
30 189 1565 86.17 -
Hartmann's 10 0.06 6.3 100.0 98.7
GA (b) 12 0.14 9.1 100.0 97.3
14 0.44 103  100.0 89.8
16 059 105 100.0 87.8
18 099 133 100.0 78.3
20 121 142 1000 73.3
30 1693 1519 863 -
Elloumi et 10 0.17 18.2 100.0 97.6
al'sEA(a) 12 0.34 10.0 100.0 93.2
14 093 16.7 100.0 82.0
16 128 217 1000 76.0
18 135 136 1000 72.2
20 218 182  100.0 62.5
Sprecher 10 0.00 0.0 100.0 100.0
and 12 012 179 100.0 98.2
Drexl's 14 146 333 99.6 85.7
Truncated 16 381 524 995 69.5
B&B (c) 18 748 774 980 574
20 1151 786 96.4 47.3
30 5722 2440 558 -

Table 3: Comparison with other heuristics. (In %).

(&) Pentium 3.00 GHz, time limit 1 sec.

(b) Pentium 133 MHz, time limit 1 sec.

(c) Pentium 100 MHz, time limit 5 times the instanceesi
(in seconds).

J Av. Max. Optimal
Dev. dev.
New EA 10 0.09 13.04 98.6
12 0.13 8.69 97.3
14 043 12.13 90.0
16 0.46 13.79 88.9
18 0.67 13.24 84.1
20 0.91 21.53 78.52
Bouleimen and 10 0.21 7.8 96.3
Lecocq’s SA 12 0.19 6.3 91.2
14 0.92 10.6 82.6
16 143 12.9 72.8
18 1.85 11.7 69.4
20 2.10 13.2 66.9

Table 4: Comparison with the Simulated Annealing ajorithm of
Bouleimen and Lecocq (2003). 1 second, (in %).

Table 3 and 4 display a comparison between differen
algorithms in terms of the average and the maximum
deviations, the percentages of instances to whielasible
and an optimal solutions are found. The deviatians
computed from optimal solutions for the sets J10&t
from lower bounds for J30 since no optima solutians
known to these instances.

(@) Set JO, 6000 schedules Av. Dev. Optimal
Hartmann (2001) 0.10 98.1
New EA (POP=90, GEN=66) 0.11 97.8
Alcaraz et al. (2003) 0.19 96.5
Kolish and Drexl (1997) 0.50 91.8
Ozdamar (1999) 0.86 88.1

(b) Av. Dev (%),
5000 schedules

Ji0 Ji12 Ji4 Jie Ji8 J20

New EA POP=60, 0.21 0.29 0.77 0.91 1.30 1.62
GEN=83
New EA (POP=90, 0.14 0.24 0.80 1.14 153 2.09

GEN=55
Alcaraz et al. 0.24 0.73 1.00 1.12 143 1.91
(2003)
Jozefowskaetal. 1.16 1.73 2.6 4.07 552 6.74
(2001)

Table 5: Comparison with other heuristics. Fitnesincluding k-means
stopped at a quantity of clusters equal to ten numidr of different
ranks (In %).

Table 5 displays a comparison on the basis of tmeber

of computed schedules stopping criterion. The best
configuration of our algorithm depends on the sgiared

in addition to the stopping criterion. Remark thath a
population size of 90, the algorithm succeedsrtd better
deviations than with 60, and this for the sets &g 12;
this is not the case for J14-20. The new EA givetieb
results than the other algorithms except that aftrhiann
though the difference is not important.



Conclusion

In this paper, we present a new Evolutionary Algponi
(EA) to solve the multi-mode resource constrainegjget
scheduling problem (MRCPSP) with the objective of
minimizing the project makespan. Since the probt&m
whether finding a feasible solution for the MRCP®&ith

at least two non renewable resources is NP-compéete
penalty function is introduced. The penalty is teas a
criterion to be minimized; hence, the problem bees!ini-
objective. Clustering heuristics are introducedo irthe
rank-based fitness. The comparison with other élyos
recently proposed in the literature of MRCPSP psatbe
outperforming of our EA. Further research may
conducted by improving this algorithm, especiafiyorder
to reduce its computational efforts, or by applyibgn
new project scheduling contexts such as schediiting
uncertain environment.

be
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