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Abstract 
In this paper, the non preemptive multi-mode resource-
constrained project scheduling is considered. We use a bi-
objective approach to solve the mono-objective problem of 
makespan minimization. Our main focus is to propose a 
high-performance algorithm that solves the problem at hand. 
A new evolutionary algorithm is developed. The encoding 
procedure is based on feasible activity list and a mode 
assignment. We define two new fitness functions dealing 
with clustering tools, namely k-means and hierarchical 
clustering algorithms. Results of the implementation are 
emphasized to decide on the best algorithm configuration. 
The latter is used to compare our algorithm performance to 
other recent heuristics and metaheuristics. Standard 
instances sets included in PSPLIB are tested. The results 
testify the good performance of our new hybrid evolutionary 
algorithm. 

Introduction 

The Multi-mode Resource-Constrained Project Scheduling 
Problem (MRCPSP) is one of the most studied 
generalizations of the well known Resource-Constrained 
Project Scheduling Problem (RCPSP). It is closer to real 
problems since each activity may be performed in one out 
of several modes and it deals with more than one kind of 
resources. 
Noticeably, the MRCPSP is more complex than the 
RCPSP, which is itself NP-hard. Sprecher and Drexl 
(1998) prove that highly resource-constrained projects with 
at least 20 activities and 3 modes per activity can not be 
solved by exact optimization procedures within a 
reasonable computation time. Furthermore, Kolisch and 
Drexl (1997) demonstrate that, if at least 2 nonrenewable 
resources are taken, even the problem of whether finding a 
feasible solution for the MRCPSP is NP-complete.  
Consequently, one can deduce how crucial the resort to 
heuristic and metaheuristic algorithms is. These methods 
provide near-optimal solutions for large-sized projects 
within relatively little time. The literature about the 
MRCPSP is exceptionally rich with these algorithms. 
According to Boctor (1996a) and (1996b), the pioneer 
studies of the MRCPSP were carried out by Elmaghraby 
(1977), Slowinski and Weglarz (1978) and Weglarz 
(1980). These authors studied the preemptive case. Then, 
Talbot (1982) tackled the nonpreemptive case to give a 

mathematical formulation (on which many post-studies are 
based, like Sprecher (1994), Sprecher et al. (1997) and 
Hartmann (2001), etc.). This formulation enables one to 
handle renewable, nonrenewable and doubly constrained 
resources. It also permits either the minimization of the 
project duration or cost, or the maximization of its net 
present value.  
Talbot (1982) proposes a deterministic enumeration 
scheme. The method provides optimal solutions for small-
sized problems, and is able to find heuristic solutions for 
large-sized ones. Other exact procedures have been 
proposed, we quote Hartmann and Drexl (1998), Sprecher 
and Drexl (1998) and Sprecher et al. (1997). These are 
different variants of Branch-and-Bound method. 
Heuristic methods have been conceived to solve the 
MRCPSP. Talbot (1982) proposes his exact procedure to 
heuristically solve large-sized problems. Boctor (1993) 
presented a comparison of 21 heuristic scheduling rules. 
The same author (1996a) proposes a new efficient heuristic 
algorithm. The latter is a particular heuristic because it 
allows scheduling more than one activity at a time. Bianco 
et al. (1998) treat the MRCPSP, but they restrict the non 
renewable resource constraints to the unique budgetary 
constraint. Drexl and Gruenewald (1993) propose a 
stochastic scheduling method. 
Several metaheuristic procedures have been devoted in the 
literature. Józefowska et al. (2001) present two versions of 
simulated annealing approach: with and without penalty 
function. Likewise, Bouleimen and Lecocq (2003) 
conceive a new simulated annealing algorithm for the 
RCPSP and its multi-mode version. Özdamar (1999) 
conceive a new hybrid genetic algorithm for the MRCPSP; 
the main particularity of the algorithm appears in the 
solutions encoding by the mode assignment and the 
priority rules. Hartmann (2001) proposes a genetic 
algorithm which is, in the best of our knowledge, the most 
efficient to solve the MRCPSP; the algorithm is especially 
rich with two local search procedures already proposed by 
Sprecher et al. (1997). Alcaraz et al. (2003) and Elloumi et 
al. (2006) apply a similar framework; they tried to 
overcome Hartmann's GA drawbacks and to improve it. 
Analogously, in this paper we propose a new Evolutionary 
Algorithm (EA) approach dealing with MRCPSP where the 
objective is the minimization of the project duration. Tasks 
can not be interrupted once begun, and various kinds of 



Generate initial population consisting of POP 

chromosomes; 
Apply a local search procedure; 
Initialize the current generation number to 0; 
WHILE generation number < GEN AND run-time < 
CPU time limit DO 
BEGIN 
 Increment the generation number; 
 Select POP individuals for crossover;  
 Produce POP children (CH I) from pairs of the selected 
individuals by crossover; 
 Apply mutation to CH I with a probability pmu t; 
 Compute fitness values; 
 Reproduce population := selected individuals from the 

last population U  CH I. 

END 

resources are considered. Our main focus is to propose a 
high-performance algorithm that solves the outlined 
problem. 
The remainder of this paper is organized as follows: the 
first section is devoted to the presentation of the problem. 
The second section deals with the new EA steps and its 
features. The third section is oriented towards the analysis 
of the algorithm computational results. Hence, we present 
the experimental framework. Then, we determine the best 
configuration of our proposed Evolutionary Algorithm. In 
the end of this section, we exhibit results drawn from the 
comparison of our Evolutionary Algorithm with other 
metaheuristics proposed in the literature of MRCPSP. 
In the remaining, we mean by MRCPSP the non-
preemptive Multi-mode Resource-Constrained Project 
Scheduling Problem with the objective of minimizing the 
project duration, unless contrarily mentioned.  

Problem description 

We consider a project consisting of J activities labeled j = 
1…J. These jobs are partially ordered, i.e. there are 
precedence relations between some of them.  The 
precedence relations are expressed by sets Pj of immediate 
predecessors of job j. We assume that the activities are 
numerically labeled, that is an activity j has always a 
higher number than all its predecessors.  
For simplification sake, the precedence relations can be 
depicted by an acyclic activity-on-node network. We set 
additional activities j = 0 and j = J + 1 which represent 
respectively unique dummy source and sink nodes. 
Three most used categories of resources are considered: 

• Renewable resources (whose set is referred to by K ρ ): 
in our study, we are interested in constant per-period 
availability. This availability of a renewable resource k 
is denoted by R ρ

k ; 
• Nonrenewable resources (whose set is referred to by 

K υ ): for each resource k∈K υ , this availability is 
designated by R υ

k ; 
• Doubly constrained resources: recall (as mentioned in the 

first section) that we deal with this type of resources by 
representing it in both kinds of constraints: the 
renewable and nonrenewable resources. 

Each activity may be executed in one out of several modes. 
A mode is a scenario of performing a job. It reflects, for 
the activity in question, first the consumption on each 
resource k belonging to either category of resources, and 
second the related duration. Once started, an activity may 
not be interrupted, and its mode may not be altered. For 
each activity j = 1…J, we distinguish a set of different 
modes; the latter is denoted by M j = { }jM,...,1 . The job 
j performed on a mode m ∈  M j has a processing time 
referred to by p jm , it requires r ρ

jmk  units of each 
renewable resource k ∈  K ρ during its process, and r υ

jmk  
units of each nonrenewable resource k ∈  K υ . 
The dummy activities represent a special case, in the sense 
that each of them is supposed to have a unique mode 

characterized by no request on any resource, and duration 
equal to zero. Let us set T an upper bound for the project 
makespan. T may be obtained for example by adding the 
maximum durations of all the activities. 
The objective of this study is to find a mode and a finish 
time for each activity so that the schedule is feasible and 
the makespan of the project is minimal with respect to the 
precedence and resource constraints. 

Proposed Evolutionary Algorithm 

In this section, we propose a new evolutionary algorithm to 
solve the MRCPS problem. To personalize an EA, one or 
more components may be altered. The variation may deal 
with (a) the solution encoding: different kinds of 
representation are available in the literature of project 
scheduling; a brief survey is given by Alcaraz and Maroto 
(2001); (b) operators: there is a large spectrum of 
crossover, mutation and selection operators in the literature 
so choosing one or other alternatives from the range of 
these operators leads to a special EA; (c) Evaluation of the 
chromosomes: this component reflects the ability of 
chromosomes to survive and contribute offspring in the 
next generation; to measure this ability, a fitness function 
must be conceived for each chromosome. Besides, the 
introduction of new components leads to a personalized 
(even hybrid) EA. 
In the following, we define the proposed algorithm stages: 
encoding, crossover, mutation and selection in addition to 
further proposed procedures particularizing the proposed 
EA. 

Basic scheme 

Figure 1: Proposed EA 
 
First of all, a preprocessing procedure is applied in project 
data to reduce the search space efficiently. After that, the 
EA starts with generating an initial population by means of 
a suitable encoding; the number of individuals in a 
population is constant through generations, say POP; we 



assume POP to be an even integer. Then, for each 
individual the makespan and a penalty values are 
computed; a local search procedure is applied to ameliorate 
the generated solution by trying to reduce penalties. In our 
case, the constraints to be respected are the renewable 
resource and precedence constraints only. The violation of 
nonrenewable resource constraints is penalized by a certain 
measure that will be defined later. POP/2 pairs of 
individuals are randomly selected. Resulting children 
undergo mutation with a probability pmu t. Once again, the 
makespan and a penalty values are computed for the newly 
produced individuals and the fitness values are determined. 
Here intervenes the reproduction operator to maintain POP 
individuals ready to contribute in the next generation. This 
procedure is repeated for a determined number of 
generations, say GEN, or until the CPU time limit is 
reached. Figure 1 depicts the proposed EA scheme. 

Preprocessing 
This step is introduced before the beginning of the EA in 
order to reduce the search space. The reduction procedure 
was first developed by Sprecher et al. (1997) to accelerate 
their branch-and-bound algorithm for the MRCPSP. The 
idea behind this procedure is to exclude modes and/or 
renewable as well as nonrenewable resources from the 
input data. Because of the interdependency between the 
elimination of these contents, the latter are dealt with as 
follows: 
Step 1: Remove all non-executable modes from the project 
data. 
Step 2: Delete the redundant nonrenewable resources. 
Step 3: Eliminate all inefficient modes. 
Step 4: if any mode has been erased within Step 3, go to 
Step 2. 
For more details of the components interdependency and 
the merit of the procedure, we refer the reader to Sprecher 
et al. (1997) and Hartmann (2001). 

Definition of individuals 
The encoding chosen for individuals is activity list 
representation. Since we are dealing with the multi-mode 
version of the standard RCPSP, individuals must reveal at 
the same time activities order and mode assignment; hence, 
the finish times of activities and, therefore, a makespan of 
the project can be deduced. Obviously, activities finish 
times depend at the same time on the two above-mentioned 
individual elements. So, our EA deals simultaneously with 
both sequencing and mode assignment problems.  
The representation opted for is a pair I = ( λ, m ) of two 
vectors. The first vector λ = ( j1,…,jJ ) denotes a precedence 
feasible activity list. The second vector m symbolizes the 
modes relating to the corresponding jobs in the list. 
Accordingly, the notation which will be used is the 
following: 

I =  )()...(

...

1

1

J

J

jmjm

jj . 

Individuals are obtained by fixing the activities modes 
randomly from the remaining set of modes after the 
preprocessing procedure. Then, the activity list is 
constructed as if we deal with a traditional single mode 
RCPSP with respect to the resulting mode assignment; that 
is, we start with the source dummy activity at time 0, and 
we successively repeat the following: we consider the set 
of eligible jobs and, after that, we randomly allocate an 
activity from the set at its earliest start time regarding 
precedence and renewable resources constraints. 
Observe that the ensuing schedule is precedence and 
renewable resource feasible, but it is not necessarily 
nonrenewable resource feasible. Recall that, as proved by 
Kolisch and Drexl (1997), “already finding a feasible 
schedule is an NP-complete problem if at least two 
nonrenewable resources are given”. So, to overcome this 
difficulty, we find it practical to introduce schedules which 
violate the nonrenewable resource constraints into the 
search space. 

Fitness computation 
Recall that Kolisch and Drexl (1997) demonstrate that, if at 
least 2 nonrenewable resources are taken, even the problem 
of whether finding a feasible solution for the MRCPSP is 
NP-complete. So, in our algorithm, we allow the 
introduction of nonrenewable resource infeasible 
individuals. Note that all individuals are necessarily 
precedence and renewable resource feasible. 
Although we are dealing with a single performance 
measure, our fitness function behaves by considering an 
additional performance measure to be minimized. The 
latter takes its favor from introducing solutions which are 
infeasible with regard to nonrenewable resource 
constraints; it consists of a penalty value attributed to these 
solutions. The fitness of a given individual I = ( λ, m ) is 
computed in the following manner: 
We set T an upper bound for the project makespan. We 
choose T the sum of the maximum processing times of the 
jobs. Formally, 

T = ∑
=

J

j 1

( Max
jjm M∈)(

 p )( jjm ) ; 

Like Hartmann (2001), let us assign for each nonrenewable 
resource k ∈  K υ a penalty measure: 

L k (m) = υ
kR  - ∑

=

J

j
kjjmr

1
)(

υ ; 

L k (m) designates the leftover capacity of the 
nonrenewable resource k∈  K υ  relating to the mode 
assignment m. A negative value of Lk (m) implies that the 
availability of the nonrenewable resource k is exceeded 
and, consequently, the mode assignment m is infeasible 
with respect to the nonrenewable resource on hand. Then, 
we propose an aggregation measure L(m) given by: 



L(m) = ∑
<

∈
0)(mL

Kk

k

υ

  ×
υ
k

k

R

TmL )(
;  

That is, L(m) considers the negative Lk (m); in other 
words, it takes into account only nonrenewable resources 
whose total requirement exceeds the capacity. L(m) is the 
sum of the absolute values of adjusted negative Lk (m). 
These are adjusted by dividing each of them by the related 
resource availability, the purpose being to remove the unit 
effect; then, the result is multiplied by T to convert all into 
time measure.  
Clearly, L(m) > 0 if there is any excess of an availability 

of nonrenewable resource; 
         = 0 otherwise. 
The penalty is considered as a second criterion to be 
minimized in addition to the makespan. Hence, the 
problem becomes bi-objective. To solve it, we consider at 
each generation the whole set of parents and children 
distributed regarding the makespan and the penalty value 
criteria. Then, to compute the fitness value, we firstly 
adopt the rank-based fitness assignment method for Multi 
Objective Genetic Algorithms (MOGAs) conceived by 
Fonseca and Fleming (1993); secondly, we propose 
different density computation methods borrowed from well 
known clustering heuristic procedures. 
Rank-based fitness assignment method. The method 
consists in assigning a rank value to each individual 
depending on its position within the population, and 
considering the criteria to be optimized. A given individual 
is better ranked as it is little dominated.  
Suppose that, at a given generation t, an individual I is 
dominated by a number p(t) of individuals in the 
considered population. Its rank will be determined as 
follows: 

Rank( I, t ) = 1 + p(t). 
Remark that all non dominated solutions have a rank equal 
to 1. Note also that, for a given individual, this metric may 
varies through generations because of the population 
distribution changes. 
Clustering heuristics for density computation. To avoid 
a premature convergence of the algorithm, we introduce 
density evaluation into the fitness computation. The metric 
will penalize individuals grouping within the population. 
To identify the potential groups of neighbor solutions, we 
propose using k-means or hierarchical clustering methods. 

• K-means algorithm: The algorithm was first conceived by 
MacQueen (1967). With a predefined fixed number of 
clusters, say K. in our case we choose K equal to the 
worst rank value (the largest), the algorithm comes down 
to the next steps: 
Step 1: From the population, choose randomly K points 
that represent the "centroids". 
Step 2: Assign individuals to the cluster that have the 
closest centroid. With this intension, we choose to apply 
the Euclidian distance. 

Step 3: After assigning all individuals, recalculate the 
positions of the new centroids by computing, for each 
criterion, the average value of individuals within the 
same cluster.  
Step 4: repeat Steps 2 and 3 until the centroids become 
steady or after performing a maximum number of 
iterations. 
Finally, the density D of an individual amounts to the 
total number of individuals within its cluster. 

• Hierarchical method: In the hierarchical clustering, a 
limit distance, say dlimit, is fixed instead of deciding the 
number of clusters. Here, we choose to apply the 
Manhattan distance. dlimit can be the mean value of the 
distance matrix, it can be also the median. 
The hierarchical clustering algorithm is performed as 
follows: 
Step 1: identify the minimum value, say dmin, within the 
matrix distance, and join the two corresponding 
individuals into the same cluster. 
Step 2: compute the centroid of the new cluster. 
Step 3: Update the distance matrix by introducing the 
new centroid considered as a new individual and 
removing the two old ones. 
Step 4: Repeat steps 1-3 until dmin ≥  dlimit. 
Similarly, the density D of an individual is the total 
number of individuals within its cluster. 

Fitness function. A fitness function of an individual I is 
given by: 

f(I,t) = 
)t,I(D)t,I(rank

1

×
  when the density is computed 

and, 

f(I,t) = 
)t,I(rank

1  when the density is not computed, which 

comes to fix the density to 1 for all individuals within 
generations. 
Note that the fittest individual that may occur is a not 
dominated solution which is alone within its cluster. 
Consequently, this individual would have a rank and a 
density equals to one. Therefore, the fitness value will be, 
in its turn, equal to one. Other individuals who have greater 
rank and/or have a higher density would be assigned a 
fitness value less than one. 

Initial population 
The initial generation is obtained by repeating the next 
steps POP times. 
Firstly, a mode assignment is generated by randomly 
selecting m(j) ∈ Mj for activities j = 1…J. 
Secondly, the resulting mode assignment is checked for 
nonrenewable resource feasibility. If L(m) > 0, a local 
search procedure is applied trying to improve the current 
mode assignment. The process consists in randomly 
selecting a job which has more than one mode alternative, 
and its current mode is changed by randomly selecting 
m’(j) ∈  Mj \ {m(j)}. The result is a new mode assignment 
m’. If there is improvement, that is if L(m’) < L(m), then 



m’:=m, namely m(j) is replaced by m’(j). This process is 
repeated until J consecutive unsuccessful trials to improve 
the mode assignment have been made or, in the best case, 
until L(m)=0 that is until the individuals become 
nonrenewable resource feasible. 
Thirdly, we adopt the mode assignment and construct a 
precedence feasible schedule by randomly choosing 
activities from the eligible set at each stage. 
Finally, activities finish times are computed and the 
makespan of the project is derived from them. 

Crossover 
In this phase, we repeat successively the following 
selection until we get POP/2 pairs of individuals ready for 
crossover. We randomly select two individuals from the 
current population. Individuals should not be selected 
twice within one generation. For our algorithm, we opt for 
the one point crossover for both components of the 
chromosome: the activity list and the mode assignment.  
Let us consider the adapted one point crossover approach 
used by Hartmann (2001). We select two parents IM  and 
IF  embodied as follow: 

IM  = ( Mj1  …… M
Jj ) and IF = ( Fj1  …… F

Jj ). 

A random number q cross1 is generated randomly, such that  
1 < q cross1 < J. 
A daughter ID  and a son IS are produced. ID  is defined as 
follows: the q cross1 first jobs are taken from the mother; so, 
for the positions i = 1,…, q cross1 we set D

ij  := M
ij . 

For the remained positions (i.e. i = qcross1 +1,…,J), 
activities are taken from the father from the set of activities 
not already scheduled. That is 

D
ij  := F

kj , where k is the lowest index such that F
kj  ∉  

{ D
hj  / h = 1…i-1}. 

 
 
 
 
 
 
 
 
 
 
Figure 2 illustrates the operation by an example; Set qcross1 

=3. The first three activities of the daughter are taken from 
the mother; the remaining is taken from the father: we 
begin by the first job (1); it is already scheduled. The 
second job (3) is not yet scheduled, so we put it, etc. 
We proceed similarly for the son by replacing the mother 
by the father and the father by the mother. 
After applying the operation on the activity list, qcross2 is 
drown randomly such that 1 ≤  qcross2 ≤ J-1; suppose qcross2 
= 4. Figure 3 illustrates the process. 
The first qcross2 modes in the daughter are taken from the 
mother; however the remained modes are taken from the 
father. Similarly, the son takes the qcross2 first modes from 

the father and the remaining from the mother. More 
explicitly, modes of activities in the daughter ID are defined 
as follows: 

mD(j D
i ) := mM(j D

i ) i = 1… qcross2; 

mD(j D
i ) := mF(j D

i ) i = qcross2+1…J. 

In the example above, the first 4 activities in daughter ID 
are defined from the mother, even if the fourth job (job 3) 
is taken from the father. The fifth and sixth jobs have their 
modes from the father. 

Mutation 
The mutation operator is applied on newly generated 
individuals with a probability of mutation pmut. This 
operator is applied, first, on activity list string and, second, 
on the mode assignment one.  
In the first sub-stage, we choose a position qmut such that 1 
≤  qmut ≤  J-1; then we check whether jobs in the positions 
qmut and qmut+1 can be permuted; that is if the job in 
position qmut+1 is not an immediate successor of the job in 
position qmut, we can permute the jobs; otherwise, we 
choose another position q’mut. We repeat the procedure 
until two jobs are permuted or until J unsuccessful attempts 
are made. Note that at this stage, the mode assignment is 
not affected; that is permuted jobs keep their initially 
assigned modes. 

Afterwards, we randomly select a job which has more than 
one mode alternative. From the set of modes M j, we 
randomly assign a mode m’(j) ≠  m(j). 

Selection 
Now, the selection operator intervenes. We apply the 
ranking and the roulette wheel methods. The processes 
consist in considering both the current and the newly 
generated populations. Then, POP individuals are selected. 
Note that with roulette wheel method, an individual can be 
chosen more than once. 

Left shift procedure 
The multi-mode left shift is introduced by Sprecher et al. 
(1997) in their exact algorithm. It is also applied 
successfully in Hartmann (2001) genetic algorithm. The 
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Figure 2: One-point crossover for activity list representation, 

 producing the daughter; qcross1 =3 
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Figure 3: One-point crossover applied on mode assignments, 

producing the daughter mode. qcross2 =4 



heuristic considers at the same time modes and start times 
of activities. It is applied on feasible individuals only. Each 
job is considered lone. Then, without disturbing the 
remainder of the schedule, the change of the job's mode as 
well as its start time are checked simultaneously. The new 
job position must evidently respect the precedence 
relations as well as the per period renewable resource 
consumption. The purpose is to obtain an improved 
makespan feasible schedule. Hence, each mode is checked 
in such a way that the new schedule mode assignment 
remains nonrenewable resource feasible. Then, feasible 
positions are checked. The first makespan improving 
feasible alternative is applied, and the procedure is 
repeated with next jobs on the resultant schedule. 

Computational results 

Test problems 
In this section, we present and analyze experimental 
results, the outcome of carrying out the EA presented in the 
last chapter. The experiments have been performed on a 
Pentium4-based IBM-compatible personal computer with 
3.00 GHz clock-pulse and 512 Mo RAM. The GA has been 
compiled in with the Microsoft Visual C++ 6.0 compiler 
and tested under Windows XP professional. 
We ran the GA program on standard test instances 
developed by Kolisch et al. (1995), by means of the project 
generator ProGen. These problems as well as their best 
found solutions are available in the project scheduling 
problem library PSPLIB; for more details, we refer the 
reader to the article of Kolisch and Sprecher (1996).  
In our study, we have used MRCPSP instances sets; they 
contain instances with 10, 12, 14, 16, 18, 20 and 30 non-
dummy activities, named respectively J10, J12, J14, J16, 
J18, J20 and J30. J10-20 are sets entirely solved to 
optimality, whereas no optimal solutions are found to J30 
instances. The performance of our algorithm is essentially 
measured in terms of average and maximum percentage 
deviation from the optimum, as well as the number of 
instances the optimal solution is found. 

Configuration of the algorithm 
This subsection reports the best configuration of our 
algorithm through a numerical investigation. The purpose 
is to decide on the procedures adopted and the best 
numerical pattern. Following Hartmann (2001), we choose 
to make this investigation on J20 instances since the results 
of smaller projects are not very divergent. 
Impact of the preprocessing procedure. These steps are 
already applied by Hartmann (2001). The experiments he 
conducts on the same instances set show that, with 
preprocessing, 4.4% of the modes are removed. Besides, 
29 % of the instances have their both nonrenewable 
resources redundant. Moreover, our experiments show that 
the procedure is not time consuming.  

Impact of the local search procedure. Next, the first local 
search procedure improving the mode assignment succeeds 
in considerably improving the number of feasible 
individuals within the initial population. Indeed, without 
this procedure only 53% of the individuals are 
nonrenewable resource feasible, whereas with local search 
this portion passes to 94%. Besides, the procedure 
improves, in average, penalties of 99.5% of unfeasible 
individuals within the population. Hence, we decide to 
apply the local search on nonrenewable resource unfeasible 
mode assignments. 
Impact of the left shift procedure. The procedure is 
tested on the algorithm with both preprocessing and local 
search procedures, but without density computation. That 
is the fitness function is based on the rank values only. 
Since it consists in computing new individuals, the 
procedure requires a considerable additional computation 
time. The population size is also a determinant and time 
consuming criterion.  Hence, we experiment, like 
Hartmann (2001), simultaneously the impacts of the 
procedure and the population size. 
 

Population size  
30 60 90 120 

Without left shift 1.83% 1.24% 1.02% 0.88% 
With left shift 1.57% 1.25% 1.16% 1.18% 
Table 1: Impact of left shift schedules improvement. 1 second, J=20. 

 
Table 1 summarizes the results. Visibly, the best 
alternative until now is a population size of 120 without 
improvement by left shift heuristic. The investigation on 
mutation probability leads to best results with pmut = 90%. 
To our mind, the unusual high probability of mutation is 
due to the nature of the selected mutation variant. In fact, 
the latter leads to taking another individual, but not wholly 
different from the first. The second solution belongs to the 
neighborhood of the initial one. 
Impact of the clustering alternatives. The clustering 
tools used in computing the density are explored with 
different stopping criteria. We cote for instance a limiting 
distance which is function of the average distance or the 
median distance. These measures are computed from the 
distance matrix between the individuals of the whole 
population and children. The stopping criteria may also 
consist in a limiting number of clusters. In the latter case, 
the number of different ranks and different functions of the 
maximum rank value are tested 
 

Maximum number of clusters  
maximum rank 

value 
1.5 maximum 

rank value 
K-means clustering 8.04% 0.91% 
Hierarchical clustering 4.08% 1.01% 

Table 2: Impact of clustering tools. 1 second, J=20. 
 
Table 2 shows results of some of these experiments. The 
population size is fixed to 120. The left shift procedure is 
not applied. Obviously, the best average deviation is 



obtained with the k-means clustering when the stopping 
criterion is equal to 1.5× the maximum rank value. This 
configuration will be used in the comparison. 
Comparison with other algorithms. In this subsection, 
we compare our EA with the GA of Hartmann (2001), the 
EA of Elloumi et al. (2006), the simulated annealing of 
Bouleimen and Lecocq (2003), and finally with the 
truncated branch-and-bound (B&B) of Sprecher and Drexl 
(1998). 
The computational time stopping criterion supposes that all 
algorithms are tested using similar computer frameworks, 
this is not the case. Analogously, the number of computed 
schedules criterion presumes that schedules require the 
same computational effort in all algorithms; this is not the 
case either. Hence, results are displayed using these two 
stopping criteria types. 
 
 J Av. 

Dev. 
Max. 
dev. 

Feasible Optimal 

10 0.09 13.04 100.0 98.6 
12 0.13 8.69 100.0 97.3 
14 0.43 12.13 100.0 90.0 
16 0.46 13.79 100.0 88.9 
18 0.67 13.24 100.0 84.1 
20 0.91 21.53 100.0 78.52 

New EA 
(a) 

30 1.89 15.65 86.17 - 
10 0.06 6.3 100.0 98.7 
12 0.14 9.1 100.0 97.3 
14 0.44 10.3 100.0 89.8 
16 0.59 10.5 100.0 87.8 
18 0.99 13.3 100.0 78.3 
20 1.21 14.2 100.0 73.3 

Hartmann's 
GA (b) 

30 16.93 151.9 86.3 - 
10 0.17 18.2 100.0 97.6 
12 0.34 10.0 100.0 93.2 
14 0.93 16.7 100.0 82.0 
16 1.28 21.7 100.0 76.0 
18 1.35 13.6 100.0 72.2 

Elloumi et 
al.'s EA (a) 

20 2.18 18.2 100.0 62.5 
10 0.00 0.0 100.0 100.0 
12 0.12 17.9 100.0 98.2 
14 1.46 33.3 99.6 85.7 
16 3.81 52.4 99.5 69.5 
18 7.48 77.4 98.0 57.4 
20 11.51 78.6 96.4 47.3 

Sprecher 
and 
Drexl’s 
Truncated 
B&B (c) 

30 57.22 244.0 55.8 - 
Table 3: Comparison with other heuristics. (In %). 

 
(a) Pentium 3.00 GHz, time limit 1 sec. 
(b) Pentium 133 MHz, time limit 1 sec. 
(c) Pentium 100 MHz, time limit 5 times the instance size 

(in seconds). 

 
 J Av. 

Dev. 
Max. 
dev. 

Optimal 

10 0.09 13.04 98.6 
12 0.13 8.69 97.3 
14 0.43 12.13 90.0 
16 0.46 13.79 88.9 
18 0.67 13.24 84.1 

New EA 

20 0.91 21.53 78.52 
10 0.21 7.8 96.3 
12 0.19 6.3 91.2 
14 0.92 10.6 82.6 
16 1.43 12.9 72.8 
18 1.85 11.7 69.4 

Bouleimen and 
Lecocq’s SA 
 

20 2.10 13.2 66.9 
Table 4: Comparison with the Simulated Annealing algorithm of 

Bouleimen and Lecocq (2003). 1 second, (in %). 
 
Table 3 and 4 display a comparison between different 
algorithms in terms of the average and the maximum 
deviations, the percentages of instances to which a feasible 
and an optimal solutions are found. The deviations are 
computed from optimal solutions for the sets J10-20, and 
from lower bounds for J30 since no optima solutions are 
known to these instances. 
 
(a) Set J0, 6000 schedules Av. Dev.  Optimal  
Hartmann (2001) 0.10 98.1 
New EA (POP=90, GEN=66) 0.11 97.8 
Alcaraz et al. (2003) 0.19 96.5 
Kolish and Drexl (1997) 0.50 91.8 
Özdamar (1999) 0.86 88.1 
 
(b) Av. Dev (%), 
5000 schedules 

J10 J12 J14 J16 J18 J20 

New EA (POP=60, 
GEN=83) 

0.21 0.29 0.77 0.91 1.30 1.62 

New EA (POP=90, 
GEN=55) 

0.14 0.24 0.80 1.14 1.53 2.09 

Alcaraz et al. 
(2003) 

0.24 0.73 1.00 1.12 1.43 1.91 

Józefowska et al. 
(2001) 

1.16 1.73 2.6 4.07 5.52 6.74 

Table 5: Comparison with other heuristics. Fitness including k-means 
stopped at a quantity of clusters equal to ten number of different 

ranks (In %). 
 
Table 5 displays a comparison on the basis of the number 
of computed schedules stopping criterion. The best 
configuration of our algorithm depends on the set explored 
in addition to the stopping criterion. Remark that with a 
population size of 90, the algorithm succeeds to find better 
deviations than with 60, and this for the sets J10 and 12; 
this is not the case for J14-20. The new EA gives better 
results than the other algorithms except that of Hartmann 
though the difference is not important. 



Conclusion 

In this paper, we present a new Evolutionary Algorithm 
(EA) to solve the multi-mode resource constrained project 
scheduling problem (MRCPSP) with the objective of 
minimizing the project makespan. Since the problem of 
whether finding a feasible solution for the MRCPSP with 
at least two non renewable resources is NP-complete, a 
penalty function is introduced. The penalty is dealt as a 
criterion to be minimized; hence, the problem becomes bi-
objective. Clustering heuristics are introduced into the 
rank-based fitness. The comparison with other algorithms 
recently proposed in the literature of MRCPSP proves the 
outperforming of our EA. Further research may be 
conducted by improving this algorithm, especially in order 
to reduce its computational efforts, or by applying it on 
new project scheduling contexts such as scheduling in 
uncertain environment. 
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