
A new bi-objective evolutionary algorithm using clustering heuristics to

solve the Multi-mode Resource-Constrained Project Scheduling Problem

Sonda Elloumi (a), Philippe Fortemps (b), Jacques Teghem (b), Taïcir Loukil (a)

(a) GIAD, University of Economic and Management Sciences, Rue de l’aerodrome Km 4 Sfax, Tunisia
(b) MATHRO, Faculté Polytechnique de Mons, 9 rue de Houdain, B-7000, Mons, Belgium

Abstract
In this paper, the non preemptive multi-mode resource-
constrained project scheduling is considered. We use a bi-
objective approach to solve the mono-objective problem of
makespan minimization. Our main focus is to propose a
high-performance algorithm that solves the problem at hand.
A new evolutionary algorithm is developed. The encoding
procedure is based on feasible activity list and a mode
assignment. We define two new fitness functions dealing
with clustering tools, namely k-means and hierarchical
clustering algorithms. Results of the implementation are
emphasized to decide on the best algorithm configuration.
The latter is used to compare our algorithm performance to
other recent heuristics and metaheuristics. Standard
instances sets included in PSPLIB are tested. The results
testify the good performance of our new hybrid evolutionary
algorithm.

Introduction

The Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP) is one of the most studied
generalizations of the well known Resource-Constrained
Project Scheduling Problem (RCPSP). It is closer to real
problems since each activity may be performed in one out
of several modes and it deals with more than one kind of
resources.
Noticeably, the MRCPSP is more complex than the
RCPSP, which is itself NP-hard. Sprecher and Drexl
(1998) prove that highly resource-constrained projects with
at least 20 activities and 3 modes per activity can not be
solved by exact optimization procedures within a
reasonable computation time. Furthermore, Kolisch and
Drexl (1997) demonstrate that, if at least 2 nonrenewable
resources are taken, even the problem of whether finding a
feasible solution for the MRCPSP is NP-complete.
Consequently, one can deduce how crucial the resort to
heuristic and metaheuristic algorithms is. These methods
provide near-optimal solutions for large-sized projects
within relatively little time. The literature about the
MRCPSP is exceptionally rich with these algorithms.
According to Boctor (1996a) and (1996b), the pioneer
studies of the MRCPSP were carried out by Elmaghraby
(1977), Slowinski and Weglarz (1978) and Weglarz
(1980). These authors studied the preemptive case. Then,
Talbot (1982) tackled the nonpreemptive case to give a

mathematical formulation (on which many post-studies are
based, like Sprecher (1994), Sprecher et al. (1997) and
Hartmann (2001), etc.). This formulation enables one to
handle renewable, nonrenewable and doubly constrained
resources. It also permits either the minimization of the
project duration or cost, or the maximization of its net
present value.
Talbot (1982) proposes a deterministic enumeration
scheme. The method provides optimal solutions for small-
sized problems, and is able to find heuristic solutions for
large-sized ones. Other exact procedures have been
proposed, we quote Hartmann and Drexl (1998), Sprecher
and Drexl (1998) and Sprecher et al. (1997). These are
different variants of Branch-and-Bound method.
Heuristic methods have been conceived to solve the
MRCPSP. Talbot (1982) proposes his exact procedure to
heuristically solve large-sized problems. Boctor (1993)
presented a comparison of 21 heuristic scheduling rules.
The same author (1996a) proposes a new efficient heuristic
algorithm. The latter is a particular heuristic because it
allows scheduling more than one activity at a time. Bianco
et al. (1998) treat the MRCPSP, but they restrict the non
renewable resource constraints to the unique budgetary
constraint. Drexl and Gruenewald (1993) propose a
stochastic scheduling method.
Several metaheuristic procedures have been devoted in the
literature. Józefowska et al. (2001) present two versions of
simulated annealing approach: with and without penalty
function. Likewise, Bouleimen and Lecocq (2003)
conceive a new simulated annealing algorithm for the
RCPSP and its multi-mode version. Özdamar (1999)
conceive a new hybrid genetic algorithm for the MRCPSP;
the main particularity of the algorithm appears in the
solutions encoding by the mode assignment and the
priority rules. Hartmann (2001) proposes a genetic
algorithm which is, in the best of our knowledge, the most
efficient to solve the MRCPSP; the algorithm is especially
rich with two local search procedures already proposed by
Sprecher et al. (1997). Alcaraz et al. (2003) and Elloumi et
al. (2006) apply a similar framework; they tried to
overcome Hartmann's GA drawbacks and to improve it.
Analogously, in this paper we propose a new Evolutionary
Algorithm (EA) approach dealing with MRCPSP where the
objective is the minimization of the project duration. Tasks
can not be interrupted once begun, and various kinds of

Generate initial population consisting of POP

chromosomes;
Apply a local search procedure;
Initialize the current generation number to 0;
WHILE generation number < GEN AND run-time <
CPU time limit DO
BEGIN
 Increment the generation number;
 Select POP individuals for crossover;
 Produce POP children (CH I) from pairs of the selected
individuals by crossover;
 Apply mutation to CH I with a probability pmu t;
 Compute fitness values;
 Reproduce population := selected individuals from the

last population U CH I.

END

resources are considered. Our main focus is to propose a
high-performance algorithm that solves the outlined
problem.
The remainder of this paper is organized as follows: the
first section is devoted to the presentation of the problem.
The second section deals with the new EA steps and its
features. The third section is oriented towards the analysis
of the algorithm computational results. Hence, we present
the experimental framework. Then, we determine the best
configuration of our proposed Evolutionary Algorithm. In
the end of this section, we exhibit results drawn from the
comparison of our Evolutionary Algorithm with other
metaheuristics proposed in the literature of MRCPSP.
In the remaining, we mean by MRCPSP the non-
preemptive Multi-mode Resource-Constrained Project
Scheduling Problem with the objective of minimizing the
project duration, unless contrarily mentioned.

Problem description

We consider a project consisting of J activities labeled j =
1…J. These jobs are partially ordered, i.e. there are
precedence relations between some of them. The
precedence relations are expressed by sets Pj of immediate
predecessors of job j. We assume that the activities are
numerically labeled, that is an activity j has always a
higher number than all its predecessors.
For simplification sake, the precedence relations can be
depicted by an acyclic activity-on-node network. We set
additional activities j = 0 and j = J + 1 which represent
respectively unique dummy source and sink nodes.
Three most used categories of resources are considered:

• Renewable resources (whose set is referred to by K ρ):
in our study, we are interested in constant per-period
availability. This availability of a renewable resource k
is denoted by R ρ

k ;
• Nonrenewable resources (whose set is referred to by

K υ): for each resource k∈K υ , this availability is
designated by R υ

k ;
• Doubly constrained resources: recall (as mentioned in the

first section) that we deal with this type of resources by
representing it in both kinds of constraints: the
renewable and nonrenewable resources.

Each activity may be executed in one out of several modes.
A mode is a scenario of performing a job. It reflects, for
the activity in question, first the consumption on each
resource k belonging to either category of resources, and
second the related duration. Once started, an activity may
not be interrupted, and its mode may not be altered. For
each activity j = 1…J, we distinguish a set of different
modes; the latter is denoted by M j = { }jM,...,1 . The job
j performed on a mode m ∈ M j has a processing time
referred to by p jm , it requires r ρ

jmk units of each
renewable resource k ∈ K ρ during its process, and r υ

jmk
units of each nonrenewable resource k ∈ K υ .
The dummy activities represent a special case, in the sense
that each of them is supposed to have a unique mode

characterized by no request on any resource, and duration
equal to zero. Let us set T an upper bound for the project
makespan. T may be obtained for example by adding the
maximum durations of all the activities.
The objective of this study is to find a mode and a finish
time for each activity so that the schedule is feasible and
the makespan of the project is minimal with respect to the
precedence and resource constraints.

Proposed Evolutionary Algorithm

In this section, we propose a new evolutionary algorithm to
solve the MRCPS problem. To personalize an EA, one or
more components may be altered. The variation may deal
with (a) the solution encoding: different kinds of
representation are available in the literature of project
scheduling; a brief survey is given by Alcaraz and Maroto
(2001); (b) operators: there is a large spectrum of
crossover, mutation and selection operators in the literature
so choosing one or other alternatives from the range of
these operators leads to a special EA; (c) Evaluation of the
chromosomes: this component reflects the ability of
chromosomes to survive and contribute offspring in the
next generation; to measure this ability, a fitness function
must be conceived for each chromosome. Besides, the
introduction of new components leads to a personalized
(even hybrid) EA.
In the following, we define the proposed algorithm stages:
encoding, crossover, mutation and selection in addition to
further proposed procedures particularizing the proposed
EA.

Basic scheme

Figure 1: Proposed EA

First of all, a preprocessing procedure is applied in project
data to reduce the search space efficiently. After that, the
EA starts with generating an initial population by means of
a suitable encoding; the number of individuals in a
population is constant through generations, say POP; we

assume POP to be an even integer. Then, for each
individual the makespan and a penalty values are
computed; a local search procedure is applied to ameliorate
the generated solution by trying to reduce penalties. In our
case, the constraints to be respected are the renewable
resource and precedence constraints only. The violation of
nonrenewable resource constraints is penalized by a certain
measure that will be defined later. POP/2 pairs of
individuals are randomly selected. Resulting children
undergo mutation with a probability pmu t. Once again, the
makespan and a penalty values are computed for the newly
produced individuals and the fitness values are determined.
Here intervenes the reproduction operator to maintain POP
individuals ready to contribute in the next generation. This
procedure is repeated for a determined number of
generations, say GEN, or until the CPU time limit is
reached. Figure 1 depicts the proposed EA scheme.

Preprocessing
This step is introduced before the beginning of the EA in
order to reduce the search space. The reduction procedure
was first developed by Sprecher et al. (1997) to accelerate
their branch-and-bound algorithm for the MRCPSP. The
idea behind this procedure is to exclude modes and/or
renewable as well as nonrenewable resources from the
input data. Because of the interdependency between the
elimination of these contents, the latter are dealt with as
follows:
Step 1: Remove all non-executable modes from the project
data.
Step 2: Delete the redundant nonrenewable resources.
Step 3: Eliminate all inefficient modes.
Step 4: if any mode has been erased within Step 3, go to
Step 2.
For more details of the components interdependency and
the merit of the procedure, we refer the reader to Sprecher
et al. (1997) and Hartmann (2001).

Definition of individuals
The encoding chosen for individuals is activity list
representation. Since we are dealing with the multi-mode
version of the standard RCPSP, individuals must reveal at
the same time activities order and mode assignment; hence,
the finish times of activities and, therefore, a makespan of
the project can be deduced. Obviously, activities finish
times depend at the same time on the two above-mentioned
individual elements. So, our EA deals simultaneously with
both sequencing and mode assignment problems.
The representation opted for is a pair I = (λ, m) of two
vectors. The first vector λ = (j1,…,jJ) denotes a precedence
feasible activity list. The second vector m symbolizes the
modes relating to the corresponding jobs in the list.
Accordingly, the notation which will be used is the
following:

I = )()...(

...

1

1

J

J

jmjm

jj .

Individuals are obtained by fixing the activities modes
randomly from the remaining set of modes after the
preprocessing procedure. Then, the activity list is
constructed as if we deal with a traditional single mode
RCPSP with respect to the resulting mode assignment; that
is, we start with the source dummy activity at time 0, and
we successively repeat the following: we consider the set
of eligible jobs and, after that, we randomly allocate an
activity from the set at its earliest start time regarding
precedence and renewable resources constraints.
Observe that the ensuing schedule is precedence and
renewable resource feasible, but it is not necessarily
nonrenewable resource feasible. Recall that, as proved by
Kolisch and Drexl (1997), “already finding a feasible
schedule is an NP-complete problem if at least two
nonrenewable resources are given”. So, to overcome this
difficulty, we find it practical to introduce schedules which
violate the nonrenewable resource constraints into the
search space.

Fitness computation
Recall that Kolisch and Drexl (1997) demonstrate that, if at
least 2 nonrenewable resources are taken, even the problem
of whether finding a feasible solution for the MRCPSP is
NP-complete. So, in our algorithm, we allow the
introduction of nonrenewable resource infeasible
individuals. Note that all individuals are necessarily
precedence and renewable resource feasible.
Although we are dealing with a single performance
measure, our fitness function behaves by considering an
additional performance measure to be minimized. The
latter takes its favor from introducing solutions which are
infeasible with regard to nonrenewable resource
constraints; it consists of a penalty value attributed to these
solutions. The fitness of a given individual I = (λ, m) is
computed in the following manner:
We set T an upper bound for the project makespan. We
choose T the sum of the maximum processing times of the
jobs. Formally,

T = ∑
=

J

j 1

(Max
jjm M∈)(

 p)(jjm) ;

Like Hartmann (2001), let us assign for each nonrenewable
resource k ∈ K υ a penalty measure:

L k (m) = υ
kR - ∑

=

J

j
kjjmr

1
)(

υ ;

L k (m) designates the leftover capacity of the
nonrenewable resource k∈ K υ relating to the mode
assignment m. A negative value of Lk (m) implies that the
availability of the nonrenewable resource k is exceeded
and, consequently, the mode assignment m is infeasible
with respect to the nonrenewable resource on hand. Then,
we propose an aggregation measure L(m) given by:

L(m) = ∑
<

∈
0)(mL

Kk

k

υ

  ×
υ
k

k

R

TmL)(
;

That is, L(m) considers the negative Lk (m); in other
words, it takes into account only nonrenewable resources
whose total requirement exceeds the capacity. L(m) is the
sum of the absolute values of adjusted negative Lk (m).
These are adjusted by dividing each of them by the related
resource availability, the purpose being to remove the unit
effect; then, the result is multiplied by T to convert all into
time measure.
Clearly, L(m) > 0 if there is any excess of an availability

of nonrenewable resource;
 = 0 otherwise.
The penalty is considered as a second criterion to be
minimized in addition to the makespan. Hence, the
problem becomes bi-objective. To solve it, we consider at
each generation the whole set of parents and children
distributed regarding the makespan and the penalty value
criteria. Then, to compute the fitness value, we firstly
adopt the rank-based fitness assignment method for Multi
Objective Genetic Algorithms (MOGAs) conceived by
Fonseca and Fleming (1993); secondly, we propose
different density computation methods borrowed from well
known clustering heuristic procedures.
Rank-based fitness assignment method. The method
consists in assigning a rank value to each individual
depending on its position within the population, and
considering the criteria to be optimized. A given individual
is better ranked as it is little dominated.
Suppose that, at a given generation t, an individual I is
dominated by a number p(t) of individuals in the
considered population. Its rank will be determined as
follows:

Rank(I, t) = 1 + p(t).
Remark that all non dominated solutions have a rank equal
to 1. Note also that, for a given individual, this metric may
varies through generations because of the population
distribution changes.
Clustering heuristics for density computation. To avoid
a premature convergence of the algorithm, we introduce
density evaluation into the fitness computation. The metric
will penalize individuals grouping within the population.
To identify the potential groups of neighbor solutions, we
propose using k-means or hierarchical clustering methods.

• K-means algorithm: The algorithm was first conceived by
MacQueen (1967). With a predefined fixed number of
clusters, say K. in our case we choose K equal to the
worst rank value (the largest), the algorithm comes down
to the next steps:
Step 1: From the population, choose randomly K points
that represent the "centroids".
Step 2: Assign individuals to the cluster that have the
closest centroid. With this intension, we choose to apply
the Euclidian distance.

Step 3: After assigning all individuals, recalculate the
positions of the new centroids by computing, for each
criterion, the average value of individuals within the
same cluster.
Step 4: repeat Steps 2 and 3 until the centroids become
steady or after performing a maximum number of
iterations.
Finally, the density D of an individual amounts to the
total number of individuals within its cluster.

• Hierarchical method: In the hierarchical clustering, a
limit distance, say dlimit, is fixed instead of deciding the
number of clusters. Here, we choose to apply the
Manhattan distance. dlimit can be the mean value of the
distance matrix, it can be also the median.
The hierarchical clustering algorithm is performed as
follows:
Step 1: identify the minimum value, say dmin, within the
matrix distance, and join the two corresponding
individuals into the same cluster.
Step 2: compute the centroid of the new cluster.
Step 3: Update the distance matrix by introducing the
new centroid considered as a new individual and
removing the two old ones.
Step 4: Repeat steps 1-3 until dmin ≥ dlimit.
Similarly, the density D of an individual is the total
number of individuals within its cluster.

Fitness function. A fitness function of an individual I is
given by:

f(I,t) =
)t,I(D)t,I(rank

1

×
 when the density is computed

and,

f(I,t) =
)t,I(rank

1 when the density is not computed, which

comes to fix the density to 1 for all individuals within
generations.
Note that the fittest individual that may occur is a not
dominated solution which is alone within its cluster.
Consequently, this individual would have a rank and a
density equals to one. Therefore, the fitness value will be,
in its turn, equal to one. Other individuals who have greater
rank and/or have a higher density would be assigned a
fitness value less than one.

Initial population
The initial generation is obtained by repeating the next
steps POP times.
Firstly, a mode assignment is generated by randomly
selecting m(j) ∈ Mj for activities j = 1…J.
Secondly, the resulting mode assignment is checked for
nonrenewable resource feasibility. If L(m) > 0, a local
search procedure is applied trying to improve the current
mode assignment. The process consists in randomly
selecting a job which has more than one mode alternative,
and its current mode is changed by randomly selecting
m’(j) ∈ Mj \ {m(j)}. The result is a new mode assignment
m’. If there is improvement, that is if L(m’) < L(m), then

m’:=m, namely m(j) is replaced by m’(j). This process is
repeated until J consecutive unsuccessful trials to improve
the mode assignment have been made or, in the best case,
until L(m)=0 that is until the individuals become
nonrenewable resource feasible.
Thirdly, we adopt the mode assignment and construct a
precedence feasible schedule by randomly choosing
activities from the eligible set at each stage.
Finally, activities finish times are computed and the
makespan of the project is derived from them.

Crossover
In this phase, we repeat successively the following
selection until we get POP/2 pairs of individuals ready for
crossover. We randomly select two individuals from the
current population. Individuals should not be selected
twice within one generation. For our algorithm, we opt for
the one point crossover for both components of the
chromosome: the activity list and the mode assignment.
Let us consider the adapted one point crossover approach
used by Hartmann (2001). We select two parents IM and
IF embodied as follow:

IM = (Mj1 …… M
Jj) and IF = (Fj1 …… F

Jj).

A random number q cross1 is generated randomly, such that
1 < q cross1 < J.
A daughter ID and a son IS are produced. ID is defined as
follows: the q cross1 first jobs are taken from the mother; so,
for the positions i = 1,…, q cross1 we set D

ij := M
ij .

For the remained positions (i.e. i = qcross1 +1,…,J),
activities are taken from the father from the set of activities
not already scheduled. That is

D
ij := F

kj , where k is the lowest index such that F
kj ∉

{ D
hj / h = 1…i-1}.

Figure 2 illustrates the operation by an example; Set qcross1

=3. The first three activities of the daughter are taken from
the mother; the remaining is taken from the father: we
begin by the first job (1); it is already scheduled. The
second job (3) is not yet scheduled, so we put it, etc.
We proceed similarly for the son by replacing the mother
by the father and the father by the mother.
After applying the operation on the activity list, qcross2 is
drown randomly such that 1 ≤ qcross2 ≤ J-1; suppose qcross2
= 4. Figure 3 illustrates the process.
The first qcross2 modes in the daughter are taken from the
mother; however the remained modes are taken from the
father. Similarly, the son takes the qcross2 first modes from

the father and the remaining from the mother. More
explicitly, modes of activities in the daughter ID are defined
as follows:

mD(j D
i) := mM(j D

i) i = 1… qcross2;

mD(j D
i) := mF(j D

i) i = qcross2+1…J.

In the example above, the first 4 activities in daughter ID
are defined from the mother, even if the fourth job (job 3)
is taken from the father. The fifth and sixth jobs have their
modes from the father.

Mutation
The mutation operator is applied on newly generated
individuals with a probability of mutation pmut. This
operator is applied, first, on activity list string and, second,
on the mode assignment one.
In the first sub-stage, we choose a position qmut such that 1
≤ qmut ≤ J-1; then we check whether jobs in the positions
qmut and qmut+1 can be permuted; that is if the job in
position qmut+1 is not an immediate successor of the job in
position qmut, we can permute the jobs; otherwise, we
choose another position q’mut. We repeat the procedure
until two jobs are permuted or until J unsuccessful attempts
are made. Note that at this stage, the mode assignment is
not affected; that is permuted jobs keep their initially
assigned modes.

Afterwards, we randomly select a job which has more than
one mode alternative. From the set of modes M j, we
randomly assign a mode m’(j) ≠ m(j).

Selection
Now, the selection operator intervenes. We apply the
ranking and the roulette wheel methods. The processes
consist in considering both the current and the newly
generated populations. Then, POP individuals are selected.
Note that with roulette wheel method, an individual can be
chosen more than once.

Left shift procedure
The multi-mode left shift is introduced by Sprecher et al.
(1997) in their exact algorithm. It is also applied
successfully in Hartmann (2001) genetic algorithm. The

536142 536142 645231 645231

3 65142 3 65142

IM IF

ID

� � � � � �
Figure 2: One-point crossover for activity list representation,

 producing the daughter; qcross1 =3

536142 536142 645231 645231

3 65142 3 65142

IM IF

ID

111122 111122 221121 221121

1 1 2122 1 1 2122
Figure 3: One-point crossover applied on mode assignments,

producing the daughter mode. qcross2 =4

heuristic considers at the same time modes and start times
of activities. It is applied on feasible individuals only. Each
job is considered lone. Then, without disturbing the
remainder of the schedule, the change of the job's mode as
well as its start time are checked simultaneously. The new
job position must evidently respect the precedence
relations as well as the per period renewable resource
consumption. The purpose is to obtain an improved
makespan feasible schedule. Hence, each mode is checked
in such a way that the new schedule mode assignment
remains nonrenewable resource feasible. Then, feasible
positions are checked. The first makespan improving
feasible alternative is applied, and the procedure is
repeated with next jobs on the resultant schedule.

Computational results

Test problems
In this section, we present and analyze experimental
results, the outcome of carrying out the EA presented in the
last chapter. The experiments have been performed on a
Pentium4-based IBM-compatible personal computer with
3.00 GHz clock-pulse and 512 Mo RAM. The GA has been
compiled in with the Microsoft Visual C++ 6.0 compiler
and tested under Windows XP professional.
We ran the GA program on standard test instances
developed by Kolisch et al. (1995), by means of the project
generator ProGen. These problems as well as their best
found solutions are available in the project scheduling
problem library PSPLIB; for more details, we refer the
reader to the article of Kolisch and Sprecher (1996).
In our study, we have used MRCPSP instances sets; they
contain instances with 10, 12, 14, 16, 18, 20 and 30 non-
dummy activities, named respectively J10, J12, J14, J16,
J18, J20 and J30. J10-20 are sets entirely solved to
optimality, whereas no optimal solutions are found to J30
instances. The performance of our algorithm is essentially
measured in terms of average and maximum percentage
deviation from the optimum, as well as the number of
instances the optimal solution is found.

Configuration of the algorithm
This subsection reports the best configuration of our
algorithm through a numerical investigation. The purpose
is to decide on the procedures adopted and the best
numerical pattern. Following Hartmann (2001), we choose
to make this investigation on J20 instances since the results
of smaller projects are not very divergent.
Impact of the preprocessing procedure. These steps are
already applied by Hartmann (2001). The experiments he
conducts on the same instances set show that, with
preprocessing, 4.4% of the modes are removed. Besides,
29 % of the instances have their both nonrenewable
resources redundant. Moreover, our experiments show that
the procedure is not time consuming.

Impact of the local search procedure. Next, the first local
search procedure improving the mode assignment succeeds
in considerably improving the number of feasible
individuals within the initial population. Indeed, without
this procedure only 53% of the individuals are
nonrenewable resource feasible, whereas with local search
this portion passes to 94%. Besides, the procedure
improves, in average, penalties of 99.5% of unfeasible
individuals within the population. Hence, we decide to
apply the local search on nonrenewable resource unfeasible
mode assignments.
Impact of the left shift procedure. The procedure is
tested on the algorithm with both preprocessing and local
search procedures, but without density computation. That
is the fitness function is based on the rank values only.
Since it consists in computing new individuals, the
procedure requires a considerable additional computation
time. The population size is also a determinant and time
consuming criterion. Hence, we experiment, like
Hartmann (2001), simultaneously the impacts of the
procedure and the population size.

Population size
30 60 90 120

Without left shift 1.83% 1.24% 1.02% 0.88%
With left shift 1.57% 1.25% 1.16% 1.18%
Table 1: Impact of left shift schedules improvement. 1 second, J=20.

Table 1 summarizes the results. Visibly, the best
alternative until now is a population size of 120 without
improvement by left shift heuristic. The investigation on
mutation probability leads to best results with pmut = 90%.
To our mind, the unusual high probability of mutation is
due to the nature of the selected mutation variant. In fact,
the latter leads to taking another individual, but not wholly
different from the first. The second solution belongs to the
neighborhood of the initial one.
Impact of the clustering alternatives. The clustering
tools used in computing the density are explored with
different stopping criteria. We cote for instance a limiting
distance which is function of the average distance or the
median distance. These measures are computed from the
distance matrix between the individuals of the whole
population and children. The stopping criteria may also
consist in a limiting number of clusters. In the latter case,
the number of different ranks and different functions of the
maximum rank value are tested

Maximum number of clusters
maximum rank

value
1.5 maximum

rank value
K-means clustering 8.04% 0.91%
Hierarchical clustering 4.08% 1.01%

Table 2: Impact of clustering tools. 1 second, J=20.

Table 2 shows results of some of these experiments. The
population size is fixed to 120. The left shift procedure is
not applied. Obviously, the best average deviation is

obtained with the k-means clustering when the stopping
criterion is equal to 1.5× the maximum rank value. This
configuration will be used in the comparison.
Comparison with other algorithms. In this subsection,
we compare our EA with the GA of Hartmann (2001), the
EA of Elloumi et al. (2006), the simulated annealing of
Bouleimen and Lecocq (2003), and finally with the
truncated branch-and-bound (B&B) of Sprecher and Drexl
(1998).
The computational time stopping criterion supposes that all
algorithms are tested using similar computer frameworks,
this is not the case. Analogously, the number of computed
schedules criterion presumes that schedules require the
same computational effort in all algorithms; this is not the
case either. Hence, results are displayed using these two
stopping criteria types.

 J Av.

Dev.
Max.
dev.

Feasible Optimal

10 0.09 13.04 100.0 98.6
12 0.13 8.69 100.0 97.3
14 0.43 12.13 100.0 90.0
16 0.46 13.79 100.0 88.9
18 0.67 13.24 100.0 84.1
20 0.91 21.53 100.0 78.52

New EA
(a)

30 1.89 15.65 86.17 -
10 0.06 6.3 100.0 98.7
12 0.14 9.1 100.0 97.3
14 0.44 10.3 100.0 89.8
16 0.59 10.5 100.0 87.8
18 0.99 13.3 100.0 78.3
20 1.21 14.2 100.0 73.3

Hartmann's
GA (b)

30 16.93 151.9 86.3 -
10 0.17 18.2 100.0 97.6
12 0.34 10.0 100.0 93.2
14 0.93 16.7 100.0 82.0
16 1.28 21.7 100.0 76.0
18 1.35 13.6 100.0 72.2

Elloumi et
al.'s EA (a)

20 2.18 18.2 100.0 62.5
10 0.00 0.0 100.0 100.0
12 0.12 17.9 100.0 98.2
14 1.46 33.3 99.6 85.7
16 3.81 52.4 99.5 69.5
18 7.48 77.4 98.0 57.4
20 11.51 78.6 96.4 47.3

Sprecher
and
Drexl’s
Truncated
B&B (c)

30 57.22 244.0 55.8 -
Table 3: Comparison with other heuristics. (In %).

(a) Pentium 3.00 GHz, time limit 1 sec.
(b) Pentium 133 MHz, time limit 1 sec.
(c) Pentium 100 MHz, time limit 5 times the instance size

(in seconds).

 J Av.

Dev.
Max.
dev.

Optimal

10 0.09 13.04 98.6
12 0.13 8.69 97.3
14 0.43 12.13 90.0
16 0.46 13.79 88.9
18 0.67 13.24 84.1

New EA

20 0.91 21.53 78.52
10 0.21 7.8 96.3
12 0.19 6.3 91.2
14 0.92 10.6 82.6
16 1.43 12.9 72.8
18 1.85 11.7 69.4

Bouleimen and
Lecocq’s SA

20 2.10 13.2 66.9
Table 4: Comparison with the Simulated Annealing algorithm of

Bouleimen and Lecocq (2003). 1 second, (in %).

Table 3 and 4 display a comparison between different
algorithms in terms of the average and the maximum
deviations, the percentages of instances to which a feasible
and an optimal solutions are found. The deviations are
computed from optimal solutions for the sets J10-20, and
from lower bounds for J30 since no optima solutions are
known to these instances.

(a) Set J0, 6000 schedules Av. Dev. Optimal
Hartmann (2001) 0.10 98.1
New EA (POP=90, GEN=66) 0.11 97.8
Alcaraz et al. (2003) 0.19 96.5
Kolish and Drexl (1997) 0.50 91.8
Özdamar (1999) 0.86 88.1

(b) Av. Dev (%),
5000 schedules

J10 J12 J14 J16 J18 J20

New EA (POP=60,
GEN=83)

0.21 0.29 0.77 0.91 1.30 1.62

New EA (POP=90,
GEN=55)

0.14 0.24 0.80 1.14 1.53 2.09

Alcaraz et al.
(2003)

0.24 0.73 1.00 1.12 1.43 1.91

Józefowska et al.
(2001)

1.16 1.73 2.6 4.07 5.52 6.74

Table 5: Comparison with other heuristics. Fitness including k-means
stopped at a quantity of clusters equal to ten number of different

ranks (In %).

Table 5 displays a comparison on the basis of the number
of computed schedules stopping criterion. The best
configuration of our algorithm depends on the set explored
in addition to the stopping criterion. Remark that with a
population size of 90, the algorithm succeeds to find better
deviations than with 60, and this for the sets J10 and 12;
this is not the case for J14-20. The new EA gives better
results than the other algorithms except that of Hartmann
though the difference is not important.

Conclusion

In this paper, we present a new Evolutionary Algorithm
(EA) to solve the multi-mode resource constrained project
scheduling problem (MRCPSP) with the objective of
minimizing the project makespan. Since the problem of
whether finding a feasible solution for the MRCPSP with
at least two non renewable resources is NP-complete, a
penalty function is introduced. The penalty is dealt as a
criterion to be minimized; hence, the problem becomes bi-
objective. Clustering heuristics are introduced into the
rank-based fitness. The comparison with other algorithms
recently proposed in the literature of MRCPSP proves the
outperforming of our EA. Further research may be
conducted by improving this algorithm, especially in order
to reduce its computational efforts, or by applying it on
new project scheduling contexts such as scheduling in
uncertain environment.

References

Alcaraz, J., and Maroto, C. 2001. A Robust genetic
algorithm for resource allocation in Project scheduling.
Annals of Operations Research. 102 p. 83-109.
Alcaraz, J., Maroto, C. and Ruiz, R. 2003. Solving the
Multi-Mode Resource-Constrained Project Scheduling
Problem with genetic algorithms. Journal of Operation
Research Society. 54 p. 614-626.
Bianco, L., Dell'Olmo, P. and Speranza, M.G. 1998.
Heuristics for multimode scheduling problems with
dedicated resources. European Journal of Operational
Research. 107 p. 260-271.
Boctor, F.F. 1993. Heuristics for scheduling projects with
resource restrictions and several resource-duration modes.
International Journal of Production Research. 31 p. 2547-
2558.
Boctor, F.F. 1996a. A new and efficient heuristic for
scheduling projects with resource restrictions and multiple
execution modes. European Journal of Operational
Research, 90 p. 349-361.
Boctor, F.F. 1996b. Resource-Constrained Project
Scheduling by simulated annealing. International Journal
of Production Research. 34 p. 2335-2351.
Bouleimen, K., and Lecocq., H. 2003. A new efficient
simulated annealing algorithm for resource-constrained
project scheduling problem and its multiple mode version.
European Journal of Operational Research, 149 p. 268-281.
Drexl, A. and Grüenewald., J. 1993. Nonpreemptive multi-
mode resource-constrained project scheduling. IIE
Transactions. 25 p. 74-81.
Elloumi, S., Loukil, T., and Teghem, J. 2006.
Ordonnancement de projets multi-mode sous contraintes
de ressources: Un algorithme évolutionnaire basé sur
l’information de l’efficacité. ValenSciences N°5, Presses
Universitaires de Valenciennes. P. 237-252.
Elmaghraby, S.E. 1977. Activity networks: project
planning and control by network models. New York:
Wiley.

Fonseca, C.M., and Fleming, P.J. 1993. Genetic algorithms
for multi-objective optimization: Formulation, discussion
and generalization. In Genetic Algorithms: Proceedings of
the Fifth International Conference, (S. Forrest, ed.), San
Mateo, CA : Morgan Kaufmann, July 1993.
Hartmann, S. 2001. Project Scheduling with Multiple
Modes: a genetic algorithm. Annals of Operations
Research. 102 p. 111-135.
Hartmann, S., and Drexl, A. 1998. Project Scheduling with
Multiple Modes: a comparison of exact algorithms.
Networks. 32 p. 283-297.
Józefowska, J., Mika, M., RóŜycki, R., Waligóra, G. and
Weglarz, J. 2001. Simulated annealing for Multi-Mode
Resource-Constrained Project Scheduling. Annals of
Operations Research. 102 p. 137-155.
Kolisch, R., and Sprecher, A. 1996. PSPLIB – A project
scheduling problem library. European Journal of
Operational Research. 96 p. 205-216.
Kolisch, R., Sprecher, A., and Drexl, A. 1995.
Characterization and generation of a general class of
resource-constrained project scheduling problems.
Management Science. 41 p. 1693–1703.
Kolisch, R., and Drexl, A. 1997. Local search for
nonpreemptive multi-mode resource-constrained project
scheduling. IIIE Transactions, 29 p. 987-999.
MacQueen, J. 1967. Some methods for classification and
analysis of multivariate observations. In L.M. Le Cam and
J. Neyman, editors, Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
volume 1, p. 281-297.
Özdamar, L. 1999. A genetic algorithm approach to a
general category project scheduling problem. IEEE
Transactions on Systems, Man and Cybernetics, Part C:
Applications and reviews. 29 p. 44-59.
Słowiński, R., and Węglarz, J. 1978. Solving the general
project scheduling problem with multiple constrained
resources by mathematical programming. In: J. Stoer (ed.),
Optimization Techniques. Lectures Notes in Control and
Information Sciences 7, part 2, Springer-Verlag, Berlin-
Heidelberg-New York, 278-288.
Sprecher, A. 1994. Resource-Constrained Project
Scheduling: exact methods for the multi-mode case.
Lecture Notes in Economics and Mathematical Systems
409 (Berlin: Springer.).
Sprecher, A., and Drexl, A. 1998. Multi-mode resource-
constrained project scheduling by a simple, general and
powerful sequencing algorithm. European Journal of
Operational Research, 107 p. 431–450.
Sprecher, A., Hartmann, S., and Drexl, A. 1997. An exact
algorithm for project scheduling with multiple modes. OR
Spektrum, 19 p. 195–203.
Talbot, F.B. 1982. Resource-constrained project
scheduling with time–resource tradeoffs: The
nonpreemptive case. Management Science, 28 p. 1197–
1210.
Weglarz, J. 1980. Control in resource allocation systems.
Foundation of Control Engineering, 5 p. 159-180.

