
Using Learned Action Models in Execution Monitoring

Maria Fox, Jonathan Gough and Derek Long
Department of Computer & Information Sciences

University of Strathclyde, Glasgow, UK

Abstract

Planners reason with abstracted models of the be-
haviours they use to construct plans. When plans
are turned into the instructions that drive an exec-
utive, the real behaviours interacting with the un-
predictable uncertainties of the environment can
lead to failure. One of the challenges for intelli-
gent autonomy is to recognise when the actual ex-
ecution of a behaviour has diverged so far from the
expected behaviour that it can be considered to be
a failure. In this paper we present further develop-
ments of the work described in (Foxet al. 2006),
where models of behaviours were learned as Hid-
den Markov Models. Execution of behaviours is
monitored by tracking the most likely trajectory
through such a learned model, while possible fail-
ures in execution are identified as deviations from
common patterns of trajectories within the learned
models. We present results for our experiments
with a model learned for a robot behaviour.

1 Introduction
In (Fox et al. 2006) a method is described for
learning behavioural models as Hidden Markov
Models (HMMs), capturing the underlying pat-
terns in the execution of fundamental operations
of some executive system. The purpose of that
work was to show that it is possible to construct
useful models against which sensor data, collected
during execution, can be tracked in order to follow
the evolution of the behaviour at a more abstracted
level. This is significant, because it forms a bridge
from the primitive sensor level, at which raw data
is available, to the abstract level at which a be-
haviour can be understood symbolically, reasoned
about and monitored. Relevant work in the litera-
ture includes (Liao, Fox, & Kautz 2004).

Our purpose in the current paper is to show that
the learned models can be used to monitor execu-
tion, so that it is possible to detect when the execu-
tion of a behaviour is deviating from the expected
trajectory and infer failure in the execution pro-
cess. To illustrate this idea with a simple example,
consider a robot executing an action of navigating

between two points. Suppose the robot has avail-
able to it sensors detecting the passage of time and
its wheel rotations and a laser sensor allowing it to
detect distances to objects in line-of-sight. Dur-
ing execution of the navigation task the robot can
directly observe the values reported by these sen-
sors, but they do not reveal whether the robot is
successfully executing the task itself. In order to
detect that, the robot must have a model of the
process of execution and compare the trajectory of
sensor readings it perceives with the expectations
determined by the model. The key point is that the
sensors themselves can never sense failure in the
execution — the failure can only be determined by
comparing the trajectory seen by the sensors with
a model of the behaviour.

We begin by summarising the process by which
the models are learned. We then describe the ac-
tivity on which we focus in this paper and the
data collection strategy. We go on to explain the
techniques by which we monitor execution and,
finally, we explore the extent to which these tech-
niques have proved successful.

2 Learning Models of Hidden States
In any physical system there is a gap between its
actual operation in the physical world and its state
as perceived through its sensors. Sensors pro-
vide only a very limited view of reality and, even
when the readings of different sensors are com-
bined, the resulting window on the real world is
still limited by missing information and noisy sen-
sor readings. The consequence is that, in reality,
the system moves through states that arehidden
from its own, and external, perception. Further-
more, because of the inability of the system to ac-
curately perceive its state, and the uncertainty in
the physical world, the transitions between these
hidden states are probabilistic. A Hidden Markov
Model (Rabiner 1989) is an ideal abstract repre-
sentation of this situation, comprising both a prob-
abilistic hidden state transition system and a prob-
abilistic relationship between the observations of



the system and its underlying states. The repre-
sentation is behavioural and is abstracted from the
physical organisation of the device.

In (Fox et al. 2006) we describe how the be-
haviour of a mobile robot can be learned from
raw sensed data. Low level sensor readings are
abstracted into a discrete set of high level obser-
vations, by means of feature detection and clas-
sification techniques, as a first step in learning
a hidden state transition model. We refer to the
collection of sensor readings that can be made
by the robot, at some point in time, as anob-
servation. We discretise the non-finite observa-
tions of the robot into a finite collection of dis-
tinct evidence itemsand determine a mapping be-
tween them. The algorithm we use to achieve this
abstraction is Kohonen network clustering. The
Kohonen network performs an unsupervised pro-
jection of multi-dimensional data onto a smaller
dimensional space, resulting in the identification
of a cluster landscape in this smaller dimensional
space.

We chose to use the Kohonen self-organising
network because it allows us to avoid specify-
ing the number of clusters in advance. We first
train the network and then apply a cluster selec-
tion function to the landscape to identify the most
significant clusters. Thus, although the size of the
network places an upper bound on the number of
clusters that can be found, there is no need to pre-
determine how many clusters the data set contains.

To discover the state set of the model we anal-
yse the structure of the observation space, a vec-
tor space in which each vector characterises an
observation that the robot can make. If two vec-
tors are separated by only a very small angle then
they are probably indistinguishable and the corre-
sponding observations can be made from the same
state. If two vectors are very far apart then their
corresponding observations cannot be made from
the same state, suggesting the existence of distinct
states of the robot.

We therefore identify the set of states of the
model by partitioning the evidence items into non-
disjoint classes. The algorithm we use, which we
call state splitting, is described in detail in (Fox
et al. 2006). It finds the maximal cliques in a
graph in which the nodes correspond to evidence
items and an edge exists between two evidence
items if the angle between the vectors that rep-
resent them is lower than a threshold value. Each
maximum clique, corresponding to a subset of ev-
idence items, is interpreted as a state.

Definition 1 A stochastic state transition model
is a 5-tuple,λ = (Ψ, ξ, π, δ, θ), with:

• Ψ = {s1, s2, . . . , sn}, a finite set ofstates;
• ξ = {e1, e2, . . . , em}, a finite set ofevidence

items;

• π : Ψ → [0, 1], the prior probability distribu-
tions overΨ;

• δ : Ψ2 → [0, 1], the transition model ofλ such
that δi,j = Prob[qt+1 = sj |qt = si] is the
probability of transitioning from statesi to state
sj at time t (qt is the actual state at timet);

• θ : Ψ × ξ → [0, 1], the sensor model ofλ such
that θi,k = Prob[ek|si] is the probability of
seeing evidenceek in statesi.

Under the Markov assumption the state of the
robot at timet depends only on its state at time
t− 1, so thatλ produces a hidden Markov model.

Definition 2 A historyh = {e1 . . . en} is a finite
sequence of evidence items.

The algorithm we are using to build the model
is the well-known technique of Expectation Maxi-
mization (EM) (Dempster, Laird, & Rubin 1977),
also called the Baum-Welch algorithm (Rabiner
1986). Given a set of histories and the initial pa-
rameters of a HMM — an initial sensor model,
an initial transition model and a prior state dis-
tribution over the states inΨ — EM iteratively
re-estimates the HMM parameters. On each iter-
ation EM estimates the probability, or likelihood,
of the evidence being seen given the HMM esti-
mated so far. It then updates the model param-
eters to best account for the evidence. When the
estimated likelihoods are no longer increasing EM
converges. The probability at convergence is rep-
resented as themaximal log likelihood: the best
local estimate possible given the evidence and the
learned model. Log likelihood is used because the
probability of a particular observation sequence
being seen in a complex model is typically low
enough to challenge the arithmetic precision of
the machine. It is well-known that EM has a ten-
dency to converge on local maxima, but careful
selection of the initial HMM parameters can help
to mitigate this tendency.

Having learned a HMM it is possible to both
diagnose and predict the behaviour of a similar
system given the observations made by that sys-
tem over time. Diagnosis is the identification of
the most probable state of the system, obtained
by interpreting the sequence of observations as
state transitions using the Viterbi algorithm (For-
ney 1973). HMMs are used in speech process-
ing (Jelinek 1976) to support both the automated
recognition of phonemes in spoken text.

3 A Robot Activity
In this paper we concentrate on a model of a sin-
gle robot activity. The activity we consider is that
of capturing a panoramic image by taking a se-
ries of individual photographs at fixed angles dur-
ing a rotation through a full 360 degree turn. The
robot is expected to stay located on the same spot,



Figure 1: A learned model of execution of the
panoramic image capture activity.

simply rotating in place. The robot we used for
this experiment is an Amigobot and it is equipped
with a ring of sonar sensors and wheel rotation
sensors. Data from sonar sensors are notoriously
difficult to interpret because of their susceptibil-
ity to noise and environmental interference, while
the wheel rotation sensors are reasonably reliable
during straight traverses but tend to be inaccurate
during turns, when slip and granularity are both
problematic. The robot is equipped with a map of
its immediate environment, which consisted of a
small collection of boxes arranged around it. We
gathered data from 50 executions and arrived at a
model similar to the one shown in Figure 1. The
model shown in that figure is learned from both
the training data and a further 40 runs contain-
ing manufactured errors (described below). It has
been labelled with ourpost hocinterpretations of
the states, which give an indication of the structure
of the activity that the model reflects. However, it
should be emphasised that the labels are neither
definitive nor do they play any role in the actual
use of the model.

In Figure 2 we show plots of three of the fea-
tures constructed from the raw sensor data and,
for comparison, the trace of visited states that was
estimated by our online version of the Viterbi al-
gorithm (Gough 2006) during the execution of the
corresponding trajectory. The labelled phases of
these figures (A, B, ...) are annotations made by

Figure 2: A plot showing the most likely sequence
of states visited for an example trace, together
with plots of three of the features for the same
trace.



hand to highlight relationships between the fig-
ures. As can be seen, there is a striking correspon-
dence between the phases of the state trajectories
visited in the learned models and the patterns of
data recorded from the sensors. What makes this
relationship particularly interesting is that the an-
notation of the sensor data was carried out first,
without reference to the state trajectory, and it was
performed using human observed phases of be-
haviour timed independently. Thus, the relation-
ship between these figures corresponds closely to
human observed qualitative judgements of phases
of behaviour and it reveals a concrete realisation
of that behaviour in some of the sensor data and
on into the learned model.

4 Monitoring Execution
Our intention in learning a HMM model of the be-
haviour is to use it in monitoring execution. When
a series of observations is generated from sen-
sor readings during an execution of a behaviour,
the observations can be fed into the model, us-
ing the online Viterbi algorithm to find the most
likely trajectory of states to explain the obser-
vation sequence. The sequence can then be as-
signed a likelihood, which is the probability that
the model assigns to the particular trajectory it
proposes to explain the observation sequence. The
sequence of probabilities generated as more ob-
servations are considered will be monotonically
decreasing, since longer sequences reside in pro-
gressively larger spaces of possible trajectories.
For long sequences, these values are very small
and will typically underflow the accuracy of float-
ing point representations. As a consequence, we
work (as is usual) with log-likelihood measures.
We have observed that the pattern of developing
log-likelihood across a trajectory falls within an
envelope for successful traces, while traces gen-
erated by failing executions lead to abnormal be-
haviour. This is illustrated in Figure 3, where we
show a divergent trace against a successful trace.

Our data was collected in a series of batches:
50 training executions, 20 verification executions
and 40 error executions, split into four groups of
10 executions for different errors. The training
data was used to learn the HMMs, and the veri-
fication data was kept separate so that the learnt
models could be tested. The error data consisted
of executions in which a specific type of error
was induced. Figures 4 and 5 show the envelope
for the log-likelihood values on the training data
(which was used to build the HMM in Figure 1)
and the log-likelihood values for the subsequent
verification data set. There is one execution in
the training data that took about twenty seconds
longer to complete than the rest, and this protrudes
past the end of the rest of the data. The most likely

Figure 3: Comparison of the log likelihood values
for sequence of observations for a successful and
an unsuccessful execution trace.

Figure 4: The Viterbi sequence probabilities for
the training data

reason for this single execution taking longer is a
build up of errors that led to a series of localisation
steps that did not correct the error entirely.

It should be noted that the verification data
was collected in an entirely reconstructed envi-
ronment, rather than simply being a subset of the
data collected during training. This helps to ex-
plain why the traces in the verification data are
not evenly placed within the training envelope
and also serves to emphasise the robustness of
the learned model. The difference in the verifi-
cation environment was significant (it was con-
structed in a different laboratory, with quite differ-
ent physical dimensions and different floor cover-
ing), so the fact that the model continues to pro-
vide a good characterisation of the underlying be-
haviour in this task is a significant validation of its
performance.

For all of the error executions, data was col-
lected up to the point that the task finished or long
enough to allow a reasonable algorithm to detect



Figure 5: The Viterbi sequence probabilities for
the verification data

an error. The errors induced were as follows:

Lost Connection The radio connection between
the controlling computer and the robot was dis-
connected, meaning that the robot stopped re-
ceiving commands and could not transmit new
sensor data.

Blocked The robot was trapped so that it was un-
able to turn to the next angle to take a photo-
graph. This is to simulate the robot becoming
blocked by some environmental factor.

Slowed In this data, the robot was deliberately
slowed down by exerting friction on the top of
the robot. This caused the robot to turn much
more slowly than normal.

Propped Up This set of data was collected
to simulate the robot “bottoming-out” by the
wheels losing contact on the ground on an
uneven surface. The front of the robot was
propped-up on a block so that the wheels could
not make the robot rotate. The execution con-
tinues as normal as the robot wheel sensors in-
dicate that it is still rotating, however there may
be an extreme number of localisation steps as
it tries to correct the errors of inconsistency in
its sonar readings. Eventually the robot’s lo-
calisation cannot keep up with the errors and it
becomes wildly inaccurate.

We now consider the data collected from these
failing trajectories.

Lost Connection Errors (Figure 6) The con-
sequence of terminating the connection is that
the robot cannot report new sensor data, and the
last known values are used instead. These val-
ues are repeated until the action is manually ter-
minated. In the Figure, the times at which the fail-
ures were induced are indicated at the end of each
line. When the failure was induced at 0 seconds,
the probability decreases at a very slow rate from

Figure 6: The Viterbi sequence probabilities for
the ‘Lost Connection’ error data

the start. This is a behaviour that was not seen
in any of the training data. In five of the remain-
ing nine cases the probability decreases roughly
the same rate as the training data up to a point,
and then breaks off before decreasing at the slower
rate. The other four cases (failures induced at 6,
12, 24 and 20 seconds) show no obvious changes
in the rate of probability decrease, and all appear
with probabilities similar to the training data. It
may seem strange at first that in the majority of
the failure cases the probabilities are higher than
the training data, but this is to be expected. The
probability reported by the Viterbi algorithm is the
chance that a particular sequence of observations
produced a particular output sequence of states.
In the case of these errors, the algorithm is simply
more confident that it has the correct sequence of
states for the given observations. It is important to
realise that the higher probability that the Viterbi
sequence explains the observation sequence is not
to be interpreted to mean that the sequence itself is
more likely, but rather thatgiven the observation
sequencethe generated state trajectory is more
likely. With thought it is easy to see that a re-
peated observation is best explained by a repeated
visit to a single state. For the model that was used
(which can be seen in Figure 1), these state se-
quences tend to be represented by a repetition of
State5.

This is the state that can occur just before the
end of the model, and has a high self-transition
probability of 0.68. In one of the error cases,
State2 was repeated in the same manner, which
also has a high self-transition probability of 0.75.
As would be expected, the HMM is seeking out
the best state (or states) to repeat in order to max-
imise the probability of the sequence.

Blocked Errors (Figure 7) As with the error
cases in which the connection was terminated,
these executions have probabilities that deviate



Figure 7: The Viterbi sequence probabilities for
the ‘Blocked’ error data

Figure 8: The Viterbi sequence probabilities for
the ‘Slowed’ error data

upwards from the training data. The difference
here is thatall of the sequences exhibit this be-
haviour, rather than simply the majority. One ex-
planation for this could be that the data reported
from the sensors in this case will always indicate
that the robot is barely moving, while the lost con-
nection will lead to repetition of whatever sensed
data was last detected.

Slowed Errors (Figure 8) Since the robot is be-
ing slowed down during turning, the action takes
much longer to complete than the normal execu-
tions. In these error cases, the probabilities de-
crease at a greater rate than normal, proceeding to
a minimum probability of around10−300, com-
pared to a minimum of10−120 for the training
data. The very low probabilities of sequences are
due to the fact that the most appropriate HMM se-
quences in these cases loop on states that have low
self-transition probabilities. Such trajectories are
highly unlikely to occur.

Propped Errors (Figure 9) The data collected
from these error executions do not show any ap-

Figure 9: The Viterbi sequence probabilities for
the ‘Propped Up’ error data

parent difference to the training or verification
data. The probabilities reported are within accept-
able limits and it is impossible to distinguish these
executions as possessing any anomalies.

5 Automatic Error Detection
The method we propose for automatic detection of
anomolous execution traces is based on an an ap-
proach we callCumulative Log Probability Differ-
ence, or CLPD. The CLPD measures how far the
sequence has wandered outside the range defined
by the maximum and minimum probabilities seen
for the training data. If the sequence wanders out-
side the boundaries seen for a particular timepoint,
the difference between the log(probabilities) is
summed. By definition, the training data always
remains in this range and will always have a
CLPD of 0.

More formally, with the following:
px = log

(
prob. seq. atx

)
mx = max

(
log(prob. train data atx)

)
nx = min

(
log(prob. train data atx)

)
CLPD is defined:
LPDx = 0 [nx < px < mx]

(px − nx) [px < nx]
(mx − px) [px > mx]

CLPDx =
x∑

i=0

LPDi

Figure 10 shows the CLPD of the verification
data, plotted on a log scale vertically for clar-
ity. Note that all but two of the executions have
CLPDs of below 5001, suggesting that in this task

1One execution exceeds a CLPD of 500 just before
the end of the task, when there was only one training
execution of this length. There was little evidence for
the possible spread of values at this timepoint causing
CLPD to rise sharply after this point. A larger training
sample would probably have removed this problem.



Figure 10: The CLPD values for the verification
data

a CLPD of 500 or lower is a good indicator of suc-
cessful execution. Once a sequence has a CLPD
of over 500 it can be identified as having failed.

Figure 11 shows the times at which the CLPD
value exceeds 500 in each of the anomalous
traces. Note that most of the errors in the ‘Lost
Connection’, ‘Blocked’ and ‘Slowed’ data were
detected before the action terminated, but only
one of the ‘Propped Up’ errors was detected. The
latter error type is much more difficult to char-
acterise for this robot in terms of a physical be-
haviour that is different to a normal execution,
because of its limited sensory capacity. Indeed,
a human presented with the raw data of one of
these executions and a normal execution would be
unlikely to distinguish between the two. It had
been hoped that there would be a difference in the
amount of localisation required for this error type,
but it seems that the sonar data and subroutines
for localisation are not accurate enough to pro-
vide meaningful data when such errors occur. Had
the robot been equipped with a more accurate lo-
calisation device (such as a laser range-finder) as
well as a more sophisticated algorithm then these
errors might have been detected. We intend to
explore this hypothesis with a more sophisticated
robot in the future.

6 Temporal Anomaly Detection
We now consider an alternative approach to
anomaly detection. Temporal Anomaly De-
tection attempts to identify Viterbi sequences
with an anomalous number of occurrences of
states (either too few or too many) in com-
parison with the numbers of occurrences of
states in successful trajectories. To measure
the amount of error, a similar technique to the
probabilistic anomaly detection above is used.
The difference between the observed number
of occurrences of each state and the expected
number of states at each timepoint is summed.
This may be formally defined as follows:

Figure 12: The TSCEM values for the verification
data

c(τ, s, x) = # occs.s to timex for traceτ
m(s, x) = maxT

(
#s to timex

)
n(s, x) = minT

(
#s to timex

)
where “#s” is the number of occurrences of state
s in the states for the corresponding trajectory and
the maximum and mimumum values (form(s, x)
andn(s, x)) are defined of the range of traces in
T , the set of all training data.

The error magnitude for states at timepointx
is defined to be a measure of how far the cur-
rent execution deviates from the training data:
e(s, x) =

0, [n(s, x) < c(s, x) < m(s, x)]
n(s, x)− c(s, x), [c(s, x) < n(s, x)]
c(s, x)−m(s, x), [c(s, x) > m(s, x)]

Temporal State Count Error Magnitude
(TSCEM) for a sequence at timepointx is defined
to be the sum of all error magnitudes across all
states up to that timepoint:

TSCEMx =
x∑

i=0

(
t∑

s=0

e(s, i)

)
wheret is the number of states in the HMM.

Figure 12 shows the TSCEM values for the ver-
ification data. Note that the magnitude of the er-
rors is usually below 100, and only one has a
TSCEM value of over 125. Because of this, we
consider a TSCEM value over 125 as an indication
of failure for this task. Figure 11 also shows the
performance of our algorithm based on Temporal
Anomaly Detection in our examination of the test
data. As with Probabilistic Anomaly Detection,
identification of the ‘Lost Connection’, ‘Blocked’
and ‘Slowed’ errors was very successful. How-
ever, this technique detected the errors more reli-
ably than the CLPD technique. The technique was
less successful with the ‘Propped Up’ errors.

A possible refinement would be to find the
distribution of occurrences of each state at
each timepoint, rather than simply the maxi-
mum and minimum. The sum of the num-
ber of standard deviations by which each state-



Time of ‘Lost Connection’ ‘Blocked’ error ‘Slowed’ error ‘Propped Up’
induced error (s) error detected (s) detected (s) detected (s) error detected (s)

CLPD TSCEM CLPD TSCEM CLPD TSCEM CLPD TSCEM
0 30.4 23.2 30.4 23.2 75.2 37.6 — 64.0
3 53.6 28.0 64.8 27.2 82.4 50.4 — —
6 — 36.0 — 36.8 70.4 47.2 — 96.8
10 64.0 40.0 71.2 43.2 111.2 66.4 — —
12 — 48.0 68.0 48.8 94.4 75.2 — —
17 78.4 57.6 80.0 59.2 106.4 78.4 — —
20 — 62.4 80.0 63.2 112.0 84.0 — —
24 106.4 74.4 99.2 78.4 — 96.0 — —
32 104.0 51.2 102.4 92.0 — 100.0 — —
40 105.6 — 106.4 — — 93.6 96.8 —

Figure 11: Probabilistic and Temporal Anomaly Detection performance across the error data. Time for a
successful run was around 100 seconds in the training data and 110 seconds in the verification data.

count varies (Z-score) could be taken instead of
the TSCEM value. This is defined as follows:
µ(s, x) = meanT

(
#s to timex

)
σ(s, x) = stddevT

(
#s to timex

)
The normalised error magnitude for states at time
x is then:

NSCEMx =

xX
i=0

 
tX

s=0

c(s, i)− µ(s, i)

σ(s, i)

!
Using this value could provide better error detec-
tion, but at the cost of more training data required
to find accurate distributions for each state at each
timepoint. This method remains a subject for fur-
ther research.

7 Error Detection Evaluation
Temporal Anomaly Detection detects errors ear-
lier, and detects more of them. Temporal
Anomaly Detection successfully identified 30/40
errors, while Probabilistic Anomaly Detection
identified only 24/40. The combination of tech-
niques, however, is a more reliable test than either
test individually, allowing us to correctly iden-
tify 33/40 cases, including all of the first three
types. As commented earlier, we believe that the
‘Propped Up’ error type is hard to find given the
nature of the sensors available to this robot.

8 Conclusion
When an executive system is required to turn
a plan, constructed from abstract action models,
into execution, while sensing its environments
through imperfect sensors, there is no direct way
to detect when the execution of an individual ac-
tion has failed. We have demonstrated that it is
possible to construct models that bridge the gap
between the low-level sensory data streams and
the higher level abstract action models and to
use these models to monitor execution. In do-
ing so, we are able to detect failures in execu-
tion, often anticipating the point at which the ac-
tion might otherwise have completed execution.

The approach we have described is complemen-
tary to the use of direct sensor interpretation meth-
ods and represents a form of model-based reason-
ing (Williams & Nayak 1996).

We believe that our approach can be used not
only in monitoring the execution of actions for
robotic systems, but also to monitor the behaviour
of systems, both engineered and natural, using
models learned from data gathered from moni-
tored traces of their behaviours over time. This
work is already progressing in application to con-
dition monitoring of plant items and will be re-
ported in future work.

References
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum Likelihood from Incomplete Data via the
EM algorithm. Journal of the Royal Statistics Society
39(1):1–38.
Forney, G. D. 1973. The Viterbi Algorithm.Proceed-
ings of the IEEE61:268–278.
Fox, M.; Ghallab, M.; Infantes, G.; and Long, D.
2006. Robot Introspection through Learned Hidden
Markov Models. Artificial Intelligence 170(2):59–
113.
Gough, J. 2006.Opportunistic Plan Execution Moni-
toring and Control. Ph.D. Dissertation, University of
Strathclyde, UK.
Jelinek, F. 1976. Continuous Speech Recognition by
Statistical Methods.Proc. of the IEEE64:532–536.
Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and
Inferring Transportation Routines. InProceedings of
the 19th National Conference on AI (AAAI), 348–354.
Rabiner, L. R. 1986. An Introduction to Hidden
Markov Models.IEEE ASSP Magazine4–16.
Rabiner, L. R. 1989. A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recog-
nition. Proceedings of the IEEE77(2):257–286.
Williams, B. C., and Nayak, P. P. 1996. A Model-
based Approach to Adaptive Self-configuring Sys-
tems. InProceedings of the 13th National Conference
on AI (AAAI), 971–978.


