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Abstract 
This paper describes a new metaheuristic for combinatorial 
optimisation problems with specific reference to the job-
shop scheduling problem (JSP). A fuzzy greedy search 
algorithm (FGSA) which is a combination of a genetic 
algorithm (GA) and a greedy randomised adaptive search 
procedure (GRASP) is considered to solve the problem. The 
effectiveness and efficiency of the proposed hybrid method 
will be investigated through the experimental results on 
standard benchmark problems. 

Introduction 
The development of a job-shop system has been one of the 
major topics of manufacturing as well as service industries 
research (Baker, 1974, Pinedo, 2002). In general form a job-
shop scheduling problem (JSP) can be stated as follows. 
There are n jobs },,2,1{ nJ �=  that are available at time zero 
to be processed by m machines },,2,1{ mM �=  on which 
each job visits each machine at most once in its own 
predetermined route. The usual objective is to minimise the 
completion time of the last job to leave the system, named the 
makespan (Cmax). A feasible schedule can be formed from a 
permutation of jobs in J on each of the machines in M. In this 
case, clearly there are )!()!()!( 21 mnnn �  possible solutions, 
where in  is the number of operations to be performed on 
machine i . The makespan for the JSP can be computed using 
a disjunctive graph (Pinedo, 2002). The JSP with the 
makespan minimisation criterion is denoted by Jm | | Cmax in 
the literature. The two-machine problem J2 | | Cmax is the 
only case which is known to be polynomial solvable through 
Johnson’s rule (Johnson, 1954). The general case belongs to 
the class of combinatorial optimisation problems known to be 
NP-hard (Brucker, 2001, Pinedo, 2002). Hence, approximate 
methods are generally considered to be the only practical way 
to solve most real-life JSPs with reasonable sizes. 

The fuzzy greedy evaluation concept in the field of 
combinatorial optimisation problems was introduced by 
Sheibani (2005) in his doctoral thesis at the London 
Metropolitan University. The initial applications of this 
idea in development of approximate methods for the 
travelling salesman problem (TSP) and the flow-shop 
scheduling problem (FSP) performed very well. For a 
particular case, his developed fuzzy greedy heuristic 
(FGH) for the FSP significantly improved the well-known 
NEH heuristic (Nawaz et al., 1983) which has dominated 
the field for many years. The basic idea of the fuzzy greedy 

search algorithm (FGSA), which is an extension of the 
fuzzy greedy evaluation concept, was proposed in 
(Sheibani, 2005). The methodology can be viewed as a 
combination of a genetic algorithm (GA) (Holland, 1975) 
and greedy randomised adaptive search procedure 
(GRASP) (Feo and Resende, 1995). 

Fuzzy Greedy Evaluation 
The fuzzy greedy evaluation concept in the field of 
combinatorial optimisation problems was introduced in 
(Sheibani, 2005). In greedy methods, we deal with the 
most significant question of what is the best choice at a 
particular stage in the algorithm. The greedy algorithm 
always makes the choice that looks best at the moment 
without any consideration of previous choices or future 
consequences. Hence, we will only know that the choices 
made are absolutely the best ones possible if and when the 
algorithm yields an optimal solution. Otherwise the ‘best’ 
choice may end up being the worst one! In such cases, the 
greedy algorithm may produce the unique worst possible 
solution; see for example the survey papers by (Gutin and 
Yeo, 2002, Gutin et al., 2002, Bang-Jensen et al., 2004). 

The theory of fuzzy sets allows us to represent vague 
concepts that are expressed in natural language, such as the 
kind of choice made in the greedy methods.  

Consider combinatorial optimisation problems, each of 
which is associated with a discrete solution space X, a 
feasible space S with property XS ⊆  which is defined by 
the problem constraints, and an objective function 

ℜ�Xf : . In the case of minimisation, the aim is to find a 
feasible solution S∈*x  such that )(*)( xx ff ≤ , S∈∀x , 
where, ),,( 1 nxx �=x  is a vector of decision variables 
(solution). A cost function )(xc , },,{ 1 nxxx �∈∀  is defined 
for each specific problem. We will refer to function )(xc  as 
a greedy evaluation function which denotes a degree of 
priority for incorporating the corresponding element x into 
the solution under construction without causing infeasibility. 
We now describe an alternative approach. We will treat the 
set X as a fuzzy set with a well-defined membership 
function )(xµ , the form of which is given by equation 1. 
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The variable Xx ∈  corresponds to one of the variables 
in the definition of our combinatorial optimisation 
problem; here we consider ℜ∈x . The parameter θ  is a 
basic measure for evaluating the priority to be assigned to 
variable x ; here we require ℜ∈θ . The parameter λ  is a 
tuning parameter that is chosen by experimentation such 
that 10 <≤ λ . This parameter will be seen to play an 
important role in the developed algorithm that we will 
consider later. The parameter 0>ρ  is effectively a shape 
parameter, so that as the value of ρ  increases, the graph of 

)(xµ  becomes narrower. The proposed evaluation function 
]1,0(: �Xµ  has the following properties: ( ) 1)1( =− λλθµ  

and 1)( <xµ  for all )1( λλθ −≠x . 
Equation 1 is a modification of the general formulas of 

the families of fuzzy membership functions described in 
(Klir and Yuan, 1995). We will refer to this function as a 
fuzzy greedy evaluation function, and it will replace the 
role of the greedy evaluation function in determining the 
degree of priority assigned to an element x.  

Fuzzy Greedy Search Algorithm 
The fuzzy greedy search algorithm (FGSA) is an extension 
of the fuzzy greedy evaluation concept, in the form of a 
metaheuristic (Sheibani, 2005). The proposed method is a 
population-based and iterative procedure. The process starts 
off with an initial population. This can be generated using 
the construction phase of the GRASP (Feo and Resende, 
1995). The algorithm works on the set of individuals (called 
population) which is divided into two different sub-sets 
generated in different ways. One of the sets is generated 
through a recombination operator and also with a selection 
scheme. This is a standard evolutionary approach. The other 
set is built employing a construction procedure. It is similar 
to the GRASP construction phase except that the procedure 
adopts a generalised version of the fuzzy greedy evaluation 
function instead of the classical greedy evaluation function. 
The general structure of this construction procedure is given 
by a pseudo-code in figure 2. 

CONSTRUCTION PROCEDURE 
construction (seed,λ,θ) 

BEGIN 
Solution = Ø; 
µx(x,λ,θ) = membership_of_candidates (x); 

WHILE (solution is not complete) DO 
BEGIN 

UCE = update_candidates (elements , Solution); 
RCL = build_restricted_candidate_list (UCE); 
s = select_an_element_at_random (RCL); 
Solution = Solution ∪ {s}; 
µx(x,λ,θ) = re-evaluate_ memberships (x);  

END 
RETURN Solution; 
END 

Figure 2. A general procedure for the construction phase of the 
proposed metaheuristic. 

The proposed metaheuristic uses an adaptation strategy 
in the sense that it attempts to adapt its knowledge from the 
best solution obtained in the previous iterations. This is 
achieved by the updating of parameter θ  at each iteration. 
The algorithm is also based on the concept of machine 
learning systems. The hope is that it improves the quality 
of the solutions over many iterations with each iteration 
having better solutions than its predecessor. The structure 
of a generic algorithm of the proposed metaheuristic is 
given by a pseudo-code in figure 3. 

FUZZY GREEDY SEARCH ALGORITHM 
BEGIN 

t = 0; 
P(t) = Ø;  
WHILE (P(t) is not complete) DO 

P(t) = construction (seed,λ,θ); 
WHILE (not termination condition) DO 

BEGIN 
t =  t + 1;  
P(t) = recombine (P(t - 1));  
evaluate (P(t));  
update (λ,θ);  
WHILE (PC(t) is not complete) DO 

PC(t) = construction (seed,λ,θ); 
PR(t) = select (P(t));  
P(t) = PC(t) ∪ PR(t); 

END 
END 

Figure 3. Pseudo-code for the proposed metaheuristic. The 
variable P(t) represents a set of population members at iteration t. 
The variables PC(t) and PR(t) represent constructed and 
reproduced sub-populations respectively at iteration t. 

The proposed metaheuristic improves its relative 
performance on a given problem by the exploration of 
promising areas in the search space over time. 

Fuzzy Greedy Construction 
In the proposed metaheuristic we build a feasible solution, 
which is represented as a string of integers (successive jobs 
on each of the machines i.e. operations). The proposed 
method uses a list of candidate operations, in which the 
operation with the highest priority (i.e. maximum value of 

)(xµ ) is incorporated into the partial solution under 
construction without causing infeasibility. For the JSP, 
selection of the next operation for incorporating into the 
partial solution under construction is determined by the 
evaluation of all candidate operations according to a re-
interpretation of the standard fuzzy greedy evaluation 
function )(xµ  in equation 1 above. Here, x  is a generic 
variable. We will define jix ,  corresponding to job j  on 
machine i . The parameter θ  is a basic measure that is 
used for evaluating x . The parameter λ  is a greedy tuning 
parameter that is chosen by experimentation to take values 
between 10 <≤ λ . For the work discussed in this paper, 
varying the parameter ρ  has no significant effect on the 



metaheuristic. Its value will be set to 1=ρ . For the 
problem considered we will introduce x  and θ  as follows.  

First we give indices to x  with jix ,  corresponding to 
job j  on machine i . This takes the value of the processing 
time of job j on machine i  ( jip , ). A sequence of the jobs 
on machine i  can be represented as a permutation 

))(,),2(),1(( niiii πππ �=� , where we interpret )(kiπ  to be 
the job in position k  corresponding to operation )(, ki i

x π . 
We define iτ  in equation 2 as the sum of the processing 
times of jobs on machine i . 

� =
=

n

j jii p
1 ,τ  (2) 

We represent θ  in equation 3 as the mean of the 
sums of the processing times of jobs on the machines. 

 � =
=

m

i in
1

1 τθ  (3) 

In the developed model, the predetermined route (i.e. a 
sequence of the machines) corresponding to job j can be 
represented as a permutation ))(,),2(),1(( mjjjj πππ �=� , 
where we interpret )(kjπ  to be the machine in position k . 
We define operation of job j  on its predetermined route 

j�  on machine )(kjπ  as jkj
x ),(π  in which operation 

jkj
x ),1( +π  can only start after the completion of jkj

x ),(π . 
Let },|{ , jixO ji ∀=  be the set of operations, and consider 

cO  to be a set of all candidate operations can be 
scheduled. We denote the value of the fuzzy greedy 
function for candidate operation cji Ox ∈,  by )( , jixµ . The 
fuzzy greedy choice is to next schedule operation 

}|)(max{arg ,,, cjijiji Oxxx ∈= µ . It is also easy to observe 
that tuning λ  in the fuzzy greedy evaluation function µ  to 
a small enough value (e.g. zero), or setting the measure 
parameter θ  to zero, the choice becomes purely greedy 
(i.e. the minimum value of cji Ox ∈, ). The selected 
operation is scheduled in the next available feasible time 
slot on the sequence i�  under construction. 

Fuzzy Greedy Search Operator 
The use of search techniques on a solution space are 
central to the design of metaheuristics. Indeed, adopting 
a robust search technique significantly improves the 
overall performance. We applied a modification of the 
fuzzy greedy search operator (FGSX) proposed in 
(Sheibani, 2005) for a special case of the JSP when each 
job has an identical route, known as the flow-shop 
scheduling problem (FSP). The mechanism of FGSX 
may be a bit more complex than classical crossover, but 
the primary idea is simple.  

In this case, a sequence (solution) can be represented 
as a permutation ( ))(,),2(),1( nπππ �=� , where we 
interpret )(kπ  to be the job in position k . We give index 
to x  in equation 1 with jx  corresponding to job j  and 
define jx  in equation 4 as the sum of processing times of 
job j on the m machines. 

� =
=

m

i jij px
1 ,  (4) 

Here, the parameter θ  is corresponding to an objective 
function e.g. the mean completion time for the current 
best schedule obtained so far. This parameter will be seen 
to play an adaptive role, in that good choices made at 
previous stages (giving rise to the best solution so far) will 
also influence future choices. 

The operating principle of FGSX is shown schematically 
in figure 4. Let P1 and P2 be two randomly selected 
chromosomes from the previous generation. Each is a 
sequence of 9 arranged jobs, numbered 1 to 9, which 
represents the order of the jobs on the machines. First, we 
arbitrarily select a job, say 5, as the starting point in the 
offspring O1. Then, we duplicate all jobs in the selected 
parent chromosome which have not been incorporated in 
the offspring O1 – between two cut points marked by ‘|’, as 
shown under the heading “Duplication” in figure 4. This 
guarantees that the next two possible candidate jobs have 
not already been incorporated in the offspring under 
construction (Qu and Sun, 1999). The duplication stage is 
optional and so we may utilise another way. The next job 
in the offspring is determined by the fuzzy greedy 
evaluation function using equation 1 – as shown under 
the heading “Selection” in figure 4. Assume that )( 6xµ  is 
greater then )( 4xµ , indicating that the choice of job 5 is 
more suitable than 4 at the moment, so we should select 
job 6 as the second job in the offspring O1. Thus, the first 
two jobs in the offspring O1 are 5 and 6 (the symbol ‘x’ 
means ‘not yet determined’). The process is continued 
until a completely new offspring is formed. 

 

 

Figure 4. Proposed fuzzy greedy search operator (FGSX). 

It is important to note that the FGSX can be adaptive in 
the sense that it attempts to learn from the best solution 

Parents 
P1: ( 1 2 3 4 5 6 7 8 9 ) 
P2: ( 4 3 2 1 9 8 7 6 5 ) 

Duplication 
1 2 3 4 56 7 8 9 1 2 3 45 6 7 8 9  
4 3 2 1 9 8 7 6 54 3 2 1 9 8 7 65 

Selection 
Assuming that )()( 64 xx µµ < , 

therefore, we select 6 for the offspring O1 

Offspring 
O1: ( 5 6 x x x x x x x x ) 

Duplication 
67 8 9 1 2 3 46 7 8 9 1 2 3 4 
4 3 2 1 9 8 7 64 3 2 1 9 8 76 

Selection 
Assuming that )()( 47 xx µµ < , 

therefore, we select 4 for the offspring O1 

Offspring 
O1: ( 5 6 4 x x x x x x x ) 



obtained in the previous generation. As mentioned above, 
this is achieved by the parameter θ  in equation 1, which is 
updated at each generation. 

Concluding Remarks 
In this paper, the potential application of the proposed new 
metaheuristic FGSA for the job-shop scheduling problem 
has been investigated. We explained some of the most 
significant parts of the proposed method such as the 
construction and recombination phases. It should be noted 
that the fitness function calculates the value corresponding 
to the objective function (e.g. minimising the mean 
completion time), in that individuals with higher fitness 
values have a higher probability to be chosen as a member 
of the population of the next generation. For the selection 
scheme, individuals in the current iteration are chosen from 
the population and allowed to reproduce. This can be 
proportional to the individual fitness, as in the classical 
roulette wheel selection. An alternative method or a mixed 
strategy can be adopted as a selection scheme. We need 
some other parameters such as the size of the population as 
well as its division into the reproduced and the constructed 
sub-populations that should be determined experimentally. 
Indeed, a termination criterion is also necessary. We 
believe that the FGSA has some potential to deal with a 
wide range of optimisation problems. 
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