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Abstract

Despite recent progress in planning, many complex domains
and even larger problems in simple domains remain hard and
challenging. One way to achieve further improvement is to
utilise knowledge acquired for the planner from the domain.
Macro-actions are a promising means by which to convey
such knowledge. A macro-action, or macro in short, is a
group of actions selected for application as a single choice.
Most existing works on macros utilise knowledge explicitly
specific to the planners and the domains. But presumably any
particular properties are not likely to be common with differ-
ent planners or wider range of domains. Therefore, a macro
learning system that does not exploit any structural knowl-
edge about planners and domains explicitly is of immense in-
terest. This paper presents an offline system capable of learn-
ing macros genetically from plans. Given a planner, a do-
main, and necessary problems, our system generates macros,
lifting from plans of some problems, under guidance from a
genetic algorithm. It represents macros like regular actions,
evaluates them individually by solving other problems, and
suggests the best macro to be added to the domain perma-
nently. Genetic algorithms are automatic learning methods
that can learn properties of a system using no explicit knowl-
edge about it. Our system thus does not strive to discover
or utilise any structural properties specific to a planner or a
domain.

Introduction
Planning is an important research area in Artificial Intelli-
gence. The planning problem is to find a sequence of ac-
tions, known as a plan, that takes a given world from a spec-
ified initial state to a desired goal state. However, optimal
plans that optimise given objective functions are also of con-
cern. There are varieties of problems that require planning
research. These include control programs for rovers in plan-
etary exploration, artificial ants, robot navigation systems,
block-stacking systems, disaster management, space explo-
ration, military planning, etc.

Planning has achieved significant progress in recent years.
The planning competitions held over the last few years (Mc-
Dermott 2000; Bacchus 2001; Long & Fox 2003; Hoffmann
et al. 2004) played an important role behind this. In suc-
cessive competitions, state-of-the-art planners appeared and
performed better than their predecessors. Two such recent
planners that performed best in the competitions are FF (Fast

Forward) (Hoffmann & Nebel 2001) and LPG (Local search
for Planning Graphs) (Gerevini & Serina 2002). FF is a
deterministic planner that uses a forward chaining heuristic
based on a relaxedgraphplanalgorithm. LPG, on the other
hand, is stochastic in nature and uses a heuristic inspired by
walksatin SAT-problems.

Macro-Actions
A macro-action, hereinaftermacroin short, is a group of ac-
tions selected for application at one time like a single action.
Learning and using macros in planning have been found
promising in achieving significant improvement. Macros
are used to encode explicit characteristics of particular do-
mains or planners and later exploited to eliminate and reduce
search.

Related Works
Macros are not very new in planning research. STRIPS
(Fikes, Hart, & Nilsson 1972), an early planning and learn-
ing system, solves problems by means-ends analysis and
produces macro-operators, called MACROPs, by parame-
terising the plan wholly. Any subsequences of MACROPs
are then used as composite actions to speedup future plan-
ning. STRIPS considers every unique subsequence of all
previously acquired plans as potential MACROPs; which
can quickly lead to an explosion. The REFLECT system
(Dawson & Sikĺossy 1977) has a preprocessing stage where
macro-operators, called BIGOPs, are generated by compar-
ing the post conditions of each action with the preconditions
of all possible successor actions, creating a macro whenever
they match. This approach severely constrains the possible
action sequences and solely focuses on domain character-
istics ignoring their impact on a particular planner. MOR-
RIS (Minton 1985) adopts selective measures for STRIPS
to learn plan fragments that are used frequently in plans or
are helpful in solving difficult subproblems. Macro Problem
Solver (MPS) (Korf 1985), which is an extension of General
Problem Solver (GPS) (Newell & Simon 1972) to support
macros, learns a complete set of macros that totally elimi-
nates the search for a particular goal. MPS achieved suc-
cess mainly on domains that exhibit operator decomposabil-
ity and it needs a different set of macros when problem in-
stances scale or goals are different. MACLEARN (Iba 1989)
learns macros from sequences of actions that lead the search



to reach a peak from another peak in its heuristic profile. It
then represents macros like normal actions, and using static
and dynamic filtering, it selects a small set of macros to use
in future planning. MARVIN (Coles & Smith 2004) and
Macro-FF (Boteaet al. 2005), both using FF style search
algorithm, showed some improvement with macros. Macro-
FF learns macros using component level abstraction based
on static facts. It also lifts partial-order macros of length
two from plans and then ranks them by solving the same
problems with macros. MARVIN, on the other hand, learns
macros from plans of a reduced version of a given problem
after eliminating symmetries. MARVIN saves sequences of
actions that lead the search to successfully escape plateaus,
and then uses them to escape similar plateaus while solving
the original problem. Moreover, macros that achieve heuris-
tically identified subgoals (Hernádv̈olgyi 2001), show about
44% improvement in the Rubik’s Cube domain. Another ap-
proach of learning macros automatically by discovering ab-
straction hierarchies and exploiting domain invariants (Ar-
mano, Cherchi, & Vargiu 2005) caused a slightly negative
impact on the performance.

Our Contribution
As noted above, most macro learning systems are more fo-
cused and specialised to exploiting particular propertiesof
the planners and the domains. But presumably any partic-
ular properties are not likely to be common with different
planners or wider range of domains. Therefore, a macro
learning system that does not exploit any explicit structural
knowledge about planners and domains remains unexplored.
However, we applied genetic algorithms to evolve macros
recently (Newton, Levine, & Fox 2005); further experiments
are still being carried out. This paper presents an offline
system capable of learning macros genetically from plans.
Given a planner, a domain, and necessary problems, our sys-
tem learns macros from plans under guidance from a genetic
algorithm and then suggests the best macro to be added per-
manently to the domain as an additional action. The gener-
ality aspects of our method are due to the use of a genetic
algorithm as the learning technique and plans as the macro
generation source. At one hand, genetic algorithms are au-
tomatic learning methods that can learn properties of a sys-
tem using no explicit knowledge about it. Plans, at the other
hand, invariably reflect successful choices of actions by the
planner to cross the problem state spaces, and could bear
inherently the characteristics of the planner and the domain
especially that led to the solutions. Our system thus does
not discover or utilise any knowledge explicitly specific toa
planner or a domain.

For convenience sake, macros are represented both as se-
quences of constituent actions and as resultant actions built
up by regression of the actions in the sequences. Macros are
lifted randomly from plans of smaller problems to seed the
population. Only to explore the macros occurring in plans,
genetic operators are restricted to extending a macro by the
preceding or the succeeding action in the plan, shrinking a
macro by deletion of an action from either end, splitting a
macro at one point, and lifting a macro from plans. The
ranking method is based on a weighted average of the time

differences while solving a different set of more difficult
problems with macro augmented domains and the original
domain. To show the performance of the selected individ-
ual macros, yet another set of more difficult problems are
solved. We have achieved good results with two planners
– FF and LPG, on five domains – gripper, tyreworld, ferry,
satellite, and zenotravel. Further experiments are underway
to include other planners and domains. Moreover, compari-
son between macros learnt by our system and those by other
systems is also under consideration.

The rest of the paper is organised as follows: the next sec-
tion discusses our motivations behind this work, followed by
another section that describes our genetic approach of learn-
ing macros from plans; the third section onward presents
our results and analyses; the last section discusses our con-
clusion and future works.

Motivations
Conceptually a system should achieve better performance if
it can exploit its previous experiences. Our objective at the
highest level is to learn experiences of a system in certain
environments and to provide them somehow to the system.
Moreover, we would like to achieve generality of our learn-
ing method about the systems for which it learns and about
the knowledge it acquires for them.

Learning in Planning: The progress in planning re-
search, from the earlier planners to those in the competi-
tions, can summarily be attributed to manoeuvring diverse
architectures, exploiting structural properties of the prob-
lems and translating technologies from other areas into plan-
ning. However, it has become obvious from other works
carried out in parallel that planning in any realistic domain
require a large volume of knowledge. Such knowledge can
be acquired from properties of the planner, the domain, the
problems or the plans. Planners, that incorporates learn-
ing and exploiting certain aspects, have demonstrated suc-
cess but learning for planning in a generalised framework
remains unexplored. Learning by the existing systems are
conditional in the sense that they work only if certain prop-
erties hold for the planner or the domain. Our motivation
is to develop a system that works unconditionally meaning
irrespective of any particular characteristics exhibitedby the
planner or the domain.

Macros as Knowledge Conveyor: As noted above,
macros have been used in times to encode explicit character-
istics of particular domains or planners. They are, therefore,
a promising means by which significant knowledge could
be conveyed. Combining several steps in the state space,
macros provide extended visibility of the search space to the
planner. Carefully chosen macros could help find nodes that
are better than the current nodes especially when the good-
ness of the immediate search neighbourhood cannot be mea-
sured appropriately. Macros thus could capture local search
in the troublesome regions of the search space and encapsu-
late significant experience of the planner.

This work represents macros as normal actions and adds
the best macro learnt to the domain permanently. The
straightforward motivation behind this is to achieve plan-
ner independence and also to get an enhanced domain from



domain re-engineering perspective at the same time not af-
fecting the solvability of the problem. Our method does not
make any change to the planner program whereas most ex-
isting works on macros somehow need adaption or extension
of the planners to support macros. However, when macros
are used as additional actions, they cause more preprocess-
ing time and incur extra overhead for the planners adding
more branches in the search tree. But the latter problem is
somehow minimised due to the use of a technique called
helpful action pruning (Hoffmann & Nebel 2001) by most
recent planners.

Macros from Plans: Plans invariably reflect successful
choices of actions to cross the problem state spaces and thus
could bear the characteristics of the planner and the domain
inherently. For example, apparently unexplainable random
action sequences in the plans could indicate confused states
of the planner while it is trying to escape troublesome re-
gions; a repeating subsequence of actions could indicate
presence of structural repetitions in the domain or in the
problem. Plans could, therefore, be used as a potentially
useful source for macro generation. An appropriate search
tool could analyse plans to produce macros that capture the
choices of the planner on the problem landscapes or encode
any useful domain structures. This work explores the macro
space, which consists only of macros occurring in plans, to
find the best individual macro that can be added to the do-
main permanently like a normal action.

Genetic Algorithms and Macros
The macro space seems to be restricted when macros are
learnt only from plans. Yet, an exhaustive or systematic
approach will not be good because macros comprising any
number of actions are to be considered. This paper uses
guidelines from a genetic algorithm in searching the macro
space.

Genetic algorithms are automatic learning methods that
require no explicit knowledge about a system, yet can dis-
cover its inherent properties. A genetic algorithm keeps a
population of good individuals, generates a new population
from the current one using a given set of genetic operators.
It then replaces inferior current individuals by superior new
individuals (if any) to get a better current population which
is again used to repeat the process if the termination con-
dition is unmet. In a particular problem context, an indi-
vidual is taken for a solution (macro in our case); which
means genetic algorithms are an optimisation based multi-
point search on the solution space. Moreover, newly gen-
erated individuals are other possible solutions in the neigh-
bourhood of the currently kept solutions, and a richer col-
lection of operators explore more possible solutions. The
requirements of a genetic algorithm are a suitable encoding
of the individuals, a method to seed the initial population,
definitions of the genetic operators to generate new individ-
uals from the current population, and a method to evaluate
individuals across the populations.

Genetic algorithms have produced promising results in
learning control knowledge for domains and some success
in generating and optimising plans. In (Spector 1994), Spec-
tor managed to achieve a maximally fit plan for the Sussman

Anomaly, and also for a range of initial and goal states, but
the problems were very small in size. SINERGY presented
in (Muslea 1998) could only solve problems with specific
initial and goal states. Later, GenPlan in (Westerberg &
Levine 2000) showed that genetic algorithms can generate
plans but when compared with the state-of-the-art planners
it looks somewhat inferior. Genetic algorithms have also
been used to optimise plans in (Westerberg & Levine 2001).
EvoCK (Aler, Borrajo, & Isasi 2001) used heuristics gener-
ated by HAMLET (Borrajo & Veloso 1997) to seed the ini-
tial population of control rules and then genetically evolved
better ones for PRODIGY4.0 (Velosoet al. 1995). Over-
all, EvoCK outperformed both PRODIGY4.0 and HAM-
LET. Later, L2Plan in (Levine & Humphreys 2003) used
genetic approach to evolve control knowledge or policies
and showed promising results by outperforming hand-coded
policies.

A Genetic Algorithm on Macros
Genetic algorithms often vary in their implementations.
However, the algorithm described in Figure 1 is used for this
work. This section discusses its adaptation to macros.

1. Initialise the population and evaluate each individual to assign a numerical rating.

2. Repeat the following steps for a given number of epochs.

(a) Repeat the following steps for a number equal to the population size.

i. Generate an individual using randomly selected operators and operands, and exit if a new
individual is not found in a reasonable number of attempts.

ii. Evaluate the generated individual and assign a numerical rating.

(b) Replace inferior current individuals by superior new individuals and exit if replacement is
not satisfactory.

(c) Exit if generation of a new individual failed.

3. Present the current best individual as the output of the algorithm.

Figure 1: A genetic algorithm

Representation of Macros
Genetic algorithms require individuals to be encoded in a
composite form whereas our objective is to add macros as
additional actions to the domains. Macros are, therefore,
represented (see Figure 2) both as sequences of constituent
actions and as resultant actions having parameters, precondi-
tions, and effects. Given the sequence of constituent actions,
the resultant action of a macro is built usingcomposition of
actions by regression. Genetic operators are applied on the
operand macro’s sequence and from the output sequence, the
resultant macro’s action is built.

Composition of Actions by Regression:This is a bi-
nary, non-commutative and associative operation on actions
where the latter action’s precondition and effect are subject
to the former action’s effect, and both actions’ parameters
are unified (see Figure 3). Every composition does not pro-
duce a valid action because the resultant precondition might
have contradictions, the resultant effect might be inconsis-
tent, and the parameters might face type conflicts while be-
ing unified. This paper considers composition of actions
only in STRIPS and FLUENTS subsets of PDDL.

Precondition under Composition: A literal, appearing
in the latter action’s precondition, might be satisfied or con-
tradicted and a function value might be changed by the for-
mer action’s effect (see Figure 3). Therefore, the resultant



(:macro
(:action move-pick-move

:parameters (?ra ?rb - room ?b - ball ?g - gripper)
:precondition (and

(at-robby ?ra)
(not (= ?ra ?rb))
(at ?b ?rb)
(free ?g)

)
:effect (and

(carry ?b ?g)
(not (at ?b ?rb))
(not (free ?g))

)
)
(:sequence

(move ?ra ?rb)
(pick ?b ?rb ?g)
(move ?rb ?ra)

)
)

Figure 2: Representation of a macro
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Param1 Param2 M.Param
?x - ball ?y - room ?y - place ?z - robby ?x - ball ?y - room ?z - robby
?x - room ?y - ball ?y - place ?z - robby type conflict for ?y

Precond1 Effect1 Precond2 Effect2 M.Precond M.Effect
not (p . . . ) (p . . . ) (p . . . ) not (p . . . ) true null
(p . . . ) not (p . . . ) (p . . . ) false
not (p . . . ) (p . . . ) not (p . . . ) false
(p . . . ) not (p . . . ) not (p . . . ) (p . . . ) true null

not (p . . . ) not (p . . . ) invalid
(p . . . ) (p . . . ) invalid

(r . . . )≥1 (r . . . ) –= 1 (r . . . )≥2 (r . . . ) –= 2 1≤(r . . . )≥3 (r . . . ) –= 3

Figure 3: A composition of actions by regression

precondition will be a conjunct of the former action’s pre-
condition and the latter action’s modified precondition.

Effect under Composition: The resultant effect will be a
union of the latter action’s modified effect and the former ac-
tion’s sub-effects which are not further modified by the latter
action’s effect (see Figure 3). Appropriate not-equalities are
added to the precondition whenever parameters having com-
patible types represent different objects. This is because,
when different parameters are bound with same object in
similar literals or functions, it causes runtime inconsistency
in the grounded effects.

Parameters under Composition:Parameters of both the
actions are first unified and then union-ed together. Param-
eter unifications can be done by type or by name. The first
option needs knowledge about the multiplicity of any static
or dynamic relationships between objects; which means do-
main and planner characteristics are to be discovered. The
second option (see Figure 3) is suitable for this work if
constituent actions are lifted from plans where multiplic-
ity issue has already been handled. In this case, problem
objects are then replaced by generic variables but domain
constants are left unchanged; which means actions are con-
sidered grounded partially with constants. Variables having
common names are then unified replacing generalised types
by specialised ones; uncommon variables however remain
unaffected.

Genetic Operators
Genetic operators are restricted to extending a macro by the
preceding or the succeeding action in the plan, shrinking a

macro by deletion of an action from either end, and splitting
a macro at a random point (see Figure 4). The motivations
behind these restrictions are to explore only the macros that
occur in the plans. Besides, our observations suggest subse-
quences of a good sequence are also good while sequences
containing bad subsequences are also bad. Moreover, lift-
ing of random sequences from plans is also used as yet an-
other operator to facilitate diversity of the macro space ex-
ploration.

Plan . . . (a . . . )(b . . . )(c . . . )(d . . . )(e . . . )(f . . . )(g . . . ) . . . (j .. . )(k . . . )(l . . . )(m . . . ) . . .
Macro (b . . . )(c . . . )(d . . . )(e . . . )(f . . . )
Extend (a . . . )(b . . . )(c . . . )(d . . . )(e . . . )(f . . . ) (b . . . )(c . . . )(d . . . )(e . . . )(f . . . )(g . . . )
Shrink (c . . . )(d . . . )(e . . . )(f . . . ) (b . . . )(c . . . )(d . . . )(e . . . )
Split (b . . . )(c . . . )(d . . . ) (e . . . )(f . . . ) (b . . . )(c . . . ) (d . . . )(e . . . )(f . . . )
Lift (j . . . )(k . . . )(l . . . )

Figure 4: Genetic operators

Seeding the Initial Population
To seed the initial population, sequences of actions are ran-
domly lifted (using thelift operator) from plans of smaller
problems calledseeding problems.

Evaluating Individual Macros
To evaluate individual macros, a different set of problems
calledranking problemsare used. These problems are more
complex than the seeding problems. However, they do not
take much planning time since they are solved for every
macro. For each macro, anaugmented domainis produced
adding it as an additional action to the original domain. The
ranking problems are then solved both with the original do-
main and the augmented domain and the utility function in
Figure 5 is used to assign the macro a numerical rating.

Utility Function: The basic form of the utility function is
U which is a weighted mean time gain. The multiplicative
factors, i.e. probabilities, are to counterbalance the effect
of any misleadingly high value ofU . For a good macro,
most problems (reflected byPs) should be solved within
given limits taking less time in most cases (reflected byPg).
Macro usage statistic is not considered because there could
be less frequent tricky macros that save enormous search
time.

1. Deterministic Planners: The gain for a problem is the dif-
ference of the time taken to solve it using the original do-
main and that using the augmented domain. The weight
of a problem is the time taken to solve it using the original
domain after being normalised by the total time taken to
solve all the problems using the original domain.

2. Stochastic Planners: The time taken to solve a problem
by such a planner is randomly distributed. Observations
suggest the underlying distributions to be normal. A prob-
lem is therefore solved a number of times and a random
variable having parameters (meanµ, varianceσ2, sample
countn) is used to represent the time distribution. The t-
value by Student’s t test, which computes the significance
of difference between two normal distributions, is then
used as a difference operator to measure the gain. The sta-
tistical sum of the time distributions for all the problems
using the original domain is used in normalisation. The
time distributions, the individuals and the sum, are then



replaced by their respective mean-to-error ratio to come
up with a weight for a problem. Use of mean-to-error
ratio has another implication that narrowly dispersed dis-
tributions get more weight.

Utility = UPsPg if U > 0 andPsPg > 0

= U
PsPg

if U < 0 andPsPg > 0

= −eα if Ps = 0 (eα → ∞)

= UPse−α/2 if U > 0 andPg = 0

= U
Ps

eα/2 if U < 0 andPg = 0

U =
∑

p∈S
GpWp S: set of problems

Gp = top − tap if deterministic

= t(Top, Tap) if stochastic

Wp = top/
∑

q∈S
toq if deterministic

= w(Top,
∑

q∈S
Toq) if stochastic

Ts =
∑

q∈S
Toq (sum of distributions)

= (
∑

q∈S
µoq,

∑

q∈S
σ2

oq,
∑

q∈S
noq)

t(To, Ta) = (µo − µa)/

√

σ2
o

no
+

σ2
a

na
(Student’s t test)

w(Tq, Ts) =
µq

σq/
√

nq
/ µs

σs/
√

ns
(using mean-to-error ratio)

where

Ps: Probability that a problem is solved using the macro within given limits.

Pg : Probability that time-gain is achieved when a problem is solved using the macro.

For stochastic planners, t test withα = 0.05 determines time-gain.

top, Top(µop, σ2

op, nop): time to solve Problemp using no macro.

tap, Tap(µap, σ2

ap, nap): time to solve Problemp using the macro.

Figure 5: A utility function for macro evaluation

Pruning the Macro Space

We adopt some pruning techniques to reduce any effort
wasted otherwise to explore potentially inferior macros.

Pruning during generation: The following strategies
help prune macros in Step 2(a)i of the algorithm in Figure 1:

1. Macros having unsatisfiable preconditions or inconsistent
effects are discarded whenever detected.

2. Actions having no parameter in common (by name) gen-
erally make no sensible macro. This also prevents irrele-
vant actions are not part of a macro.

3. The more the parameters, the more the unnecessary in-
stantiated operators. This at least affects the planners
which do operator instantiation in their preprocessing
steps.

4. Longer sequences of actions are more specific to certain
objectives and are less likely to be useful for wider ranges
of problems.

5. Sequences of actions that have subsequences producing
null effects, are not minimal.

6. Similar sequences of actions differing only by parameter-
isation are considered copies of a single sequence.

7. Sequence of actions equivalent in partial order are consid-
ered copies of a single sequence. This technique however
is under implementation and has not been used for this
paper.

8. A strategy that consecutive actions in a macro must have
a causal link between them is considered but finally has
not been used. This is because there could be an auto cor-
relation between actions such that execution of them to-
gether somehow helps the planner solve problems faster.
The auto correlation could be inherent in the planner’s ar-
chitecture or implementation, or could be in the domain
model as well.

Pruning during evaluation: Early detection of inferior
macros in Step 2(a)ii in Figure 1 saves learning time needed
otherwise to solve the remaining problems.

1. Failure to solve a problem using the augmented domain
within certain limits whereas it is solvable using the orig-
inal domain implies the macro is causing much overhead
and resource (time, memory, etc.) scarcity to the planner.

2. Macros that are not used in any plans are not of any in-
terest. They could have unsatisfiable preconditions which
could not be detected in the generation phase or they are
simply not helpful to the planner.

3. Macros that cause invalid plans to be generated have in-
consistencies in their effects. Inconsistent effects that
arise during the runtime of a planner, most probably due
to the way it handles parameter binding, cannot com-
pletely be detected in the generation phase.

Experiments
To analyse performances of the macros suggested by our
system, a third different set of problems calledtesting prob-
lemsare used. These problems are more difficult than the
ranking problems in terms of the problem parameters and
the time required to solve them using the original domain.
For a suggested macro, the testing problems are solved us-
ing both the original domain and the augmented domain.

Results
Figure 6 describes the typical setup of our experiment. Fig-
ure 7 then shows the performances of the suggested macros
for the planners FF and LPG on the domains Ferry, Grip-
per, Tyreworld, Zenotravel, and Satellite. Moreover, Fig-
ure 8– 16 show the plan times graphically. On the charts,
domainanddomain-k respectively denote the original do-
main and the augmented domain for thekth best macro
(0 ≤ k ≤ 2, k = 0 for the best). To clarify certain things,
note that the utility values of the third macros in Figure 8
and 11 are very low. They are included to show that some
macros could be good for smaller problems but performance
could degrade as problems get larger. One major pitfall ob-
served in Figure 14 is that the best macro, as suggested by
the our method, unexpectedly does not perform well.

Analyses
For comprehensive analyses of this work, our qualitative
achievements are presented as hypotheses which are then
justified by our results.

Hypothesis 1 Our utility function is consistent across given
problems, domains and planners.



* Planners: FF, LPG

* Domains: Gripper, Ferry, Tyreworld, Zenotravel, Satellite

* Number of random problems: Seeding 3–5, Ranking 6–20, Testing 12–20

* Macro size limits: Maximum parameters 8, Maximum sequence length 8

* Operator selection probability: Extend 30%, Shrink 30%, Split 30%, Lift 10%

* Sample count for a stochastic planner to represent the distribution: 10

* Evaluation phase pruning: a macro is pruned out if more than 40% problems
or runs are unsatisfactory

* Current and child population: 1–2× number of actions

* Maximum number of epochs to run: 15-30

* Replacement: at least 1 in every 3 consecutive epochs

* Generation attempts: maximum 20000 for every new macro

Figure 6: Experimental setup

Macro Plan Time Gain % Plan Length Loss % Macro Occurrence %
gain1 prob3 loss2 prob3 usage2 prob3

FF-Ferry-0 79 100 31 100 33 100
FF-Ferry-1 79 100 31 100 33 100
FF-Ferry-2 27 70 31 100 33 100
LPG-Ferry-0 78 100 09 100 168 100
LPG-Ferry-1 79 100 09 100 67 100
LPG-Ferry-2 40 90 09 100 116 100
FF-Gripper-0 89 100 33 100 33 100
FF-Gripper-1 72 100 33 100 33 100
FF-Gripper-2 76 100 33 100 33 100
LPG-Gripper-0 94 100 26 100 474 100
LPG-Gripper-1 55 100 22 100 86 100
LPG-Gripper-2 07 100 11 100 28 100
FF-Tyreworld-0 83 100 00 00 09 100
FF-Tyreworld-1 78 100 00 00 09 100
FF-Tyreworld-2 77 100 00 00 09 100
LPG-Tyreworld-0 30 100 -01 58 45 100
LPG-Tyreworld-1 21 87 10 100 76 100
LPG-Tyreworld-2 09 54 00 90 44 100
FF-Zenotravel-0 -96 15 34 100 31 100
FF-Zenotravel-1 49 95 03 87 10 100
LPG-Zenotravel-0 26 90 10 100 41 100
LPG-Zenotravel-1 33 97 14 100 72 100
LPG-Zenotravel-2 29 97 -01 90 73 100
FF-Satellite-0 79 100 27 80 53 100
FF-Satellite-1 71 100 73 100 53 100
LPG-Satellite no macro with positive utility could be learned

1 with respect to the plan time using the original domain
2 with respect to the plan length using the original domain

3 prob stands for probability

Figure 7: Performance: time gain, quality loss, usage
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Justification: For most macros in most domains, the utility
values computed against the ranking problems and the test-
ing problems (which are more difficult) are found correlated.
One major violation found is with the best suggested macro
in the domain zenotravel for the planner FF. The third sug-
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Figure 9: Plan time: LPG-Ferry
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Figure 10: Plan time: FF-Griper
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Figure 11: Plan time: LPG-Griper

gested macros in Figure 8, 10, and 11, also show minor vio-
lations; but note that their utility values are very small. Due
to the variation in computation of gain and weight for deter-
ministic and stochastic planners and due to the use of only
one planner for each category, the claim against the planners
could appear unjustified. But note that the basic notion be-
hind all such computation is same. Moreover, experiments
with further planners are underway.
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Figure 12: Plan time: FF-Tyreworld
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Figure 13: Plan time: LPG-Tyreworld
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Figure 14: Plan time: FF-Zenotravel

Hypothesis 2 Macros can be learnt effectively from plans
without knowing anything explicitly specific about planners,
domains, problems, or plans.

Justification: Our method does not strive to discover or
utilise any explicitly specific properties from either of plan-
ners, domains, problems or plans. Moreover, It only ex-
plores only the macros that occurs in plans. We so far have
managed to learn macros effectively for two planners on
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Figure 15: Plan time: LPG-Zenotravel
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Figure 16: Plan time: FF-Satellite

most of the five domains.
Other observations that appear straightforward from our

experiments are as follows:

1. The best macros learnt from a domain for different plan-
ners are not always same, but sets of top performing
macros seem overlapping. More experiments are needed
to go for a conclusion.

2. Macros usually lead to longer plans as observed with most
domains and both planners.

3. Our work generalises macro learning from plans since it
does not look for any particular properties.

At the end, learning by our method depends on the prob-
lems it is provided with. But this is a common issue with
any such or similar approach. Currently, we use randomly
generated problems, but in future we would like to work on
what problems could be used to learn macros effectively.

Conclusion
This paper presents an automatic macro learning method
that requires no structural knowledge about the domains and
the planners. Despite recent significant progress in plan-
ning, many complex domains, and even simple domains
with larger problems, remain challenging. Macros provide



a promising avenue in planning research to achieve further
improvement. Macros when added to the domain like nor-
mal actions can convey significant knowledge to the plan-
ner. Experiences of the planner on the problem landscape
can thus be encoded while re-engineering a domain. Most
existing work on macros somehow need knowledge specific
to the planner and the domain. A macro learning method
that does not need such knowledge, therefore, gets impor-
tance. Our method learns macros effectively from plans us-
ing a genetic algorithm. Genetic algorithms are automatic
learning methods that can discover inherent characteristics
of a system using no explicit knowledge about it. We have
achieved convincing, in some cases dramatic, improvement
with two planners – FF and LPG, on five domains – gripper,
tyreworld, ferry, satellite, and zenotravel. Further experi-
ments to learn macros for different planning systems and
for more complex and numerical domains are underway. As
we consider only individual macros for the time being, we
hope to extend our approach to learn a set of macros either
incrementally or using a genetic approach on macro-sets. It
would also be useful to compare performances of our system
and other related systems.
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