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Abstract

The use of macro-actions in planning introduces a trade-off.
Macro-actions can offer search guidance by suggesting se-
quences of actions; but can potentially make search more ex-
pensive by increasing the branching factor. In this paper we
present a technique for simulating the use of macro-actions
by altering the order in which actions are considered for ap-
plication during enforced hill-climbing search. Actions are
ordered based on the number of times they have occurred,
in past solution plans, following the last action added to the
plan. We demonstrate that the action-reordering technique
used can offer improved search performance without the neg-
ative performance impacts often observed when using macro-
actions.

Introduction
The use of macro-actions in planning has been widely ex-
plored. Macro-actions consist of an ordered sequence of ac-
tions taken from the planning domain. The motivation for
using macro-actions is intuitive: if a sequence of actions oc-
curs many times in solution plans it is logical to suggest to
the planner that this may be a good action sequence to con-
sider.

Using macro-actions when planning gives the potential
for increased efficiency in solving problems, as many steps
can be planned by the application of one macro-action; thus
avoiding search that would otherwise have to be done. There
is, however, a cost associated with this potential gain: the
increased branching factor at each action choice point in the
search. In addition to considering the applicable instantia-
tions of the actions in the domain, instantiations of macro-
actions must also be considered.

The number of instantiations of an action is exponential in
the number of parameters. Macro-actions consisting of two
or more actions include the necessary parameters of their
constituent actions. In general macro-actions have many
more preconditions than the other actions in the domain and
are therefore expensive to instantiate.

For a planning problem with solution lengthl and num-
ber of possible action instantiations (branching factor)b the
number of nodes expanded to solve the problem, in the worst
case, will be O(bl). If m macro-actions are added to the do-
main, with n being the total number of possible instantia-
tions of all of the macro-actions, the worst case complexity

is O((b + n)l). It is, however, important to note that if a
macro-action is used in solving the problem then the depth,
l, to which the search space needs to be explored (i.e. the
plan length) is decreased. Thus, if a macro-action of length
k is used the complexity will be reduced to O((b + n)l−k).

We present a technique to simulate the use of macro-
actions, without increasing the branching factor, by chang-
ing the order in which actions are considered for applica-
tion during search. This avoids the potential problems typ-
ically associated with using macro-actions. Actions are or-
dered according to past records of action sequences occur-
ring in solution plans. Our technique is implemented in the
planner Marvin (Coles & Smith 2006) that uses an FF-style
planning framework (Hoffmann & Nebel 2001): enforced
hill-climbing search with best-first, rather than breadth-first,
search on plateaux.

Related Work
Macro-actions were first conceived in the early stages of
planning research when solution plans were used as macro-
actions for solving future problems. The use of macro-
actions was developed by many researchers, some concen-
trating on pruning techniques and selecting which macro-
actions to use (Minton 1985; Iba 1989; McCluskey 1987)
and others on techniques for extracting macro-actions from
the domain itself (Dawson & Siklossy 1977; McCluskey &
Porteous 1997). Research into the use of macro-actions has
enjoyed a recent surge in popularity, with two planners in
the Fourth International Planning Competition making use
of macro-actions. Macro-FF (Botea, Muller, & Schaeffer
2004) uses an offline learning process to learn macro-actions
for each domain. In the most successful version, macro-
actions are lifted from solution plans and then filtered us-
ing an offline training process that involves solving small
problem instances. Marvin (Coles & Smith 2006) uses an
online learning technique to generate macro-actions, based
on plateaux in the search landscape. The macro-actions are
generated online and can also be stored for use in solving
later problems (Coles & Smith 2005). Work on evolving
macro-actions (M.A.H. Newton 2005) has also been done.
As with Macro-FF, this process is another that uses offline
learning, using a genetic algorithm to generate and filter
macro-actions.

Action-reordering techniques have been exploited to



achieve two different objectives: to increase the efficiency of
the planning process; and to allow the introduction of con-
currency into solution plans. Work on symmetry in planning
(Fox, Long, & Porteous 2005) has been used to suggest an
action ordering to a planner. The helpful actions, as gener-
ated by FF, are ordered to consider first those actions that are
‘almost symmetric’ with actions applied at some previous
time point in the plan. Almost symmetry attempts to cap-
ture similarities between objects in the domain that are not
functionally symmetrical but are in very similar situations.
Such objects are likely to require similar action applications
in order to reach their desired goal state; hence, actions are
reordered to consider actions that have already been applied
to an almost symmetric object before other actions.

CRIKEY (Halsey 2004) is a temporal planner that cre-
ates its plans by first generating a sequential plan using FF
and then using a scheduler to parallelise and schedule the
actions in the plan. CRIKEY uses action reordering, when
planning in an FF style planner, to maximise the potential
for parallelisation of the finished plan. Actions are ordered
dynamically at each stage in planning according to the last
action in the plan. The ordering of the helpful actions (the
only actions to be considered) is such that all actions that are
not mutex with the action currently at the end of the plan are
considered first. The result is that if an action that can be
performed at the same time as the previous action leads to a
strictly better state, it will be used in favour of an action that
cannot. The action reordering allows for greater parallelisa-
tion of the final plan and improved makespans of the plans
generated by CRIKEY.

The action reordering presented here is also related to
work on control rules (Bacchus & Kabanza 2000; Martin
& Geffner 2004). Control rules suggest to the planner the
next action to apply, usually based on propositions that are
true in the current state. The action reordering in this work
also suggests the next action to apply, but this suggestion is
based on the previous action in the plan.

Action Reordering
Macro-actions that are used frequently represent sequences
of actions that follow each other often. An action order-
ing strategy based on the number of past occurrences of a
given action following another action can be used to im-
plicitly suggest macro-actions to the planner, without actu-
ally adding the macro-actions to the domain. By noting the
number of times a given action follows another in the plan,
and ordering actions based on this, it is possible to simulate
the addition of macro-actions to the domain without actually
having to add additional actions.

For example, the macro-actionpickup-move-drop in
the Gripper domain might be extracted by a macro-action-
generating planner due to its frequent occurrence, it being
a plateau in the search space, or due to it improving search
performance. It is also possible, however, to simply observe
that so far during search to solve a problem (and indeed in
search to solve previous problems) that every time amove
action has been applied, adrop action was applied after-
wards; and thus, it would be sensible to considerdrop ac-
tions aftermove actions in future search. Similarly, amove

action may have followed apickup action 50% of the time;
the other 50% of the time apickup action is likely to have
been followed by anotherpickup action (onepickup
for each gripper). Thus, it is sensible to consider applying
move andpickup actions after following the application
of pickup actions, before considering other actions.

The basis of the action reordering strategy is to order the
list of potential action choices by an estimate of the likeli-
hood that it is correct to order them after the last chosen ac-
tion in the plan, based on the frequency with which the two
actions have occurred one after the other. The frequencies
for each action following each other action are initialisedto
zero. As planning progresses, each time a given action fol-
lows another its ‘following frequency’ is increased. When a
node is to be expanded in search, actions leading to succes-
sors are ordered according to this frequency metric, and their
corresponding successor states are expanded in the given or-
der. In EHC, as the first action which leads to a state with
a strictly better heuristic value is chosen, if the first ordered
action leads to such a state, a great deal of search effort will
be saved.

The implicit macro-actions suggested are a slightly
weaker form of macro-actions than those in the traditional
sense. Although a sequence of actions is suggested to the
planner, which parameters should be shared between adja-
cent actions is not explicitly enumerated, as would be the
case when using a macro-action. Maintaining the data of
shared parameters for action ordering would become very
expensive; the ordering is therefore based only on the action
types and not on any shared parameters. For example, in the
gripper domain, if the learnt action data suggests thatdrop
is the most likely action to followmove then, if a move
action has just been added to the plan, the actions will be or-
dered such that all thedrop actions occur before the others,
irrespective of their parameter bindings. Macro-actions,on
the other hand, would effectively order a specific instantia-
tion of adrop action first.

Identifying the Most-Likely Preceding Action
Plans generated by an FF-style planner often have inde-
pendent threads of execution interleaved. For example,
in a logistics-style domain it is possible that a plan is
comprised of interleaved actions to perform tasks in several
distinct locations. For one package, the plan fragment may
be: (load package1 truck1 location1)
(drive truck1 location1 location2)
(unload package1 truck1 location2);
and similarly, for another package in another location:
(load package2 truck2 location3) (drive
truck2 location3 location4) (unload
package2 truck2 location4). This could be
further interleaved with the end of another earlier se-
quence concluding with(unload package3 truck3
location5). These plan fragments can be interleaved
arbitrarily to create the overall plan; an example is given in
Figure 1.

Updating the action-following data to reflect the orderings
in the interleaved plan could be misleading: for example, it



0: (load package1 truck1 location1)
1: (unload package3 truck3 location5)
2: (drive truck1 location1 location2)
3: (load package2 truck2 location3)
4: (drive truck2 location3 location4)
5: (unload package1 truck1 location2)
6: (unload package2 truck2 location4)

Figure 1: Example Plan Segment for the Driverlog Domain

would state thatload followed byunload was a promis-
ing action sequence for the planner to consider in the gen-
eral case. Although the interleaving could occur in this way
again, it is largely arbitrary and in general it is not the case
that it is good guidance to follow aload action with an
unload action. Indeed, if the two actions share a common
package parameter, it is actually an unwise action choice,
simply undoing the previous action and introducing redun-
dancy into the plan. The strategy of updating ordering data
between adjacent pairs of actions in the plan, regardless of
threads of execution, is referred to as U1 in the evaluation.
To attempt to address issues regarding thread independence
in plans, further reordering strategies have been developed
and are described in the following sections.

Update if the Previous Action Shares A Parameter
In first of these more sophisticated strategies, U2, action fre-
quency data is only updated between pairs of actions in the
plan which share a common parameter. Actions sharing a
parameter are often reliant on some common object in the
world, and so can be considered linked as part of a sequence
of execution. Updating the data between only pairs of ac-
tions that share parameters allows the cached data to better
represent real interdependencies between actions.

A problem with this strategy is that in only updating the
action-following data between adjacent pairs of actions if
they share a common parameter, information is potentially
lost about orderings between related but non-adjacent action
pairs.. Suppose, during the planning process to find a solu-
tion to a driverlog problem, actions are added to the plan in
the sequence shown in Figure 1. Using this update strategy
the data thatunload followsload (steps 0-1),drive fol-
lowsunload (steps 1-2) andload followsdrivewill not
be added, since the parameters are pairwise unrelated. Be-
tween steps 3 and 4 the fact thatdrive followedload will
be noted as these actions share a parameter. Between steps
4 and 5 no information will be added since the parameter
sets do not overlap; Similarly, no information is recorded be-
tween steps 5 and 6. It can be seen that the fact thatunload
follows drive would not be recorded anywhere due to the
interleaving of the plan. Looking at the independent threads,
however, it can be seen that unload has in fact followed drive
twice in the individual sequences of execution in the plan.

Update Based on Last Non-Mutex Actions In the
Plan
To address this issue the final strategy, U3, has a slightly
more complex update rule. Instead of simply looking at a

0: Load: package1 truck1 location1

1: Unload: package3 truck3 location5

2: Drive: truck1 location1 location2

3: Load: package2 truck2 location3

4: Drive: truck2 location3 location4

6: Unload: package2 truck2 location4

5: Unload: package1 truck1 location2

Figure 2: Threads of Execution in Driverlog Plan Seg-
ment. Dotted lines indicate dependencies implied by the
plan structure; solid lines indicate true dependencies.

single action A before an action B, all the actions immedi-
ately before A that are pairwise non-mutex with each other
and A are considered. The pairwise non-mutex actions rep-
resent a collection of actions which could have been ordered
arbitrarily in the plan: there are no ordering constraints be-
tween them. An action added after these could follow on
from any one of these actions; not just from the action that
happens to be ordered last. To identify these potential prede-
cessors when ordering the actions to be considered, the algo-
rithm reverses through the plan built so far collecting actions
until one is found that is mutex with any of the actions that
follow it. At this point, regression stops and the action mu-
tex with one or more of those following it is excluded from
the set of potential predecessors, as it necessarily precedes
another action in the predecessor set.

Consider the addition of the final twounload actions
to the plan in the example in Figure 1; for clarity Fig-
ure shows the separate threads of execution in this plan.
Upon adding the action(unload package1 truck1
location2) at step 5 to the plan, the algorithm regresses
through the plan to find possible predecessors to update the
action-following data. The previous action, plan step 4, is
added as a possible predecessor; the action at time step 3 is
mutex with the action at time step 4 so the regression stops
at this point: this action could not be placed at the end of
the plan. Since none of the actions in the set of predecessors
share a parameter with the newly added action, no update
is made. Search for a solution plan then continues and the
action(unload package2 truck2 location4) is
selected for addition at time step 6. Regressing through the
plan before the newly added action, the actions at time step
5 and 4 can be added to the set of possible predecessors;
the algorithm stopping at, and excluding, the action at time
point 3 (as it is mutex with that at time point 4). At this
point the set of possible predecessors is checked for any ac-
tion that could precede the action at time step 6 in the same
thread of execution; that is, any action in the set that shares
a parameter with the newly added action. The action at time



step 4(drive truck2 location3 location4) is
in the set, and has parameters in common with the last added
action; thus, the number of times that an unload action has
followed a drive action is incremented accordingly.

Cached Probabilistic-Observation-Based
Action Reordering

Having now described how action-following data can be
recorded, online, during planning, the strategy can be ex-
tended to cache the table of action-following data between
runs of the planner in a given domain. This data can then
be used to suggest orders in which to consider actions when
solving subsequent problems. Unlike the libraries of cached
macro-actions, the size of these tables does not increase as
more problems are solved: the information stored in the ta-
ble simply becomes a more-accurate reflection of the action
orderings observed when planning. There is, therefore, no
need to employ any library management or pruning strate-
gies in order to maintain the library.

Results
The techniques discussed have been implemented in the
planner Marvin (Coles & Smith 2006). The plateau-
escaping macro-action generation techniques and concur-
rent planning framework are disabled throughout these ex-
periments; resulting behaviour analogous to FF, other than
using best-first search, instead of breadth-first search, on
plateaux. Tests have been performed across a wide range
of domains with very different properties. All experiments
have been performed on a Linux machine with 1GB of RAM
and a 3.4 GHz Intel Pentium 4 processor. Each run of the
planner is subjected to time and memory limitations: if the
planner does not solve the problem within 30 minutes or uses
more than 800MB of memory it is deemed to have failed
to solve the problem. Where available the ADL version of
each domain is used; if not, the typed STRIPS version of
the domain is used. All problems are taken from the recent
competition benchmark suites in IPC 3, 4 and 5; except for
Briefcase (which did not feature in these competitions) in
which 20 randomly generated problems are used with the
number of objects being increased from 50 to 240 (in incre-
ments of 10). These competition problems are the standard
benchmarks used in the comparison of planners. Some of
the problems were designed to model matters of academic
interest; others model real world problems, for example, the
Airport domain is concerned with managing airport ground
traffic in Munich airport.

Using Reordering Data on a Per-Problem Basis
The results shown in table 2 show the improvement in time
taken to solve problems using each of the update strate-
gies with action reordering, relative to the control version
of the planner. Precisely, the data presented in the table
is

∑

i=0..n

(T (Ci) − T (Vi)), wheren is the number of prob-

lems in the domain and T(Ci) and T(Vi) represent the time
taken by the control and version of the planner to be consid-
ered, respectively. Only problems solved by both the indi-

Domain control U1 U2 U3
FreeCell 18 18 18 18
Airport 38 41 41 41
Depots 15 15 15 15

Philosophers 48 48 48 48
Driverlog 17 17 17 17
Pipes NT 37 37 37 38
Briefcase 17 17 17 17
Satellite 36 36 36 36

TPP 30 30 30 30
Totals 256 259 259 250

Table 1: Coverage Across Evaluation Domains Using Ac-
tion Reordering with Different Update Strategies

vidual configuration and the control are included in calculat-
ing these results: the figures in brackets indicate the number
of mutually solved problems.

In the Airport domain the planner manages to solve three
more problems using the action reordering strategies: the
control version of the planner only solves 38 of the 50 prob-
lems; whereas each of the reordering strategies allows the
planner to solve 41 problems (see table 1). The additional
problems solved using the reordering strategies are problems
28, 31 and 33. In these problems the action reordering strate-
gies allow the planner to avoid getting into deadlock situa-
tions, those in which two planes mutually block each others’
forward progress due to the exclusion zones around them.
In these situations the planner must abort EHC and resort to
best-first search. The action reordering strategies cause the
planner to consider actions in a different order which does
not lead to this situation in these three problems. In do-
ing so, the planner is able to successfully solve these prob-
lems via EHC; using best-first search to solve the problems
is not successful within the 30 minute time limit. The data
for mutually solved problems shows that the reordering con-
figurations are on average between 1 and 2 seconds slower at
solving problems in this domain; however, the three reorder-
ing configurations have successfully solved three problems
in under 40 seconds that the other configuration was unable
to solve in 30 minutes. These problems were not included in
the average as the control did not successfully solve them.

In the Philosophers domain the performance of the plan-
ner is consistently improved over the problems in the evalu-
ation suite. Solving the problems up to that with 49 philoso-
phers gives the configurations making use of action reorder-
ing a mean improvement in time taken of just over 12 sec-
onds. The time taken by each of the configurations grows
according to a regular function, and the time taken by the
reordering version is consistently lower.

Planning in the Philosophers domain is very structured
and the same sequences of actions occur many times. The
planner is able to benefit from using action reordering data in
the segments of search where the planner can find a strictly
better state quickly. For example, at the start of the plan an
activate-trans action is required for each philosopher
in the problem. This corresponds to a period of search find-



Domain U1 U2 U3
FreeCell -2.36 -2.54 -2.08

(18) (18) (18)
Airport -1.46 -1.66 -0.85

(38) (38) (38)
Depots -5.53 -5.4 -6.01

(15) (15) (15)
Philosophers 12.42 12.21 12.12

(48) (48) (48)
Driverlog -0.71 -1.03 -0.85

(17) (17) (17)
Pipes NT -1.21 -1.05 -1.74

(37) (37) (37)
Briefcase 5.25 5.96 14.94

(17) (17) (17)
Satellite 41.83 43.01 -1.90

(36) (36) (36)
TPP 11.61 11.6 -1.61

(30) (30) (30)
Totals 6.82 6.96 1.50

(256) (256) (256)

Table 2: Mean of time taken by control version minus time
taken using each update strategy with action reordering. Re-
sults are calculated on mutually solved problems.

ing a strictly better state at every choice point. The planner
does not, however, make the same gains that are observed
when using macro-actions as action reordering does not of-
fer a major benefit during best-first search on plateaux. The
search will have to explore all states with equal heuristic
value before others regardless of whether the action order-
ing data suggests that it is a good path to take through the
search space.

In the Depots and Driverlog domains the action reordering
strategies have very little impact on performance. Although
it appears in table 2 that the version using no reordering per-
forms better than the version using reordering in Driverlog,
the difference in performance is only on one problem, prob-
lem 19. The only reason for the improved performance in
problem 19 is that EHC fails using both configurations, and
the planner resorts to best-first search. The version using no
action reordering is not able to make as much progress using
EHC and thus fails slightly more quickly, resorting to best-
first search sooner. A similar phenomenon occurs in some
problems in the Depots domain.

In the Briefcase domain a slight improvement in perfor-
mance can be observed on some problems; however, the do-
main only consists of three actions, the ordering of which
is frequently interchanged so although reordering has some
positive impact it does not greatly enhance performance.
The planner is unable to solve further problems after prob-
lem 17 as the memory requirements exceed the limit.

In the Satellite domain the U1 and U2 configurations of
the planner demonstrate a significant performance improve-
ment over the control version. EHC search in this domain
consists mostly of states where a strictly-better state canbe

found at each choice point, with a small number of plateaux
that are escapable in very few (usually two) action steps.
With good action ordering guidance the planner is able to
proceed more quickly though this search giving a perfor-
mance improvement.

The version using the U3 strategy is, however, learning
closely the mistakes that the planner makes in this domain
when guided by the RPG heuristic. Quite often, despite the
fact that a satellite can turn directly from one phenomenon to
any other phenomenon, a chain ofturn-to actions are in-
serted into the plan. The U3 reordering strategy learns from
this, since it looks in detail at previous actions in the plan
to find predecessor actions, and suggests in the future us-
ing aturn-to action to follow anotherturn-to action.
The other learning strategies learn from this phenomenon
less frequently as a different action, involving a different en-
tity, is often applied betweenturn-to actions in a chain.
Although the performance of the planner is not greatly im-
proved by using the U3 reordering strategy it is not made
significantly worse: the planner is only learning from the
mistakes it would usually make, and the mistakes are still
made in search whether they are reinforced or not. The re-
sults in the TPP domain show a similar pattern to those in
the Satellite domain with reordering showing a positive im-
pact in the U1 and U2 strategies, and a slight negative impact
when using the U3 strategy.

In the FreeCell domain the performance of the planner is
not greatly improved or worsened by the reordering strate-
gies. Problem 10 is solved slightly faster by all of the config-
urations using reordering techniques; whereas problem 14 is
solved slightly more slowly by these configurations. This is
due to the action ordering the planner is using being better
suited to those particular problems at that time: no regular
pattern emerges showing action reordering to produce gen-
erally better, or worse, behaviour. Most problems in this
domain are solved in the same length of time for all config-
urations. In the Pipes No-Tankage domain the performance
of all the configurations is again similar. The U3 configu-
ration succeeds in solving one more problem than the other
versions, problem 47. All other versions reach a plateau that
is not escapable within the 30 minute time limit; due to the
different order in which actions are considered the search
the U3 version proceeds in a different direction and does not
encounter the same plateau.

Caching Reordering Data
In this section the configurations of the planner presented
differ from the previous section only in that the action-
following data is cached between problems. Caching allows
the planner to learn the appropriate ordering of actions over
a number of problems. Further, the planner can learn from
successful plans that have completed in the past rather than
from experience in solving the current problem which may,
of course, not represent the correct way to reach the goal.

Overall the results for this configuration are more pos-
itive: caching the action reordering data is allowing the
planner to learn from previous experience. Since the previ-
ous learnt information is generated from successful problem
solutions it represents successful decisions from which to



Domain Control U1 U2 U3
Cach- Cach- Cach-

ing ing ing
FreeCell 18 20 20 19
Airport 38 41 41 41
Depots 15 16 15 16

Philosophers 48 48 48 48
Driverlog 17 18 18 18
Pipes NT 37 37 36 35
Briefcase 17 17 17 17
Satellite 36 36 36 36

TPP 30 30 30 30
Totals 256 263 261 260

Table 3: Coverage Across Evaluation Domains Using Ac-
tion Reordering with each of the Update Strategies, Caching
Reordering Data

learn. Furthermore, the information is presented to the plan-
ner at the start of search and can be used throughout solv-
ing the problem; in the case where the planner learns based
on each problem instance it must first make a reasonable
advance in solving the problem before the action-following
data becomes meaningful.

Table 3 shows that the planner solves additional problems
in 5 out of the 8 evaluation domains when caching reorder-
ing data. In two of the remaining three domains, Philoso-
phers and Satellite, all problems are solved but a perfor-
mance improvement is seen for at least two of the config-
urations. This indicates that should further more difficult
problems be posed the reordering versions are more scal-
able. In the remaining domain, Briefcase, all configurations
of the planner are not able to solve the final three problems
as a result of exceeding the memory limit imposed.

The performance in the Airport domain is very similar to
that exhibited by the equivalent versions not caching action
data. The same number of problems are solved because the
action data discovered in each problem is sufficient to guide
the planner away from making the decision that causes dead-
lock of planes and forces the control version of the planner
to resort to best-first search. When solving problem 39 the
U3 caching version is able to maintain the performance that
was exhibited in the no-caching versions and by the control.
All three versions resort to best-first search within a second
of each other, however the fact that the actions are consid-
ered in the suggested order in best first search means that
the U3 and control versions reach the solution in the search
space more quickly.

In the Briefcase domain the technique is again showing
a slight positive impact in the U1 and U2 versions with a
negative impact being observed in the U3 version. The per-
formance of the U3 version is degraded as the planner is
treating the subgoals with too much independence due to
the update strategy. The U1 and U2 versions learn that when
putting an object in a briefcase the next thing to do is to put
another object in the briefcase. The U3 version, however,
learns to consider moving the briefcase next, leaving uncol-

Domain U1 U2 U3
Caching Caching Caching

FreeCell -13.52 13.32 -13.97
(18) (18) (18)

Airport -5.08 -5.01 -1.15
(38) (38) (38)

Depots 17.87 17.56 19.71
(15) (15) (15)

Philosophers 12.53 12.65 12.66
(48) (48) (48)

Driverlog 0.41 -7.94 -7.97
(17) (17) (17)

Pipes NT 0.05 -0.49 0.26
(36) (35) (33)

Briefcase 7.32 7.19 -36.18
(17) (17) (17)

Satellite 45.96 46.45 0.02
(36) (36) (36)

TPP 9.83 9.82 13.04
(30) (30) (30)

Totals 8.55 10.46 -1.31
(255) (254) (252)

Table 4: Mean of time taken by control version minus time
taken using each update strategy with action reordering,
caching reordering data. Results are calculated on mutually
solved problems.

lected items at locations which must later be collected.
All versions of the planner have solved all the problems

in the Philosophers and Satellite domains; therefore, the data
in Figures 2 and 4 are directly comparable (the control used
is identical). The performance in the Philosophers domain
is almost identical to the performance of the no caching ver-
sions. Search in this domain follows a regular pattern of ac-
tion ordering that the planner is able to learn quickly on each
problem. The caching versions have a very slight perfor-
mance improvement brought about by the search guidance
being available from the very start of problem solving.

The Satellite domain shows a similar pattern but with a
greater performance improvement being gained by caching
the data, as opposed to learning it on each problem. The
consistent improvements made in this domain can be seen in
Figure 3. The version using the U3 reordering has improved
by caching action ordering to give a slight performance en-
hancement; rather than the slight degradation that was found
without caching. Caching the data is allowing the planner to
learn from good decisions on smaller problems, in which
less redundancy is introduced. Caching the helpful data in
the U1 and U2 strategies improves the mean performance
of the planner by around 4 seconds. In these two domains
the makespans of the plans generated are almost identical,
slightly improved in Satellite and identical in the Philoso-
phers domain, so the planner is finding plans of the same
quality in less time.

The results in the TPP domain show that this is another
domain in which the action reordering data can improve per-
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Figure 3: Using Action Reordering in the Satellite Domain

formance on almost all problems. The results for U1 and
U2 caching show that the caching versions using this update
strategy do not perform as well as those learning the reorder-
ing data on a per-problem basis. The U3 version, however,
shows better performance when caching the reordering data
allowing for a positive impact on performance, rather than
the slight negative impact seen when not caching data.

In the Driverlog domain each of the caching versions is
able to solve one more problem than the control version.
The action reordering allows the planner to find the correct
solution to the problem using EHC; the control version fails
to find a plan via EHC and resorts to best-first search. In
the Pipes No-Tankage domain the behaviour of the different
versions of the planner is more varied. On the easier prob-
lems all three configurations of the planner that are doing
action reordering solve a number of problems more quickly;
most noticeably, problems 12, 14 and 15. In problem 15 the
action reordering in best first search allows the reordering
versions to solve the problem more quickly after resorting
to best-first search; whilst in problems 12 and 14 the action
reordering versions are able to solve the problem via EHC
without the need to resort to best-first search.

Caching the action reordering data in the FreeCell domain
leads to the U1 and U2 versions of the planner being able to
solve all problems. In problem 18 all versions of the planner
resort to best-first search but the cached action reordering
data, used in the reordering versions of the planner, allows
the problem to be solved using best first search within the
time limit. Problem 20 is solved by EHC in the U1 and
U2 caching versions of the planner whilst the U3 and con-
trol versions remain stuck on a plateau that is not escapable
within the time limit. The plans generated by the reorder-
ing configurations of the planner are shorter in all but one
of the problems. The planner is able to learn a good order-
ing strategy on the smaller problems where the trajectory
taken is more likely to be closer to the optimal one (as there
are fewer possible trajectories). This good ordering strat-
egy is then used when solving the harder problems allowing
the planner to generate shorter plans. This is supported by
the fact that the makespan of plans is improved when using

Domain U1 U2 U3
Caching Caching Caching

FreeCell 15.5 11.89 14.56
(18) (18) (18)

Airport -2.39 -2.18 0.11
(38) (38) (38)

Depots -1.6 -2.13 -0.73
(15) (15) (15)

Philosophers 0 0 0
(48) (48) (48)

Driverlog -0.88 -1.94 -1.88
(17) (17) (17)

Pipes NT -0.37 -0.34 -0.15
(36) (35) (33)

Briefcase 0 0 0
(17) (17) (17)

Satellite 0.14 0.31 0
(36) (36) (36)

TPP 12.17 12.17 14.53
(30) (30) (30)

Totals 2.50 1.97 2.94
(255) (254) (252)

Table 5: Mean of makespan of the solution plan generated
by control minus makespan of plan generated using action
reordering strategies, caching reordering data. Results are
calculated on mutually solved problems.

reordering techniques with no caching but not to the same
extent as it is in the case of caching.

Table 6 shows the results of performing a Wilcoxon
signed-rank significance test on the data generated across
all domains. The table shows that over the varied collection
of evaluation domains using reordering data can offer sig-
nificant improvement in time taken to solve problems when
using the U1 and U2 strategies. Furthermore, caching action
reordering data can allow a significant improvement over
learning the data on a per-problem basis using each strat-
egy. For the U1 and U2 versions the final column shows that
a total ordering, caching being better than not caching and
in turn not caching being better than using no data at all, has
been shown to be significant with 95% confidence (since the
individual comparisons were shown to be significant with
probability greater than

√
0.95).

Conclusions
We have presented a technique for simulating the use of
macro-actions through action reordering and shown that it
can enhance planner performance across a diverse range of
domains. In some domains the performance improvement is
slight; in others it is more significant. Unlike when using
macro-actions, however, the performance is rarely signifi-
cantly degraded by reordering the actions as the branching
factor is not increased.

In these experiments the different probabilistic update
strategies all exhibit very similar performance except in the
Satellite domain. The action reordering techniques have



Update Control vs Caching vs Total
Strategy No Caching No Caching Ordering

Significant
at 95% ?

U1: p≤ 1.557 ∗ 10−05 4.12 ∗ 10−07 Yes
sig? Yes Yes

Better No Caching Caching
U2: p≤ 1.187 ∗ 10−05 3.081 ∗ 10−07 Yes

sig? Yes Yes
Better No Caching Caching

U3: p≤ 0.1203 0.0004285 No
sig? No Yes

Better Control Caching

Table 6: Significance table for the action reordering strate-
gies: p is the probability that the null hypothesis, that the
versions perform the same, cannot be rejected; sig? denotes
whether or not the null hypothesis can be rejected with prob-
ability ≥ 0.975; Better is the best performing of the two con-
figurations being compared.

very little impact on the makespan of solution plans. The
makespan data across all domains, shown in Figure 5, shows
pleasingly that the action reordering strategy is offeringa
slight improvement in makespan and not leading to longer
plans, a problem often associated with macro-action use.

When learning action reordering data on a per-problem
basis performance improvements can be seen in some do-
mains; the guidance offered by action reordering is, how-
ever, improved when the data is stored for use on future
problems. Caching action ordering data can improve cover-
age on several domains under EHC compared to learning the
data on each problem instance and transitively not learning
action reordering data. Caching the data allows the planner
to build a more accurate representation of the correct order-
ing strategies based on known successful plans and a much
larger collection of successful choices.

The U1 caching strategy has greater overall coverage than
the U2 and U3 strategies; this is likely to be a consequence
of the way the planner naturally considers actions. The U2
and U3 strategies reorder based only on common parame-
ters, the U3 strategy even searching back through the plan
to do so; whereas the simpler U1 strategy reorders based on
the natural order that the actions appear following each other
in the plan. Since it is quite often the case that the next ac-
tion considered by the planner does not share a parameter
with the previous action the U1 strategy is pre-empting the
behaviour of the planner more successfully.

Future Work
Currently the action reordering only simulates macro-
actions of length 2 as only a single previous action is con-
sidered. Macro-actions of other lengths could be simulated,
by the consideration of the preceding n actions, rather than
just the one immediately preceding action. The table of ac-
tion reordering data would, however, grow rather large as
each pairwise combination of actions would have to be con-
sidered to precede each action. A strategy to select promis-

ing combinations of actions, and only consider these, would
therefore be required. Another similar extension would be
to investigate extending the technique to reason about shared
parameters to simulate macro-actions more strongly.
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