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Abstract

Distributed planning in a multiagent environment may give
rise to inefficiencies. We study this effect focussing on the
task allocation problem. We show that in the worst case,
the result of a multiagent approach can be arbitrarily bad
in theory when recontracting and multilateral deals are not
allowed. This is a more precise result than was previously
known, which was that we are not guaranteed to find the opti-
mal solution. We show that the sources of this disappointing
result are the impossibility to come back on (bad) contracts
in combination with either selfish agents, or agents that have
incomplete information on potential costs. Furthermore, we
show some preliminary experimental results of the effect of
these causes on the optimality of a solution for multiagent
task allocation. Interestingly, none of the experiments exhibit
the very negative outcomes that are predicted by the theory.
Although it is too early to draw conclusions, this might indi-
cate that in practical situations, the circumstances that lead to
the theoretical results are very unlikely.

Introduction
Multiagent planning is planning for a group of agents. This
can be done either centrally or distributedly. When the
agents in question are working closely together, a central
approach is often the most preferred as it allows the most
efficient solution to be reached. An example of such an ap-
proach is proposed by (Kalofonos & Norman 2004). How-
ever, in some cases the agents in question are not prepared
to exchange their private information or inform a third party,
and thus a distributed planning algorithm has to be employed
to find a solution. This is the approach that, for example,
(Durfee 1999) proposes. Unfortunately, there are several
factors that make it harder to reach the optimal solution in
this case. For example, because the agents do not wish to
disclose all their information, other agents need to base their
decisions on incomplete information. Also, agents are in-
clined to make selfish decisions, rather than doing what is
best for the group. To investigate this phenomenon, this pa-
per takes a closer look at these situations, focussing on the
task allocation part of the multiagent planning problem.

The well-known task allocation problem asks to assign
tasks requiring certain capabilities to agents (Shehory &
Kraus 1998). It is equivalent to the multidimensional 0-1
knapsack problem, which is NP-complete (Kellerer, Pfer-

schy, & Pisinger 2004).1 In the case of a single auctioneer,
this problem can be solved optimally (although in the worst
case taking exponential time) by a centralised Vickrey-
Clarke-Groves (VCG) mechanism (Krishna 2002). In a mul-
tiagent setting, however, we cannot always assume that all
tasks originate from one auctioneer. Therefore, we consider
the more natural multiagent task allocation problem where
the tasks are initially owned by some of the agents. Not all
of these tasks can be completed fully by the owner agents
(managers). By making contracts with other agents (con-
tractors), the initial (infeasible) allocation can be changed
into an allocation where as many tasks can be executed as
possible. Recent studies have shown that under certain as-
sumptions, any sequence of multilateral deals that are mutu-
ally beneficial (with side payments) will eventually reach an
optimal solution (Sandholm 1998). Moreover, even without
side payments, such a sequence can reach a Pareto-optimal
solution (Endriss et al. 2003). Simply allowing recontract-
ing can lead to repeating cycles of making and breaking con-
tracts. However, there are protocols that prevent such dead-
lock situations. For example, the levelled commitment pro-
tocol introduces penalties for breaking contracts (Sandholm
& Lesser 2001).

These results are interesting. However, making a se-
quence of deals would mean that contractors are allowed to
find other agents to do parts of the job, who in turn also
may try to find other agents, etc. This is called recontract-
ing (Sandholm 1996).2 In many situations the owner of a
task would not like this to happen. In practice, it is often
part of contract between two agents that one of them really
is going to do the job himself. (Sandholm 1998) proves that

1The multidimensional integer knapsack problem admits
a polynomial time approximation scheme (PTAS) (Chandra,
Hirschberg, & Wong 1976), but no fully polynomial time approxi-
mation scheme (FPTAS).

2A note on terminology used in task allocation research. Sup-
pose that agent a1 agrees to undertake (commits to) a task T for
another agent a2.

• decommitment is the act of a1 informing a2 that it can no longer
uphold its part of the agreement

• recontracting is the act of a1 trying to find other agents to un-
dertake (part of) task T . It is not used for the activity a2 has to
undertake after a1 decommits.



under these conditions (for example, by not allowing multia-
gent deals) there is not always a path to the optimal solution.
This theoretical result can be illustrated by experiments done
with mechanisms that do not allow recontracting, such as the
extended contract net protocol (Aknine, Pinson, & Shakun
2004), where a pre-commitment phase is introduced, and an
extended version of the continuous double auction (Dash
et al. 2007). Although an optimal solution is usually not
obtained, these experiments show that for some sets of in-
stances it is possible to obtain solutions that are reasonably
close.

The aim of this paper is to place these results in the con-
text of multi-agent planning. As such, we will focus on bilat-
eral deals (i.e. deals between pairs of agents), without recon-
tracting. The question we will specifically look at regards
the quality of the solutions. From the cited works above,
we know that there are instances for which optimal solu-
tions cannot be found. In this paper we sharpen that result
and we prove that in some (other) cases individually rational
agents can end up with a task allocation whose social wel-
fare (a measure for the performance of the group as a whole,
cf. Definition 4 below) is arbitrarily worse than the optimal
solution. After that we study this effect in a broad set of ran-
dom instances, and discuss the relation between these results
and the theoretical results in the final section. First, however,
we introduce the multiagent task allocation problem.

Problem description
In this paper we study the problem of (static) multiagent task
allocation. To describe this problem informally, let us con-
sider the situation where some agents have tasks that require
certain capabilities, and some (possibly the same) agents
have operators to fulfill some of these capabilities. Opera-
tors can be used only once (but there may be more operators
of the same type). They have different costs attached, de-
pending on the agent, and tasks have rewards attached. The
question is which tasks to execute to maximise revenue or
welfare, and which agents should fulfill the attached capa-
bilities. In this static situation we assume that agents have
time to use each of their available operators at most once.
Note that this is a very similar problem as multiagent re-
source allocation, where tasks are taken as resources, to be
allocated to agents (Chevaleyre et al. 2006).

First we define how we model agents, tasks, and the oper-
ators agents are capable of executing. Then we show how a
task allocation can be described and which task allocations
are preferred over others.

Definition 1. Let A be a set of agents, and let O be the
set of all operators that can be executed by one or more of
these agents. For each agent a ∈ A we have a multiset of
operators Oa v O that it is able to execute. The execution
of an operator o ∈ Oa infers some cost, given by a function
c : A×O → R+.3

Agents may own some tasks. A task requires the execu-
tion of some operators to be completed successfully.

3We use t and v to denote the multiset equivalents of the nor-
mal set operators.

Definition 2. Each agent a ∈ A owns a set of tasks Ta.
Each task t out of a set of tasks T =

⋃
a∈A Ta is defined by

a multiset of operators Ot ⊆ O required to fulfill t. Fur-
thermore, each task has a reward for completing this task:
v : T → R+.

Each task requires the operators of one or more agents,
such that assigned operators fulfill all requirements for the
task. The exact assignment of subtasks to agents is defined
by a task allocation.
Definition 3. A task allocation defines for each task t and
for each agent which operators of this agent are used for
t. A task allocation is thus defined by the following map
TA : T ×A → 2O.

For a task allocation we define two properties:

• A task allocation is correct if each agent does not allocate
more operators than it has: for each a ∈ A the following
multiset relation holds:

⊔
t∈T TA(t, a) v Oa, and

• a task allocation is complete for a certain task
t if all allocated operators together are sufficient:⊔

a∈A TA(t, a) w Ot. We denote the set of all com-
pleted tasks by T ′.

We can now define the utility of a task allocation.
Definition 4. The social welfare of a task alloca-
tion TA is defined by the reward of all completed
tasks T ′ minus the costs of all used operators:∑

t∈T ′

(
v(t)−

∑
a∈A

∑
o∈TA(t,a) c(a, o)

)
.

The task allocation problem is the problem of finding a
correct task allocation TA, preferably such that the social
welfare is maximised.

In general, in a multiagent system, we assume agents
make individually rational (selfish) decisions. Moreover, in
many real-life settings they do not give information to other
agents unless strictly necessary. For such applications where
agents are not allowed to change contracts they have previ-
ously agreed to, no mechanism exists that can guarantee an
approximation of the efficient solution, as we show in the
next section.

Mechanisms without recontracting
When we do not allow recontracting, there are a number of
reasons for the eventual solution to get sub-optimal. Here,
we focus on two that may lead to the solution becoming arbi-
trarily bad. Firstly, the result of a multiagent task allocation
mechanism can be very inefficient, because an alternative for
a task is chosen by an agent without considering the quality
of all alternatives, simply because the quality of these alter-
natives is not known.
Theorem 1. In the task allocation problem without recon-
tracting, when agents have no precise information on the
costs of operators of other agents required for their tasks,
the result can be arbitrarily bad in the worst case.

Proof. Let a factor α > 1 be given. We prove this theorem
by constructing an example where a wrong decision can lead
to costs that are α times the optimal solution. Consider the
following problem (cf. Table 1). Agent a1 has two equally



Table 1: Tasks and operators in the proof of Theorem 1
Owner Task Reward

a1 t1 = {o1, o2} 2 + α
t2 = {o1, o3} 2 + α

Cost
Owner Operator Real Perceived by a1

a1 o1 1 1
a2 o2 1 1

o3 α 1

rewarding tasks t1 and t2 that can be realised by {o1, o2},
and {o1, o3}, respectively, and it has operators O1 = {o1}.
Agent a2 on the other hand has no tasks, but O2 = {o2, o3}.
Assume that c(a2, o2) = 1, and c(a2, o3) = α and that agent
a1 does not know this difference. It is now straightforward
to see that if agent a1 decides to auction t2 (first), then t1
can not be fulfilled anymore, and the resulting costs will be
α. This is α times as bad as the optimal solution.

Secondly, inefficient results may occur, because agents
that get the task initially, make locally optimal (egoistic) de-
cisions when selecting which task to fulfill first.

Theorem 2. In the task allocation problem without recon-
tracting where agents take locally optimal (egoistic) deci-
sions, the global result can be arbitrarily bad in the worst
case (even if the agents know the costs of the alternatives of
a task in advance).

Proof. Let a factor α > 1 be given. We prove this theorem
by constructing an example where an egoistic choice for an
auction can lead to a solution that is more than α times worse
than the optimal solution. Consider the following problem
(cf. Table 2). Agent a1 has two tasks: t1 can be realised by
o1 and t2 can be realised by o2, both with reward 2. Suppose
agent a1 knows that agent a2 has tasks t3 and t4 with reward
2 + 2α that can be realised by {o1}, and {o2, o3}, respec-
tively. Agent a1 has actions O1 = {o2}, and a third agent
(a3) has actions O3 = {o1, o3}. Assume that c(a3, o1) = 1,
c(a1, o2) = 1, and c(a3, o3) = 2α. Assume that agent a1

first gets a chance to auction its task. There are two scenar-
ios:

1. If agent a1 chooses to fulfill t1 (by o1), agent a3 will par-
ticipate. Then agent a2 can only deal with t4 by hiring
both o2 (from agent a1) and o3 (from agent a3). In this
case the total profit is 2 + 2 + 2α − 1− 1− 2α = 2 and
tasks t2 and t3 are not fulfilled.

(a) If agent a1 decides to deal with t2 (by o2), it can do
this itself, and then t3 (with o1) can be done by agent
a2 with help of a3, resulting in a total net profit of 2 +
2 + 2α − 1 − 1 = 2 + 2α. In this case task t1 and t4
are not fulfilled.

Agent a1 prefers scenario 1, because it will receive not only
part of the profit for t1, but also part of the profit of the
more interesting task t4. (For example, if we assume that the
division of profit per task is done according to the Shapley

Table 2: Tasks and operators in the proof of Theorem 2
Owner Task Reward

a1 t1 = {o1} 2
t2 = {o2} 2

a2 t3 = {o1} 2 + 2α
t4 = {o2, o3} 2 + 2α

Owner Operator Cost
a1 o2 1
a3 o1 1

o3 2α

value (Shapley 1953), agent a1 will receive 1 + 1
3 instead of

just 1 in scenario 2.) This is in spite of the fact that scenario
1 is 2+2α

2 = 1 + α > α times as bad as scenario 2 for the
group as a whole.

To summarise, because agents cannot decommit or recon-
tract their contracts (cf. the footnote on page 1), contracts
are bilateral, and

1. they do not have complete information, or

2. they make selfish decisions,

any mechanism for multiagent task allocation under these
assumptions can end up with a very bad allocation, in theory.
The question now is: how strong are the consequences of
these results in practical cases?

Experiments
To know whether the worst cases mentioned in the proofs
above really occur in practice, we would need to study as
many (ideally all) realistic problem settings as possible. Ob-
taining such instances is, however, still future work. In this
paper we study the effect of the reasons for bad results by
generating random instances of the multiagent task alloca-
tion problem.

The random problem generator takes as input the follow-
ing parameters:

• the number of agents, operators and tasks, as well as

• probability distribution functions (pdfs) of operators and
tasks over the agents,

• a pdf to determine the operators required for the tasks, and

• pdfs for the operator costs and task rewards.

Given these pdfs, a multiset of (ground) actions O is gener-
ated, and each agent a ∈ A is assigned some of these ground
actions Oa v O (a multiset, i.e., with overlap). Further-
more, the costs are generated by the pdf for operator costs
for each action o/agent a combination: c(a, o). Finally, the
random problem generator creates a set of tasks Ta for each
agent a ∈ A, and selects for each task t ∈ T = ∪a∈ATa

the set of ground actions required to fulfill this task, and a
reward r(t).

To be able to study the effect of the reasons given in the
previous section, we constructed a specialised search algo-
rithm that can find centralised, optimal solutions for the gen-
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Figure 1: The relative social welfare of two methods on random instances of multiagent task allocation: locally optimal (selfish),
and local without information.

erated problems. This gives us a figure to compare the mul-
tiagent solution methods to. To be as fair as possible, we did
not implement separate solvers that focus on one of the pos-
sible reasons. Instead, we opted for a method with which
we can put restrictions on the search that our search algo-
rithm performs. These restrictions are carefully crafted to
simulate the effects of a distributed search. By enabling or
disabling restrictions, we can study each of the reasons in
isolation. In the remainder of this section, we present some
of our findings. In particular, we focus on two different cases
(in addition to the optimal, central case):

1. the case where agents make selfish decisions. The restric-
tion in this case is that we do not optimise the maximum
profit of the whole group of agents, but the maximum
profit for the auctioning agents. This means that an agent
will choose the task to allocate that is the most profitable
for him.

2. the case where agents have no information on the costs
of operators. The restriction here is that agents are not
given the precise costs of the operators of fellow agents.

Instead, it is given an approximation that it believes to be
true. Each agent bases its decision which task to auction
first upon this incomplete information.

In both cases, we assume individually rational agents. That
is, agents accept to take part in a task only if the reward they
are getting offsets their costs. To ensure this property, we
use the Shapley value (Shapley 1953) to fairly allocate the
total rewards of the tasks over the agents that cooperate to
undertake it.

For the initial experiments done for this paper we gener-
ated 400 random problems with 1 up to 80 tasks with the
following properties (uniformly random distributions unless
noted otherwise): 8 agents, between 50 and 200 reward per
task, between 3 and 6 operators required per task, between
5 and 15 operators available per agent, and a uniformly ran-
dom initial allocation of operators and tasks to agents. The
operator costs were drawn from the exponential distribution
with λ = 0.02. Figure 1 shows the social welfare of the two
methods mentioned above and the maximum social welfare
obtained by a centralised complete search. Each point in this



graph is the average of five random instances with the same
number of tasks.

From the graph we can see that making locally optimal
decisions does not lead to a huge decrease of performance.
The solutions achieved come within 87% of the optimal so-
lution on average. Concerning the decisions that have been
made without full information, however, we see that this sig-
nificantly worsens the found solutions (on average around
67% of the optimal solution). Moreover, this increases for
problems with more tasks (and more potential social wel-
fare). This can be explained by the number of tasks per
agent. If each agent has at most one task, local heuristics
for task ordering do not have any effect, whereas in situa-
tions where agents have 10 tasks on average, it does clearly
matter in which order these tasks are auctioned.

Remarkably, however, for none of the instances we see
the extreme behavior predicted by the previous section. Al-
though it is too soon to draw any conclusions from this ob-
servation, it is a hopeful indication that problem instances
where results can get arbitrarily bad are very rare.

Discussion
We started the investigation described in this paper to come
to understand the issue of inefficiencies for the multiagent
planning problem. As a first step, we focussed our atten-
tion on the multiagent task allocation problem. This is that
part of the solution to a multiagent planning problem that
describes which agents will undertake (to plan for) which
tasks. From the theoretical analysis we can conclude that
no mechanism exists that can approximate the optimal so-
lution for the task allocation problem with bilateral deals
when recontracting and decommitment is not allowed. This
is a bit unexpected, because we know that for the multidi-
mensional knapsack problem a polynomial time approxima-
tion scheme (PTAS) exists (Kellerer, Pferschy, & Pisinger
2004). This can be entirely attributed to the fact that we are
studying a multiagent variant of this problem. When agents
are involved that are individually rational, the problem gets
harder, because of lack of information, and a reduction of
the possible decisions.

Let us look at this difference from the point of searching.
First consider the situation where all information and control
is available centrally, either because all agents are coopera-
tive, or because of the use of an incentive compatible mech-
anism like VCG. In this case the problem is equivalent to
the multi-dimensional knapsack problem, so we know that
there exists a PTAS. Assuming P6=NP, we also know that
there are instances for which we need exponential time to
find the optimal solution. For example, this problem can be
optimally solved by an A*-search (Hart, Nilsson, & Raphael
1968) through the combinations of tasks to fulfill.

A mechanism to find a solution in a multiagent context
without recontracting, can also be seen as a search. In this
case, however, the search is restricted. Firstly, when a con-
tract between agents is made, this cannot be changed any-
more. In the search this means that there are choices from
which back-tracking is not allowed. Moreover, agents make
selfish decisions, so certain choices in the search space are
not explored. For example, if decisions have to be made by

an agent that will be worse off for particular choices. Finally,
when agents have incomplete information, the available in-
formation for making these choices is limited. Also in this
light, it is no wonder that such a mechanism may turn up
with arbitrarily bad results in some instances.

Therefore, when designing a system, we should try to
prevent these situations as much as possible. One way is
to introduce a mechanism such that agents can get back
on made agreements, such as levelled commitment (Sand-
holm & Lesser 2002), or by introducing a pre-commitment
phase (Aknine, Pinson, & Shakun 2004). When this is not
possible, we should try to

• give agents at least a realistic estimate on the costs of ac-
tions and/or resources, and

• let agents behave a bit more socially, such that they refrain
from making egoistic decisions that lead to a much lower
social welfare.

We have seen that the results of multiagent task allocation
can be arbitrarily bad in theory. However, in practical appli-
cations, it does not seem that bad. Why is that? We think
this can be explained from two facts. Firstly, in reality, the
costs of actions are usually approximately known, and sec-
ondly, for most situations, there is no strict limit on the avail-
able operators. When demand is high, price increases, but
the examples in the proofs show that problems mainly arise
when tasks cannot be fulfilled because of limited availability
of operators. However, to go beyond such speculative argu-
mentation, and to be able to take advantage of our results,
we need to thoroughly examine realistic cases.

Besides studying more realistic cases, we would like to
find out under which conditions problems are such that a
multiagent approach may lead to very inefficient solutions.
Does a phase transition effect occur, similar the threshold
phenomenon in satisfiability (Achlioptas 2001) and many
other NP-hard problems? If so, we are very interested to
discover such an effect.

Just as importantly, we have to investigate how these
results translate back to the general distributed multiagent
planning problem. We know that task allocation is a vital
part of that problem so the negative theoretical results are
just as applicable to planning as they are to task allocation.
However, just as we rarely encounter instances correspond-
ing to these negative results in task allocation, we seem to
rarely encounter such instances in (distributed) multiagent
planning. It would be interesting to understand how these
two facts relate. Again, more realistic cases might shed a
better light on this issue. This is therefore an avenue that we
plan to pursue.
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