Using constraint programming to model complex plansin an integrated
approach for planning and scheduling

Antonio Garrido, Eva Onaindia, Marlene Arangu
Dpto. Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia (Spain)

{agarri dot, onai ndi a, mar angu}@isi c. upv. es

Abstract

The objective of this paper is to present an integrated
architecture for planning and scheduling (P&S) and,
more particularly, the role of a constraint program-
ming module (scheduler) within this framework. The
underlying idea is to have two separate modules, a
planner and a scheduler, solving jointly a P&S prob-
lem. In this collaborative framework, we have firstly
focused our research on the modelling of a plan with
complex P&S constraints as a CSP. Then a CSP solver
takes as input the plan along with all its constraints and
validates such a plan. The model presented in this pa-
per can also be easily extended to solve P&S problems
rather than just validating plans.

Introduction and motivation

The resolution of P&S problems has followed two
different perspectives. In one of the research direc-
tions, the temporal planning approach, the objective
is to extend planning to cope with scheduling ca-
pabilities, that is augmenting the planning reason-
ing capabilities in order to handle time and resources
(Chen, Hsu, & Wah 2005; Gerevini et al. 2004;
Ghallab, Nau, & Traverso 2004). In the other di-
rection, planning embedded into scheduling, the solu-
tion consists of including planning capabilities into a
scheduler (Smith & Zimmerman 2004). In this latter
approach, the starting point is usually a pre-planned
set of ordered activities and planning is called each
time it is necessary to release, set up or make any
problem component available. However, it is possible
to come up with a more general and flexible model
where both P&S have an important role in the prob-
lem solving, which is a hot topic of research. We use
such a model to combine a planning solver and a CSP
solver (acting as a scheduling module) as presented in
Figure 1, which depicts the structure of our integrated
architecture:

e Theinputdata. The input is the problem model (do-
main+problem definition in any specification lan-
guage, e.g. PDDL3 (Gerevini & Long 2006)). Ad-
ditionally, we allow an extension of the model by
incorporating further constraints like quantitative
temporal restrictions or more sophisticated local
conditions for actions. The overall problem defi-
nition is divided into two parts: the propositional
part that includes those aspects related to the causal
structure of the problem and the additional con-
straints which comprise the numeric constraints,
the preferences and hard constraints and the extra
constraints of the extended model. By separating
the problem modelling into these two parts we can
use a classical planner, as simple (in terms of ex-
pressivity and calculus) and efficient as possible, to
solve the propositional component of the problem.
Moreover, we might even use an input plan gener-
ated by the user as a sequence of activities. It is
important to note that this plan may abstract out the
scheduling (time+resources) requirements, i.e. the
plan does not need to be executable because the ob-
jective of the integrated module is precisely to re-
pair a given plan and make it fully executable w.r.t.
all the scheduling requirements. To sum up, we can
use a pure STRIPS planner or a PDDL planner or a
hand-tailored plan. The output will be, in any case,
a skeleton plan or causal structure for the problem
at hand. Obviously, the more advanced method we
use for generating the plan, the better plan quality.

e The modelling. The second step in our framework
is the problem formulation. Instead of encoding
planning structures (a planning graph, for instance)
(Kambhampati 2000), we encode the plan causal
structure and the additional constraints as a CSP.
Thus, this paper shows, in detail, the formulation of
plans with complex constraints based on the works
of (Refanidis 2005; Vidal & Geffner 2006). We can
undertake the modelling of a complete plan as a

Problem model
‘domain+problem;

part

additional
constraints

PLANNER

PLAN
(propositional level)

il

T

MODELLING:
- variables (actions+conditions+ occ. time)
- basic planning constraints J

[other cons.: preferences, hard cons.}

K

CSP Solver
(scheduler)

| -additional complex consraints
- numeric constraints

Planning Solver

feedback

INTEGRATED - (violated constraints)
Validator \—>
MODULE —

Planning
resolution

Action
Selector feedback
(domain choices)

Validation OK (next piece of the plan)

Figure 1: Structure of the integrated architecture.

whole or either a piece of it. The underlying idea is
to check the plan piece by piece (where a piece can
be a single action or a subplan) so as to perform an
incremental validation of the given plan.

e The CSP solver. Once all plan constraints are en-
coded, a CSP solver implemented under Choco? is
called. The main job of the CSP solver is to act
as a validator by checking the plan constraints and
allocating the occurrence time of propositions and
actions. If the plan is valid, the CSP solver is in-
voked again with the next piece of the plan and the
same procedure is applied again. At this point, it
is important to remark that the CSP solver cannot
only act as a validator but also as an action selector.
If the encoding of the causal structure considers dif-
ferent choices of supporting the actions conditions,
then the CSP solving process will be contributing to
plan or take decisions about which actions must be
used as supporters. This issue is also commented
in more detail in our formulation section. All in all,
our idea in mind is not to specifically use a CSP
solver as a planning solver but to help the planning

Choco is a java library for constraint satis-
faction problems that can be downloaded from
http://choco. sour cef or ge. net

solver take some decisions during the process.

e The Planning solver. If the validation fails, the CSP
solver calls the planning process in order to jointly
solve the flaw. The CSP solver will provide the
planning solver information about the violated con-
straints found during the resolution. This feedback
will help the planning solver determine the source
of the problem and take the most appropriate action
to overcome the flaw:

1. The plan may need to be repaired or even some
replanning might also be necessary; in such a
case, the planning solver will update the input
plan by adding/deleting actions.

2. Another possibility is to use the CSP solver as
an action selector to discover the best support-
ers for actions. Through the use of heuristic es-
timations the planning solver can determine the
set of the most appropriate candidates for sup-
porting actions (domain choices) and let the CSP
solver take the final decision. That is, the plan-
ning solver performs an intelligent filtering and
pass the resulting information to the CSP solver.

As it can be observed, the three crucial points in
this integrated framework are: i) the feedback pro-
vided by the CSP solver to the planning solver, ii) the
data about the domain choices that the planning solver
provides the CSP solver, and iii) the planning solver
decision of either letting the CSP solver undertake the
flaw resolution or opting for modifying the input plan.
These three relevant processes are marked with grey
arrows in Figure 1.

More specifically, the rest of this paper focuses on
the role of the CSP solver as a validator and as an ac-
tion selector. Our main contribution is the proposal
of a plan formulation that includes very expressive
complex (additional) constraints and shows how eas-
ily this formulation can be extended to find a plan (ac-
tion selection).

Extra constraints in the extended model

Our combined model for P&S includes new fea-
tures and complex constraints between actions (per-
sistences, precedences, temporal windows, etc.) along
with numeric capabilities to manage continuous re-
sources. More particularly, the extra features that can
be modelled by using our constraint programming for-
mulation are:

e A more elaborate model of actions. First of all,
the duration of the actions does not need to be a
fixed value, but it can change within a known in-
terval. Moreover, the possibilities when requir-
ing conditions and generating effects go beyond

P
at ?pin ?c1

Cond($,a)
fuel_level ?pin > 1000

a
fly ?pln ?¢1 ?2c2

er
—at ?pin ?c1

ez
at ?pin ?c2

1 es
at ?pin ?terminal

€4
fuel_level ?pin -= fuel_used ***
P

S(a)-30 S(a) E(a) E(a)+5
Figure 2: Example of a simple fly action with a more
elaborate model of conditions and effects.

the conservative model of actions used in (Vidal &
Geffner 2006), and the non-conservative one used
in PDDL2.1 (Fox & Long 2003) and its succes-
sors (Gerevini & Long 2006). On the one hand,
our model allows conditions to be required in any
interval of time that can be placed totally, par-
tially or even out the execution of the action (see
Figure 2). This is interesting since it allows to
model conditions that do not fall within the exe-
cution of the actions, i.e. real preconditions to be
satisfied some time before the actions start. For
instance, in Figure 2 the propositional condition
at 7pln 7cl is required since 30 time units before
the action fly starts, and the numeric condition
fuellevel Tpln > 1000 is required beyond the
end of the action, i.e. after the execution of the
action. On the other hand, effects can also be gen-
erated at any time (within or outside the execution
of the action) and persist throughout some time that
can be easily specified. In Figure 2 there exist three
effects: e; is generated when fly starts and persists
until it ends, whereas e, and e3 have an infinite per-
sistence. Additionally, e3 is generated 5 time units
after the action finishes because it is necessary the
plane traverses the airport segments to arrive at the
terminal.

e Precedence constraints between actions. In addi-
tion to the implicit qualitative constraints of causal
links, it is now possible to model explicit order-
ing constraints between actions, thus including any
combination between their start and end times, such
as start-start, start-end and so on.

e Temporal constraints between propositions, actions
and propositions-actions. Similarly to precedence
constraints, our model considers quantitative tem-
poral constraints between the generation times of

propositions, the start/end times of actions and any
combination between them.

o Deadlines in actions and goals. Actions and goals
can now be required before a particular deadline,
which may constrain the structure of the plan. This
allows to model top-level goals to be satisfied not
only in the end of the plan, but also at any time
during the execution of the plan. This is particularly
interesting when it is necessary to accomplish some
intermediate goals but they do not have to persist
until the end of the plan.

e Temporal windows (like timed initial literals of
PDDL2.2 (Edelkamp & Hoffmann 2004)) either for
propositions or actions. External constraints can in-
clude limitations on the availability of some propo-
sitions (e.g. sunlight availability is limited), or time
intervals when actions must be executed (e.g. ac-
tions must only occur during opening times, or fit-
ted within a particular schedule).

e Capabilities for numeric expressions to manage
continuous resources, such as energy, profit, etc.
Dealing with numeric features helps encode com-
plex constraints (inequalities) on the expressions
(e.g. energy > 150) and numeric assignations
(e.g. profit+ = 50). Additionally, this also allows
to define multiobjective optimisation that com-
bines logical (propositional) and numeric expres-
sions.

Formulating plans and complex
constraints via constraint programming

Once the structure of causal links of the input plan is
obtained, the plan and all the complex constraints that
need to be satisfied are formulated via constraint pro-
gramming (see Figure 1). This formulation builds on
the basis of the POCL formulation presented in (Vi-
dal & Geffner 2006), and is extended with the fea-
tures presented in the previous section. We introduce
the constraint programming formulation in two parts.
First, we focus on the propositional part, which con-
sists of the definition of variables, basic planning con-
straints, and additional complex constraints. Second,
we present the extension for including numeric capa-
bilities, which defines the variables and planning con-
straints.

Formulating the propositional part of the
plan

Variablesand domains The variables are basically
used to define actions in the plan and conditions? re-

2Note that we use the term condition instead of precon-
dition since conditions can now be required in any position

quired by actions, along with the actions that support
the conditions and the time when these conditions oc-
cur (time is modelled in R). We also include two
dummy actions Start and End; Start supports the
propositions of the initial state, whereas End requires
the problem goals. These variables, the domains and
their description are shown in Table 1.

The meaning for most variables in Table 1 and
Reqsiart(p, a), Reqena(p, a) require a deeper expla-
nation. The variable Persist(p, a) allows to model
persistences (to simulate different states in proposi-
tions) in a very flexible way, based on the action
b; that supports p, and the action a for which p
is supported. For instance, if Sup(p,a) = b, the
value for Persist(p,a) is given by b;, whereas if
Sup(p,a) = b; such a value is given by b;. Fur-
thermore, if Sup(p,a’) = b;, i.e. action b; also sup-
ports p for action o', the value for Persist(p,a’) can
be different to Persist(p,a). Therefore, the persis-
tences may depend on two factors: i) the action b;
that generates p, and ii) the action a that requires
p. Note that a value Persist(p,a) = oo repre-
sents the infinite persistence used in traditional plan-
ning (once an effect is generated it only disappears
when it is explicitly deleted by an action). On the
other hand, the variables Reqstart(p, @), Reqend(p, a)
(obviously, Reqstart(p,a) < Regena(p,a)) provide
a high expressivity for dealing with conditions, al-
lowing to represent both punctual conditions (when
Reqsiart(p,a) = Reqena(p, a)) and conditions that
are required throughout a longer interval.

Basic planning constraints The basic planning
constraints consist in creating the relations between
the variables, assigning its initial values and imposing
disjunctions to solve the threats and the mutex rela-
tionships. The constraints are defined for each vari-
able that involve action a or condition p for a. These
constraints and their description are shown in Table 2.

The two first constraints in Table 2 are simple. Init-
Reqstart(p, a), Regend(p, a) initialises the time inter-
val when each condition p is required in a, as pro-
vided in the action description. For instance accord-
ing to Figure 2, Regstart(p,a) = S(a) — 30 and
Regend(p,a) = S(a). As can be seen, the three
types of conditions introduced in PDDL2.1 can be
simply managed as: i) at start: Regstart(p,a) =
Reqenda(p,a) = S(a), ii) over all: Regstart(p,a) =
S(a) A Regend(p,a) = E(a), and iii) at end:
Reqstart(p, a) = Regend(p,a) = E(a). Other types
of condition requirements can be defined similarly.
Init-Time(p, a), Persist(p,a) is a conditional con-

(before, immediately before, some time during, immedi-
ately after, etc.) w.r.t. the execution of the action.

straint that initialises the two variables depending on
the action that supports p for a. According to Fig-
ure 2, if a is the action that supports e3 for a new ac-
tion b, the initialisation is: Time(es,b) = FE(a) + 5
and Persist(es,b) = oo. The two last constraints
are included to solve threats and mutexes. In the first
case, a disjunction to promote or demote the action
that provokes the threat is posted. In the second case, a
distinct constraint is posted to avoid the simultaneous
modification (effects interference) of the same propo-
sition p. In Figure 2, assuming that a new action b
requires proposition e1, the two resulting constraints
are: (S(a) < Time(e1,b))V (Regend(er,b) < S(a))
and (S(a) # Time(e1,b)), respectively. Note that
the mutex constraint does not prevent two actions that
are mutex from overlapping in any way (as it hap-
pens in a conservative model of actions). On the con-
trary, in our model the actions cannot change the same
proposition simultaneously, but they can still partially
overlap.

Additional complex constraints Using constraint
programming makes easier the formulation of com-
plex constraints (precedences, persistences, etc.) that
are not usually included in traditional planning. Fol-
lowing this line, the constraints that can be modelled,
together with their description are shown in Table 3.

Formulating the numeric part of the plan

The previous purely propositional representation is
not adequate to model numeric variables that express
the use of continuous resources in actions. Fortu-
nately, we can extend the constraint programming
model to formulate the numeric part of the plan, thus
including the numeric variables used in the conditions
and effects of the actions. We denote these numeric
variables as fluents to avoid confusion with the vari-
ables of the constraint programming model. Like in
the formulation of the propositional part of the plan,
we first introduce the variables of the model and later
the basic constraints that involve such constraints.

Variables and domains The meaning of the vari-
ables are very similar to those defined in Table 1, but
now related to fluents instead of propositions (see Ta-
ble 4). We split the variables into three groups. First,
the variables that are necessary for supporting each
fluent (Sup(¢, a) and Time(o, a), for each action a
that has ¢ as a condition or effect). Second, the vari-
ables that are necessary if action a requires ¢ as a nu-
meric condition (Regstart(p,a) and Reqend(d,a)).
Finally, the variables that are necessary to propagate
the value of ¢ throughout the variables of the model
(Vactual (¢, @) and Vipaarea (6, a)). All these variables
and their description are shown in Table 4.

Variable Domain Description
S(a), E(a) [0, 0] Start and end time, respectively, of action a. Clearly, S(Start) = E(Start) = 0
and S(End) = E(End)
dur(a) [durmin(a), Duration of the action within two positive bounds. Clearly, dur(Start) =
durmax(a)] dur(End) =0
Sup(p, a) {bi} | bi Symbolic variable with the supporter b; that represents the causal link b; = a.
adds p for a Although given a plan only one action supports p for a, we define the domain of
Sup(p, a) as as set to keep it more general for additional extensions (see section
Using the CSP solver as an action selector)
Time(p,a) [0, 0] Time when the causal link Sup(p, a) happens, i.e. the time in which the action b;
selected as a value for variable Sup(p, a) generates p
Persist(p,a) 0, 00 Persistence of condition p for a

R€QStart(p7 CL), 07 oo
Regena(p, @)

Interval [Regstart(p, @), Regena(p, a)] in which action a requires p

Table 1: Definition of propositional variables and domains.

Constraint

Description

S(a) + dur(a) = E(a)

Start-End: tiethe start and end of action a

E(a) < S(End)

FE-FEnd: places action End as the last action in the plan

Reqstart(p,a) = S(a)/E(a) + x,x € R
Regena(p,a) = S(a)/E(a) + z,z € R

Init-Regstart(p, a), Reqgend(p,a): assigns the initial value according to
the definition of action a and its condition requirements

if Sup(p,a) = b; then
Time(p, a) = time when b; adds p
Persist(p,a) = persistence given by b;

Init-Time(p, a), Persist(p,a): conditional constraint that assigns the
initial value according to the definition of a

Time(p,a) < Reqstart(p, a)

Causal link: forces to support p for action a before a requires it

Vb; € Sup(—p)
time(b;, ~p) < time when b; deletes p
(time(bi, —p) < Time(p,a))V
(Regend(p, a) < time(bi, —p))

Threat resolution: assuming Sup(—p) contains the actions that delete p,
it solves the threat that such actions provoke to the causal link Sup(p, a)
by using promotion or demotion

Vb; € Sup(—p)
time(b;, ~p) < time when b; deletes p
time(bs, ~p) # Time(p,a)

Mutex resolution: assuming Swup(—p) contains the actions that delete p, it
solves the mutex situation with action that supports p of a

Table 2: Definit

Constraint

ion of propositional basic planning constraints.

Description

Vari comp-op Vars +z,z € R

Precedence and quantitative temporal constraints, which can involve
propositions, actions and propositions-actions. This constraint is
very flexible and can represent any combination of Var.,Vars €
{Time(p, a), Reqstart(p, a), Reqena(p, a), S(a), E(a)} and conp- op
€ {<,<,=,>,>,#}, such as S(Start) + 100 < E(End) that restricts the
plan makespan

Regena(p,a) < Persist(p, a)

Persistence constraints: states that the upper bound of the interval of a condi-
tion requirement never exceeds the value for the persistence of such a condition

Vari <z,z € R

Deadlines, which can involve the start/end times of actions or propositions,
where Vary € {S(a), E(a), Time(p,a)}

min(tw(p)) < Regstart(p, a)
S_RGQ(»:'rLd(py CL) < max(tw(p))
min(tw(a)) < S(a)

< E(a) < max(tw(a))

Temporal windows, which encode external constraints that propositions and
actions must hold, where tw(p) and tw(a) are the temporal windows for p and
a, respectively

Expression(Vary,Vars ... Vary)

Other customised derived constraints, which encode more complex constraints
among several variables of the problem

Table 3: Definition of propositional additional complex constraints.

Variable Domain Description

Sup(¢,a) {b:} | b; supports Symbolic variable with the supporter b; of ¢. Similarly to Sup(p, a), we define
¢ fora the domain of Sup(¢, a) as as set to keep it more general

Time(¢,a) 0, 00 Time in which the action b; selected as a value for variable Sup(¢, a) updated ¢

R€QStart(¢7 a)7 07 oo
Regend (¢, a)

Interval [Regstart(¢, a), Reqena(®,a)] in which action a must satisfy the nu-
meric condition Cond(¢, a) (see description in Table 5)

Vactuai (6, a) [—00, 0] Actual value of fluent ¢ at time Req start (P, a) if a requires Cond(¢, a). Other-
wise, Vacrual (¢, a) encodes the actual value of ¢ at time S(a)
Vupdated (@, a) [—00, o] Value that a updates for fluent ¢. This variable is only necessary if a modifies the

value of ¢

Table 4: Definition of numeric variables and domains.

Note that the main difficulty in this formulation is
how to find out which action supports each fluent ¢
and how to propagate its value throughout the vari-
ables of the model. First of all, when dealing with
fluents the term support is not very appropriate since
there is no a particular action that produces a fluent,
and many actions {b;} can update it. Therefore, the
variable Sup(¢, a) will contain the last action b; that
updated the fluent ¢ before executing a, thus propa-
gating its value to a. Additionally while propagating
this value, the necessity of Viciuai (6, a) is twofold.
First, if there exists a numeric condition on ¢ in a,
Vactual (¢, a) stores the value of ¢ (that must obvi-
ously satisfy the numeric condition). Second, if there
exists a numeric effect on ¢ in a (i.e. Vipdatea(9,a)
is present), Vicruai (¢, a) stores the initial value to
help calculate the updated value because the effects
of a can increase or decrease such an initial value
(for instance, in Figure 2 the effect e, is calculated
as Vupdated(¢7 a) = Vactual (¢a a) - fuel—used)'

Basic planning constraints Basically, these con-
straints represent the same relations that the planning
constraints of the propositional part of the plan and
they are shown in Table 5.

The main differences w.r.t. the propositional basic
constraints are twofold. First, Cond(¢,a) that rep-
resents the numeric condition that Vcuai (¢, a) must
satisfy (see Figure 2). Second, the assignment of
Vactual (¢, @) Which represents the true propagation of
the value of ¢ from the value updated by b; to the ac-
tual value of a. Moreover, note that the mutex res-
olution only prevents from updating the same fluent
simultaneously. In some cases, a stricter constraint
might be generated, preventing two actions that up-
date the same fluent from overlapping in any way. Fi-
nally, like in the propositional part, additional com-
plex constraints could be generated among the vari-
ables of the model.

Using the CSP solver as an action selector

The CSP solver can be used not only to validate the
plan formulated via constraint programming, but also
as an action selector that helps the planner discover
the best supporters for actions (see Figure 1). In order
to perform this selection, two extensions are needed:

e The domain of variables Sup(p, a), Sup(¢, a) will
now contain all the action choices the planner pro-
vides the CSP. This way, the supporting action is
not uniquely decided by the planner, but the sched-
uler also takes part in choosing the best action ac-
cording to the model, thus considering all complex
constraints. The domain of these variables will
be now larger and therefore this implies a higher
branching in the CSP solving process. Therefore,
this makes more necessary the use of heuristic es-
timations to bound and prune inadequate alterna-
tives.

o New activation variables are required to activate the
variables related to the action selected by the CSP.
For instance, if the planner provides Sup(p,a) =
{b;,b;} and the CSP selects b;, all the variables
S(bz), E(bl), dUT’(bi), S’U,p(pi, bz), S’U,p(d)i, bz) and
so on, and the constraints that involve these vari-
ables need to be activated in the model, while vari-
ables related to b; will not be considered. This gen-
eral formulation can be done following the process
of selecting supporting actions presented in (Vidal
& Geffner 2006).

A simple example

Let us consider a simple problem of the traditional
Zenot ravel domain of IPC (Fox & Long 2003;
Edelkamp & Hoffmann 2004) to board (bd), transport
(fly) and debark (db) a person pers in a plane pin
from city cl to ¢2. We assume that bd requires the
plane in c1 until 10 units after bd ends (E(bd) 4 10),
fly requires more than 1000 I. of fuel and consumes
800 I., and generates the effect of being in the termi-
nal of ¢2 (ready for pers to debark) 5 units after end-

Constraint

Description

Cond(¢, a)=condition

Numeric condition: assignment of the condition constraint that ¢ must ac-
complish for a in [Regstart(d, a), Regena(@, a)]. It simply consists in ini-
tialising the constraint as Cond(¢, a) = Vactuai($, a) cOMp-op z,x € R,
where conp- op € {<, <,=,>,>, #} according to the action definition

Reqstart(d,a) = S(a)/E(a)+z,2 €R
Reqend(¢,a) = S(a)/E(a) + z,x € R

Init-Regstart (¢, a), Regena(®, a): assigns the initial value according to the
definition of action a and its numeric condition requirements

Vaupdated (¢, a)=modification/assignment

INit-Viupaatea(P, a): consists in creating the initialisation, based on a modifi-
cation of Victuai (¢, a) or on an assignment of an absolute value

if Sup(¢,a) = b; then
Time(¢,a) = time when b; updates ¢

Init-T'ime(p, a), Vactual (¢, a): conditional constraint that assigns the initial
value according to the definition of a

Viactual (¢7 a) = Vupdated(¢7 bz)

Tim6(¢7 a) < Req.star't(¢7 a) Causal link

Vb; that updates ¢ | b; & Sup(®, a)

time(bi,) « time when b; updates ¢ Threat resolution: represents the disjunction to avoid the update of ¢ between

(time(bi,) < Time(p,a))V
(ReQEnd(¢7 a‘) < tzme(b“ d)))

Time(¢,a) and Regena(Pp, a)

Vb; that updates ¢ | b; € Sup(¢,a)
time(bs, ¢) < time when b; updates ¢
time(b;, ®) # Time(¢, a)

Mutex resolution: prevents two actions from updating the same fluent ¢ si-
multaneously

Table 5: Definition of numeric basic planning constraints.

bd(pers,pln,c1)
dure [1,2], 0.1

ref(pin,c1)
dure [2,4], 0..2

fly(pIn,c1,c2)
dure [10,15], 12..22/+5

db(pers,pIn,c2)
dure [2,3], 27..29

Figure 3: Plan for the application example. The pos-
sible durations are represented between brackets. The
execution time validated and allocated by the CSP is
represented in bold font.

ing (E(fly) + 5). The input plan, with the durations
of each action and the basic causal links, is shown in
Figure 3. This plan is then formulated via constraint
programming as shown in Table 6. For lack of space,
only the variables and constraints where action fly is
involved are represented in that table, but the others
are defined analogously.

The CSP solver validates the model of the plan by
satisfying all the constraints. If the plan is valid the
CSP allocates the execution times, as shown in Figure
3. Otherwise, the CSP informs about the constraint
that could not be satisfied. For instance, if the prob-
lem posts a deadline on the plan makespan, such as
E(End) < 25, the CSP informs that the plan is in-
valid because that constraint generates a contradiction
and the plan needs to be repaired (see Figure 1).

Conclusions

In this paper we have presented a formulation to en-
code a plan with complex constraints as a CSP. The
formulation presented here is highly influenced by the
work in (Vidal & Geffner 2006) though there exist
several differences: i) our model contemplates the for-
mulation under a very expressive, non-conservative
temporal model, ii) the modelling of additional con-
straints, and iii) the formulation of numeric fluents.
Unlike (Vidal & Geffner 2006), our main purpose was
the formulation of a plan rather than a problem in or-
der to incorporate such a modelling as a part of an an
integrated P&S module. In this sense, our interest is
to develop a planning solver that cooperates with the
CSP solver in the process of finding a plan. It is im-
portant to highlight that the overall approach could be
also used to solve a problem starting with an empty
initial plan because the formulation can be extended
to model a problem (like in (Vidal & Geffner 2006))
instead of simply a plan; in this case, the CSP solver
would always work as an action selector which we
actually intend to use to ease the planning solver task.
Our current work focuses on the feedback that the two
modules provide each other and on the repair/replan
activities of the planning solver.

Acknowledgments

This work has been partially supported by the Span-
ish government project MCyT TIN2005-08945-C06-
06 (FEDER) and by the Valencian government project
GV06/096.

Variables

Constraints (propositional+numeric)

S(fly), E(fly) € [0,]

dur(fly) € [10, 15]
Sup(pln_cl, fly) € {Start}
Sup(fuel_pln, fly) € {ref}
Vactual (fuel—pln7 fly) € [_007 OO]
Vupdated(fuel—plnv fly) S [_OO’ OO]

S(ty) + dur(Fly) = E(Ty)
B(fly) < S(End)
Regutart (pin_cl, fly) = S(fly); Reqena(pln_cl, fly) = S(fly)
if (Sup(pln_cl, fly) = Start)
Time(Sup(pln_cl, fly) = E(Start)
Persist(pln_cl, fly) = oo

Time(pln_cl, fly) < Reqstart(pln_cl, fly)
(S(fly) < Time(plncl,ref)) V (Regena(pln-cl,ref) < S(fly))
S(fly) # Time(pln_cl, bd); S(fly) # Time(pln_—cl,ref)
Cond(fuel_pln, fly) = (Vactuai(fuel_pln, fly) > 1000)
Regstare(fuel_pln, fly) = S(fly); Regena(fuel pln, fly) = E(fly) +5
Vaupdatea(fuel_pln, fly) = Vactuai(fuel _pln, fly) — 800
if (Sup(fuel_pln, fly) = ref)

Time(fuel _pln, fly) = E(ref)

Vactual (fuel—pln7 fly) = Vupdated (T@f)
Time(fuel_pln, fly) < Reqstart(fuel pln, fly)
(E(Start) < Time(fuel_pln, fly))Vv

(Regena(fuel_pln, fly) < E(Start))

E(Start) # Time(fuel_pln, fly)

Table 6: Variables and constraints for the action fly of the application example. We have used integer domains

because real variables are still under development in Choco.

References

Chen, Y.; Hsu, C.; and Wah, B. 2005. Subgoal parti-
tioning and resolution in SGPIlan. In Proc. System
Demonstration Session, Int. Conference on Auto-
mated Planning and Scheduling (ICAPS-2005), 32—
35.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2:
the language for the classical part of IPC—4. In
Proc. Int. Conference on Automated Planning and
Scheduling (ICAPS-2004) — International Planning
Competition, 2-6.

Fox, M., and Long, D. 2003. PDDL2.1: an ex-
tension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research
20:61-124.

Gerevini, A., and Long, D. 2006. Plan constraints
and preferences in PDDL3. In Proc. Int. Conference
on Automated Planning and Scheduling (ICAPS-
2006) — International Planning Competition, 7-13.

Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P.
2004. Planning in PDDL2.2 domains with LPG-TD.
In Proc. Int. Conference on Automated Planning and
Scheduling (ICAPS-2004) — International Planning
Competition, 33-34.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Au-
tomated Planning. Theory and Practice. Morgan
Kaufmann.

Kambhampati, S. 2000. Planning graph as (dy-
namic) CSP: Exploiting EBL, DDB and other CSP

techniques in Graphplan. Journal of Artificial Intel-
ligence Research 12:1-34.

Refanidis, I. 2005. Stratified heuristic POCL tempo-
ral planning based on planning graphs and constraint
programming. In Proc. ICAPS-2005 Workshop on
Constraint Programming for Planning and Schedul-
ing.

Smith, S., and Zimmerman, T. 2004. Plan-
ning tactics within scheduling problems. In Proc.
ICAPS-2004 Workshop on Integrating Planning Into
Scheduling, 83-90.

Vidal, V., and Geffner, H. 2006. Branching and
pruning: an optimal temporal POCL planner based

on constraint programming. Artificial Intelligence
170:298-335.

