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Abstract

In this paper we compare classical and activity/constraint-based formalisms for for-
mulating planning domains. From this comparison we argue that it is desirable to create
an abstract (graphical) notation for describing conceptual models of domains that could
be translated to classical and/or formalisms after refinement. This may help to clarify the
relationships between different language families. We describe work in progress to create
a graphical interface for knowledge acquisition (GIPO IV) that encapsulates this abstract
view.

1 Introduction

Deploying software agents that can synthesise courses of action from precise and detailed
knowledge in a real, continuously changing environment (such as in the Mars Rover appli-
cation [4]), is a particularly difficult feat of engineering. The control mechanisms of such
applications need to be able to represent and reason with accurate knowledge of such phe-
nomena as movement, resource consumption, and unpredictable environmental conditions.
Representation of real world phenomena such as continuously changing processes and uncer-
tainty in a form that can be reasoned with is still a great challenge for AI [3]. In particular,
many environmental occurrences are outside the explicit control of plan execution, yet have
to be reasoned with during activity generation. Research to automate planning in domains
which contain such continuous processes is important and ongoing in several research groups
(eg in the Universities of Toronto and Strathclyde [18, 12]). However, there has been little
research into the acquisition and formulation of such application knowledge.

There are are many well known areas within computer science where formalisation is ap-
propriate, ranging from examples describing the properties of computer hardware using the
temporal logic-based standard PSL, to formally recording the requirements of software in Z, to
capturing the dynamics of hybrid systems [6]. The importance of the representation languages



for representational adequacy, reasoning, and tool support has been recognised throughout
these areas. Languages for domain formulation in planning applications also require these
properties: the difference is that for planning, the language must be adequate to be used
as a basis for the automated synthesis of plans. Looking at the wider context of encoding
of dynamical systems this can be a subtle point: while conventional formulations generally
support simulation, in planning the formulations are used as the basis to synthesis another
formulation (the plan) which can then be used in simulation.

The importance of knowledge engineering - particularly the acquisition and formulation pro-
cesses - to the success of real applications of planning has been well documented in the
development of space and military applications [8, 9, 13] as well as in more recent semantic
web applications [20, 14]. From their analysis of the characteristics of the application area,
firstly, developers must choose an appropriate existing knowledge representation language,
or try to extend an existing one, or develop one in-house. The problem is that there is a
wide range of language families, and it is not clear what languages are appropriate for what
applications, and what similarities and differences lie between existing languages. Secondly,
the developers are faced with the arduous problem of formulating knowledge in the chosen
language. Invariably this would entail the construction of in-house tools and processes to aid
this phase of engineering.

Our work is aimed at alleviating the problems described above. To this end we are striving to
find abstract graphical notations or visual metaphors expressive enough to aid the formulation
of applications involving complex dynamics. We are researching appropriate tools that can
potentially translate the graphical notations to an appropriate formulation, given the acquired
knowledge and environmental factors. This will help knowledge engineers explore different
formulations of a planning domain at an early stage.

In this paper we compare two families of formalisms which represent very different views of
the planning problem: domain representation languages for constraint-based planning and
scheduling, and for classical planning. For the former, we focus on the formalism called
NDDL which is used by NASA Ames for space applications. NDDL and classical planning
formalisms typified by PDDL have the same aim: to encode the dynamics of a domain; but
they differ in approach, and in syntax and in semantics. Using the competition version of
the GIPO III tool [1], we show how it is possible to develop a domain model of the mars
rover example using a classical approach. This comparision highlights the strengths of both
NDDL and GIPO as tools for planning knowledge formulation. In the following section
we introduce GIPO IV, which has been partially implemented as a successor to GIPO’s
competition configuration. GIPO IV is an attempt to create an interface which a developer
uses to encode dynamic knowledge, and from which formalisms such as PDDL or NDDL can
be automatically generated as appropriate to the application.

2 Constraint-based Planning and Scheduling: NDDL

Working in the area of space technology, scientists have developed application-oriented lan-
guage families for knowledge formulation such as HSTS [15] and DDL [7]. NASA Ames evolved
their current language NDDL in-house to formulate their specific type of applications. One



encodes a domain in NDDL in an object oriented fashion, with object instances representing
persistent actions called entities. These entities naturally form contiguous timelines for each
object instance, so that at each point in time an object is engaged in some activity (even at
rest). Each entity on a timeline is called a token, and has a duration (or duration interval, to
capture the uncertainty of how long actions will take). At the heart of NDDL is the character-
istic that there is no explicit difference between action and state. The difference is effectively
blurred, as tokens represent occurring actions, as well as implicitly holding the state of the
system. In NDDL one defines classes of objects, where each object instance has its temporal
description given by tokens.
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Figure 1: Rover Example in a constraint-based form

NDDL has some attractive features for applications: specifications can be re-used by taking
advantage of inheritance and aggregation in the object-oriented sense. Generic objects (like
a "resource”) can be specialised and used in a particular application (eg if a ”battery” were
needed to be modelled in a new application, a library class of ”resource” could be specialised
for this purpose). Similarly the hierarchical composition of objects is effected through a
Java-like class system. Using familiar Java-like syntax, a user can also take advantage of
user-defined data structures to capture detailed environmental features. Hence, using NDDL
the modeller is forced to decompose a domain using the natural form of object life histories.
Objects in a domain are described in terms of the typical activities and transitions that they
may occupy and undergo. Since activities of objects persist over an interval of time, the idea
of concurrent activities is engrained in the formalism.

Tasks in NDDL are specified as a partial plan, and plan generation algorithms take the form of
partial-order planning via refinement search. Each cycle of planning involves finding ”flaws”
in a partially-complete plan, and choosing ways (consistent with the constraints) to complete
the plan. Since the timeline idea often removes important choices about inclusion of actions,
then planning is mostly about time and resource constraints, which implies that these systems
are characterised more as ”scheduling” than ”planning”. Plans are collections of instantiated
timelines for the dynamic objects in the application. Possible drawbacks to NDDL is that
the syntax is unstructured, with too much apparent freedom being given to the developer.
The syntax does not help in clarifying the semantics of the notation, in contrast to a pre- and
post condition formulation.

NASA Ames have created tools for plan generation (EUROPA, the planner for NDDL, and



MAPGEN, a configuration of EUROPA specifically for the Mars Rover), and plan analysis
(PlanWorks, a tool for inspecting the plan generation process), but there appears to be no
similar domain modelling tools in which to manipulate NDDL 1.

To help illustrate and compare NDDL we will use a simple autonomous vehicle navigation
domain based on the "mars rover” example which originated from NASA Ames [5]. In this
example we formulate the dynamics of a vehicle moving around a landscape and taking
samples at specific locations. This entails modelling activities such as moving, sampling,
unstowing instruments, as well as modelling environmental concerns such as paths of motion
and consequent power use. Figure 1 illustrates the graphics of a simple formulation of the rover
in NDDL. There are two timelines ("navigator” and ”instruments”) showing the temporal
constraints within the objects’ lifetimes. These constraints are all specified in the domain
model using operators based on interval temporal logic. For instance we do not mind what
stage the navigator is at when the instruments are being unstowed or stowed, but we do want
it to be stationary for the whole period when the sample is being taken. Thus the connection
(denoted by an arrow in the diagram) between ”sampling” and ”stationary” will stipulate that
start(stationary) is before start(sampling), and end(stationary) is after end(sampling). The
other arrows represent the timeline continuity within the object class eg a typical temporal
constraint within a timeline is start(sampling) = end(unstowing). Each of the boxes represents
activities and is represented with a predicate. An activity is given a duration (or duration
interval) at the modelling stage. Programming-like data types can be used to define resources
such as battery charge, and paths for movement. A full formulation of a similar example is
available from NASA Ames [5].

3 Classical Planning: GIPO III

Classical planning is based around a world view of domains that are formulated by the declar-
ative specification of parameterised actions. These actions operate on states which represent
snapshots of the world being modelled. Tasks are specified by a statement of an initial state,
and a set of conditions that much be true of a goal state. It is normally assumed that a
controller generates an ordering of instantiated actions to solve some goal posed as state
conditions. The idea of discrete states, of actions that change states, of the frame problem
resolved by default persistence of state features, are fundamental to classical planning.

PDDL is the medium for exchange of domain models in the classical format through the Al
planning research community, being used as a common language in the bi-annual interna-
tional planning competitions. Over the years the research community have evolved PDDL in
an attempt to represent applications with a range of varying environmental concerns. The
language has been extended for some real application eg a variant of PDDL is being used
in the STADEX crisis management system [10], and PDDL has recently been extended to
represent stream processing for workflow applications [16]. PDDL+ [11] is perhaps the most
expressive variant of PDDL including as it does the concepts of event, process, action and
continuously changing variables. One can specify mixed discrete/continuous worlds in a lan-
guage whose semantics is based on hybrid automata. The graphical interface GIPO [19]

!Peter Jarvis, NASA Ames, personal communication



enables the acquisition of domain knowledge form a classical planning perspective, and its
graphical representations can translate into PDDL or its own internal formalism OCL. We
will use GIPO to graphically illustrate a version of the Mars Rover domain, as

- GIPO embodies an object-oriented approach to acquisition, and a life history editor. These
make it less distant from the NDDL notation.

- GIPO can represent knowledge with features found in PDDL+.

Figure 2 is GIPO’s graphical representation of the simple rover domain using its ”object
life history editor”. It consists of events ”arrived”, ”"sampled”, ”stow_complete”, and "un-
stow_complete” (coloured pink in a coloured version of the paper), and processes indicated
with a clock icon. The other curved-corner boxes are actions and coloured green. As with the
NDDL version there are two object classes - navigator (with the robot icon) and instrument
(with the gripper icon). States of the two object classes are represented by named rectangles,
and classes are distinguished by icons (here a robot icon for navigator states, and a gripper
icon for instrument states).

The arrows (again various colours are used for differing roles) show the dependency between
states, events, processes and actions. In general, a process has been added next to an object
state to represent some durative, changing feature that is taking place. This is triggered by
an instantaneous action, then terminated by an instantaneous event. The diagram appears
more complex that the illustrative NDDL diagram: this is partly because ”activities” are
more awkwardly represented in the classical notation; but also because GIPO translates the
graphics into a domain specification, and hence needs more details to produce the formulation.
Additional to the graphics, a developer must specify fluents that are affected by processes
and that trigger events, by entering formulae representing the continuous changes.

4 Comparison of the Rover Formulations

The OO nature of GIPO allows a life history of the navigator and the instrument classes
to be written in a similar form as NDDL. The sequences of transitions that objects of these
classes pass through is made explicit. The "active” activities in NDDL are represented in
GIPO using an action to start the activity, a state to represent an object being engaged in
that activity, a process to simulate the continuously changing properties (resource and/or
movement), and an event to represent the end of the activity and the start of a new one.
"Inactive” activities such as ”stowed” and ”stationary” are represented as single states. This
appears more awkward in this particular classical formulation, although what a rover control
can plan for is made explicit by the distinction between actions and events. In NDDL this
distinction is implicit. The temporal constraints in the GIPO version almost capture the
required constraints between activities in the example: the link from ”stationary” state to the
"take_sample” action and ”sampling” process guarantee that during sampling the navigator
must remain stationary. However, the modality of this would not dissallow plans which moved
the navigator during sampling - this would entail that sampling would immediately stop.

The overall advantage of GIPO is that, given that appropriate constraints are attached to
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Figure 2: Rover Example in GIPO III

the continuous variables in each process and event node, the system can first test for the
consistency of the model, simulate the operation of the model using GIPO’s ”stepper”, and
then generate OCL+ (an OO version of PDDL+) for output to a planner. However, GIPO’s
embodyment of classical planning does not allow for uncertainty of resource consumption,
full interval temporal constraints or user-defined data structures. From this comparison, it
appears that a graphical interface would be useful that enables the developer to generate a
high level description of the domain independent of which type of formalism.

5 An interface to capture conceptual dynamic information:
GIPO IV

GIPO 1V is a partially implemented predecessor to GIPO III which inherits its ideas and
techniques of automated domain model generation from diagrammatic representations, but
further exploits the ideas of object-orientation in formulations and provides abstract views
of a domain independent of the intended target formalism. With GIPO III, domain models
could be generated in PDDL or in the native OCL language. In version IV, we are working
towards the generation of models (additionally) in an activity-based notation like NDDL.
The idea is that the graphical notation provides a level of abstraction higher than of the
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Figure 3: The Concept Diagram in GIPO IV

particular syntax chosen. The developer will be able to adjust environmental conditions and
have a choice of formalism generated. This should give a route to comparing the capabilities
of different planning systems using the same conceptual model of a domain.

In GIPO IV a developer designs a planning domain model using a concept diagram in the
tradition of object-oriented design. Such a concept diagram for the rover example is shown in
Figure 3 2. The concept diagram models the whole system as an aggregation of components,
with a specified relationship between the system and each component. Each subcomponent
can have attached attributes made up of user-defined data-types. In the mars rover example,
a rover is made up of the four types of sub-component specified. In OO-style, the relationship
is annotated with its cardinality (in this case 1 to many). The navigator has a path attribute
as specified, and the battery inherits a state from a (pre-defined) resource component.

The main function in decomposing the concept diagram is to specify the life histories of the
objects that are instances of each of the components (although some components may not,
as in the case of the battery, need to be represented with a life history). In GIPO IV we
create these using a separate life history diagram for each component. Here, each ”activity”
is encapsulated in a node, with arrows representing the next possible activity (see Figures 4
and 5). These diagrams are similar to the life history diagrams of GIPO III, with extra
information: stop and start states can be specified, to give an advanced idea of the kind of
task information expected, and attribute information can be included in the node. On the

2this is actually more detailed than the previous examples, and reflect more faithfully NASA’s rover example
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Figure 4: The Life History of the Navigator

other hand, we suppress interval or durative information: the arrows can be interpreted at
this stage as instantaneous activity change. Figure 4 specifies the timeline of a navigator,
while Figure 5 specifies the timeline of the rover’s instruments. These stipulate that the
normal stop and start state for a instrument is ”stowed”, and the normal stop and start state
for a navigator is in the rest position of ”at”.

To include temporal information and constraints for connected components, the developer
creates a set of co-ordination maps. These diagrams are used to specify the dependencies
between objects of different classes. In the example in Figure 6 temporal constraints are
placed on the takesSmple node (the arrow is coloured red) to stipulate that sampling may
only take place during the ”at” activity.

At this stage of domain development, the system has acquired information within conceptual
maps (defining the object class structure) within life history diagrams (describing activity
transitions), and within connection maps (describing the depedencies between life histories).
It is possible to generate both a NDDL formalisation, and a classical formulation of the
problem domain, and that this would be useful to experiment with different formulations and
planning engines.

6 Conclusions

Modelling for simulation, in such areas as timed automata for real time systems [2], or hybrid
automata for industrial plant or transportation control [6], relies critically on the use of tools
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Figure 5: The Life History of the Instruments

for engineering simulation models. Where automated planning differs is that we are modelling
for reasoning, synthesis, then simulation. It therefore appears that engineering tools are even
more crucial in automated planning than these more established, related disciplines. Reiter,
in the Preface to his textbook [17] stated ”When faced with a dynamical system that you want
to simulate, control, analyse or otherwise investigate, first axiomatise it in a suitable logic”.
While a direct axiomatisation is very desirable and comes with all the benefits advocated
in his book, the drawbacks of this approach are that an axiomatisation within the fluent or
situation calculus is not within the capabilities of all developers (considering the difficulties
in formulating a set of successor state axioms [17]) and is not appropriate for all applications.
Also, the problems of acquisition, maintenance and knowledge re-use are not addressed by his
approach. The problem is the difference between engineering and theoretical enquiry; which
Reiter’s quote fits the the latter, it is inadequate for the former. Hence we would amend the
quote to read ”.. first create an abstract conceptual model using an appropriate GUI, then
explore the additions of environmental constraints, and then use the GUI to automatically
translate the knowledge acquired into a formulation for an appropriate planner”.

According to the authors of NDDL, the ’classical’ approach to automated planning takes the
over-simplistic view of planning as a set of fluents whose values are changed as each step
/ action. Apparently, this is too simplistic for Space applications. It appears to us that
the most significant drawback of classical planning is that it reflects the concerns of those
working in generative planning, rather than more execution and scheduling orientation of
many applications. We argue here for an abstract formualtion of planning that is (initially)
neutral to the underlying semantics of the target formalism. Rather, the abstract view can
be used as a basis for a translation to a number of formalisms. In the near future We plan to
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Figure 6: Rover Example in GIPO IV

complete development of GIPO IV and provide demonstrable proof of this assertion.
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