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Abstract

In this paper we investigate the interactions between
planning and scheduling in a specific scenario, road pas-
senger transportation. The problem consists of finding
the best assignment of available drivers (resources) to a
set of requested services (actions) given a cost function
and subject to the constraints provided by administra-
tions. We have considered two approaches. In the first
approach we deal with planning and scheduling as a sin-
gle solution step. In the second approach, we consider
planning and scheduling in separate steps. The results
obtained from the experimentation show, in this particu-
lar case, that keeping planning and scheduling separate,
achieves a better performance.

Introduction
On the basis that practical problems have been difficult to
solve using either planning or scheduling techniques in an
isolated way (Smith, Frank, & Jonsson 2000), there is a cur-
rent trend to integrate both paradigms (Barták & Rudová
2001).

Planning deals with actions, and scheduling with re-
sources; however, the selection of one action involves the
consumption of some resources. As illustrated in (Gallab,
Nau, & Traverso 2004), when you move a robot from posi-
tion l to position l′, you are changing the state of the robot
in both an absolute and a relative way. The absolute change
is induced by the new position of the robot after perform-
ing the movement (what planning analyzes). The relative
change consists of slightingly decreasing the energy level of
the robot (what scheduling deals with). How much the en-
ergy decreases depends on the roughness of the terrain, and
the soil characteristics, among other factors. So, the selec-
tion of the next position of the robot (planning) impacts on
the resource management (scheduling) and vice versa: im-
proving a constraint on a scheduling problem impacts on the
activity selection (planning) (Bresina et al. 2002).

One of the recent solutions proposed to overcome plan-
ning and scheduling interactions is to define an integrated
framework. For example, in (Castillo et al. 2006) a hierar-
chical task network (HTN) is proposed, while in (Haslum &
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Geffner 2001) propose a heuristic search procedure to deal
with planning and time and resource constraints. A differ-
ent approach is (Ai-Chang et al. ), in which a set of plans
are stored in a temporal network in order to deal with con-
straints.

However, it is not necessarily true that an integrated
framework is the only solution when dealing with a new
problem in which both actions and time and resources are
involved. An analysis of the benefits and limitations of keep-
ing planning and scheduling separate is required.

This has been our case. We are dealing with the road pas-
senger transportation problem, in which we need to optimize
the driver’s driving time, while assigning sequences of ac-
tions to them (drivers’ duties). Two different approaches are
possible: planning and scheduling in separated steps, and
a single step for the entire process. In this paper we ex-
perimentally analyze both approaches. From the study we
conclude that in our particular problem, even though some
interactions between planning and scheduling exist, better
results are obtained if we isolate the two steps.

This paper is organized as follows. First, we provide a de-
scription of the problem. Then we present both alternatives,
namely, the service approach (integration) and the journey
approach (isolation). We continue by providing the results
of our experimentation. And we end the paper with some
conclusions and a discussion.

Problem description
In the road passenger transportation problem we are pre-
sented with a set of resources, drivers D = {d1, . . . , dn},
and a set of tasks, (services) S = {s1, . . . , sm}, to be per-
formed using the resources. The problem consists of find-
ing the best assignment of drivers to services given a cost
function and subject to the constraints and preferences pro-
vided by administrations (local, national or European). We
are dealing, then, with a constraint optimization problem in
which we are trying to minimize the driver’s costs, both in
time and distance. The solution of the problem should be a
complete allocation of the drivers activities that covers the
complete set of services. This includes which sequence of
actions each driver should perform (planning outcomes), and
when (schedule outcomes). Thus, the components of the
problem are: drivers, services, constraints and the cost func-
tion.



First, each driver is characterized by a basic cost imposed
by his contract, a cost per kilometer, a cost per time unit,
a starting point and a final point (often the same), and the
number of hours that he/she has driven during the last two
weeks.

Second, each service is characterized by the start loca-
tion and the final location (where the service is), the start
time and the final time (when). From this information, it
is possible to compute the spatial distance between both lo-
cations, which in turn can also be measured with the time
units required by a driver to cover it. There are two kinds
of services to be considered: requested and intervening. Re-
quested services are the ones that customers have applied
for, while intervening services are those that require moving
the driver from the end location of a service to the start loca-
tion of the next service assigned to him. Analogously, if the
first service that the driver performs is not in to his/her cur-
rent initial place, the corresponding amount of time needed
to drive from the initial place to the first service should also
be computed in the scheduling. This is similar to the end-
ing location, if the final service is different than the driver’s
ending place. Requested services are the data of the prob-
lem, while intervening services are generated while working
towards the solution.

Third, there are several constraints regarding driving
time which are quite complex in our transport domain. Our
problem is related to coach transportation and timetables are
as strict as with other forms of transportation (train, buses);
what is important is accomplishing the driving time regu-
lated by law. An example of such a constraint is the follow-
ing: if passengers are children (like on a school trip), then
the maximum continuous driving time is 2 hours; in other
cases up to 4 hours are allowed. For the sake of simplicity,
we consider only four simple constraints in a first approach
to the problem (see (López 2005) for a complete list)1. The
description of the constraints is as follows:

Overlapping. A driver cannot be assigned to two different
services with overlapping times. In addition, a driver as-
signed to a service that ends at time t and location l cannot
be assigned to another service that starts at time t+1, un-
less the location of the new service is the same (l). That
is, the overlapping constraint also takes care of the trans-
portation of the driver from the end location of a service
to the start location of the next service to be performed.

Maximum driving time. By effective driving time we
mean that in addition to the driving time dedicated to the
services requested, the driving time required for the inter-
vening services should also be computed.

Maximum journey length. Between one service and the
next one, drivers can enjoy free time in which no driving
activities are being performed. Then, the total of driving
time plus free time cannot be over the maximum journey
length allowed.

1We are simplifying our problem in order to illustrate planning
and scheduling, but our ultimate goal is to deal with the complexity
of the full problem.

Maximum driving time per two-weeks. There are some
regulations regarding driver resting time. One of them
describes that the maximum driving time per two weeks
cannot be over 90 hours.

Finally, a cost function is required to measure the quality of
the solutions, that is, the cost of the allocation of services
to drivers. The goal is to find the allocation with the lowest
cost, subject to the constraints.

In fact, we can find several works in the literature regard-
ing crew scheduling problems, which are known to be par-
ticular cases of the set covering problem (Hoffman & Pad-
berg 2000). Crew scheduling, however, has often been stud-
ied in regular services (Loureno, Paixao, & Portugal 2001;
Pezzella & Faggioli 1997; Cantillon & Pesendorfer 2006).
Indeed, it is important to distinguish between scheduling and
two other related problems: vehicle scheduling and the ros-
tering problem (dealing with the rotating shifts of the crews).
But also in these latter scenarios, only regular services with
strict timetables are studied (see, for example, (Esclapes
2000)). Regular services focus on strict arrival times, while
our problem concerns compliance with laws regarding the
driving interval times.

The alternatives
In order to investigate the interactions between planning and
scheduling, two different approaches have been considered:
the service approach and the journey approach (see Figure
1). The service approach maintains planning and scheduling
in a single step. That is, given a set of requested services,
the driver’s schedules are generated, and in them intervening
services are also considered. The journey approach splits the
solution process into two steps. The first step consists of a
planning process, in which a set of possible plans are gen-
erated. Each plan consists of a set of compatible journeys.
Each journey is the sequence of services (both requested and
intervening) that can be assigned to a driver. The outcome
of the planning step consists of a set of plans sorted accord-
ing to their cost. The second step of the journey approach
is a scheduling process in which the journeys of each plan
are assigned to drivers. This step is repeated for each plan.
Both approaches have been modeled following a branch and
bound2 approach and, in each case, particular heuristic and
estimating cost functions have been defined.

The service approach
In the service approach, we assign drivers to the services
following the branch and bound method: when a solution
is found, the branch and bound method computes its cost
which is compared with the best solution found so far (up-
per bound). If the cost of the partial solution is higher, the
algorithm backtracks, pruning the subtree below it (Dechter
2003). In addition, if the cost of the partial solution is not
higher, but it is possible to estimate its final cost, and the
estimation goes over the upper bound, it is also pruned.

2We have experimentally tested other methods, but branch and
bound allow the manipulation of complex constraints more easily.
In addition, branch and bound guarantees that the optimal solution
is found.
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Figure 1: Studied alternatives.

In the following, the formalization of the problem accord-
ing to the service approach, its modeling and an example are
given.

Problem formalization.
Definition 1. A service is a tuple

si =< sli, f li, sti, fti >

where sli is the start location, fli the final location, sti the
initial time, and fti the final time (sti < fti).

Definition 2. A driver is a tuple

di =< bci, kmci, sli, f li, hwi, hci >

where bci is the basic cost, kmci is the cost per kilometer, sli
is the start location, fli is the final location (often sli = fli),
hwi are the hours accumulated over two weeks, and hci is
the cost per time unit.

Regarding time, we consider half an hour to be the time
unit, and we assume that the distance covered in that time
is 45 kilometers. This assumption is used to compute the
duration of intervening services.

Definition 3. Given two services, si and sj , with fti <
stj, an intervening service between si and sj is defined as a
tuple

si−j =< sli−j , f li−j , sti−j , fti−j >

where sli−j is the start location (with sli−j = fli), fli−j

the final location (with fli−j = slj), sti−j the initial time,
and fti−j the final time, with sti−j > fti and fti−j < stj .

Given a set of services S, and a set of drivers D, a total
number of intervening services k could be required. Let I
be the set of such intervening services. Then,

Definition 4. An allocation based on services is a tuple

Ai =< (s1, di1), (s2, di2), ...(sl, dil
) >

where si ∈ S ∪ I , dj ∈ D, and in which all constraints
are satisfied. Furthermore,

⋃
si∈(Ai\I) = S, that is, all re-

quested services are covered, and
⋂

si∈(Ai\I) = ∅, that is,
no service is repeated.

Constraints have been described above and are the key is-
sues in the different modeling obtained from the techniques.

The cost function that measures the individual cost of a
driver i in an allocation Ak is the following:

cost(Ak, di) = bci+
(dist(Ak, di) ∗ kmci)

α
+(h(Ak, di)∗hci)β

(1)

where dist(Ak, di) is the distance covered by the driver in
the Ak allocation measured in kilometers, h(Ak, di) is the
journey of the driver in the Ak allocation (including non-
occupied time) and α and β are parameters of the cost func-
tion. This cost function tries to make kilometers and hours,
which have different scales, comparable (kilometers are usu-
ally defined in [0,100] while hours in [0,24]). After several
tries, we have set α = 10.0 and β = 7.0. Finally, note that
we are assuming a constant speed of 45km/time unit (1 time
unit = 0.5 hours).

The cost function is the function that measures the cost of
an allocation Ak and is defined as the addition of the indi-
vidual drivers cost(Ak, di), that is,

C(Ak) =
∑

i∈Ak

cost(Ak, di). (2)

The road passenger transportation problem consists of
finding the allocation that minimizes the cost:

argmin∀i(C(Ai)) (3)

subject to the above constraints.

Problem modeling. According to a CSP formulation, the
model of the problem is based on variables, domain con-
straints and a cost function. The variables of the problem
are the services, the domains are drivers. The main difficulty
of using the branch and bound method was to define the ap-
propriate function to estimate the cost of a partial solution
in order to prune the search space and provide an answer in
a reasonable time. This estimation function should take into
account the remaining assignments to be performed, which
depends on both the requested services and the intervening
services. This function can underestimate the real cost, but
never overestimate it, in order to assure that we are not prun-
ing optimal solutions. The estimated cost function F e has
been defined as the sum of the individual estimation cost fe

of the remaining services, R; that is,

F e(R) =
∑

si∈R

fe(si) (4)

We can easily define an estimation function fe(si) by com-
puting the cost of the si services according to the minimum
driver cost. But a more accurate estimator should include in-
tervening services. If we analyze the position of the drivers
at the time when service si should be deployed,we can esti-
mate the intervening services required both for going to the
start location of the service and for returning from the end
location. Therefore, we can calculate the estimation of a ser-
vice with the following expression:

fe(s) = dur(s) ∗ costminh
+ dist(s) ∗ costminkm

(5)

where dur(s) is the time required to perform the service,
including the time required to go to and return from the ini-
tial and end locations respectively; dist(s) is the distance in
kilometers required to deploy the service, including go and
return distances; costminh

is the minimum cost per hour,
and costminkm

is the minimum cost per kilometer.



Figure 2: Localities of the case example.

dur(s) is computed as follows:

dur(s) = tgo + tserv + tret (6)
where tserv is the duration of the service, tgo is the minimum
time for going to the initial position of the service, and tret is
the minimum time required to return. Analogously, dist(s)
is defined as follows:

dist(s) = kmgo + kmserv + kmret (7)
where kmserv is the number of kilometers of the service,
kmgo are the kilometers for go and kmret are the kilometers
for return.

Regarding heuristics, we have used the following:
• sorting variables: services have been ordered according to

their initial start time
• sorting values: drivers to be assigned to each variable

have been ordered according to their costs; so drivers with
lower costs (basic, per hour, and per kilometer) are tried
first

• sorting constraints: overlapping constraint, driving time,
journey length and cumulated driving time

Example. Suppose that there are five different locations
in which the road passenger transportation company works.
The distance in time units between each location is shown
in Figure 2. The establishment of the time distances is per-
formed according to our relationship between time units and
kilometers (half an hour, 45 km). For example, the distance
between locality 2 and 1 is 3 units of time (3*0.5=1,5 hours),
which is equivalent to 135 km (3*45).

Regarding drivers, let us suppose the ones provided in Ta-
ble 1. For a given day, the services requested from the com-
pany are the ones shown in Table 2.

The following constraints are considered:
• maximum driving time (MDT): 22 time units
• maximum journey length (MJ): 30 time units
• maximum driving time per two weeks (MTB): 180 time

units
The optimal solution to this problem is the one provided

in the Gantt diagram of Figure 3. Requested services are in
dark, while intervening services are in grey. Note also that

Driver bc kmc sl fl hw hc
d1 20 0.6 0 0 100 0.6
d2 30 0.7 0 0 90 0.4
d3 30 0.4 0 0 70 0.7
d4 25 0.6 0 0 65 0.6
d5 15 0.6 0 0 70 0.5
d6 15 0.5 0 0 100 0.4
d7 15 0.7 0 0 180 0.5
d8 13 0.5 0 0 165 0.5
d9 16 0.6 0 0 100 0.5
d10 13 0.6 0 0 110 0.6
d11 16 0.5 0 0 58 0.7

Table 1: Available drivers.

Service sl fl st ft
s1 1 2 19 22
s2 2 3 5 11
s3 2 4 10 17
s4 4 0 25 29
s5 3 1 13 17
s6 4 3 7 14
s7 3 1 21 25
s8 2 3 20 26
s9 2 3 10 16
s10 3 4 15 22
s11 1 4 25 28

Table 2: Services requested.

there are some gaps in the drivers’ journeys corresponding
to non-occupied hours. Some drivers do not participate in
the allocation because either their cost is higher or their cu-
mulated times do not allow it. Table 3 gives the cumulated
times per driver together with the cost of the solution. DT
is the driving time, JL is the journey length, FT is the free
time, HW is the week’s cumulated time, and S the services
assigned to the driver. Observe that only requested services
are given, but all drivers have an intervening service when
required according to the Gantt diagram (see Figure 3). Note
also that driver 9 has an intervening service for moving from
the end location of service 5 to the starting location of ser-
vice 8.

To illustrate the interactions between planning and
scheduling, suppose that one of the constraints is changed.
For example, the maximum journey length is 25 time units
instead of 30. Then, it is clear that additional drivers should

Driver DT JL FT HW S Cost
d2 22 27 5 117 s9, s7, s11 174.9
d5 16 16 0 86 s3 114.2
d6 22 26 4 126 s6, s10, s4 137.3
d8 14 14 0 179 s2 93.5
d9 19 19 0 119 s5, s8 133.8
d10 11 11 0 121 s1 88.9

Total cost 742.6

Table 3: Solution of the example
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Figure 3: Gantt diagram of the optimal solution

Driver Services
d2 s2, s5

d5 s3

d6 s9, s7

d8 s8

d9 s10, s4

d10 s1, s11

d11 s6

Table 4: Solution of the example with MJ=25.

be required to develop the services; and, as a consequence,
the duties of each driver are also different, as illustrated in
Table 4.

The journey approach
When, adopting the journey view, two main steps should be
performed:

1. planning: journey and plan generation

2. scheduling: repeat the branch and bound method for
each plan to allocate journeys of the plan to the available
drivers

In the following section, the formalization of the problem
according to the journey approach, the modeling of the plan-
ning and scheduling approach, and an illustrative example
are given.

Problem formalization. In the journey approach, we need
to include the definition of a journey, a plan, and allocation
based on journeys.

Definition 5. A journey is subsets of non overlapping ser-
vices

ji = {s1, ..., sp}
where sj ∈ S ∪ I , in which the maximum driving time and
maximum journey length constraints are satisfied.

Two journeys ji and jk can have common services, ji ∩
jk 6= ∅. For this reason, some journeys are incompatible.
Then,

Definition 6. A plan pk is a set of compatible journeys,
such that all services are covered and none are repeated pk =
{jk1, ..., jkn}.

Definition 7. An allocation based on journeys is a tuple

Ai =< (j1, di1), (j2, di2), ...(jl, dil
) >

where jk is a journey, all journeys belong to the same plan,
dk ∈ D, S ⊂ ⋃

k jk (all services are covered) and in which
all constraints are satisfied.

The cost function is the same as 2.

Planning modeling. The planning step includes both jour-
ney and plan generation. In this step we consider the over-
lapping constraint, the maximum journey length constraint
and the maximum driving time.

The outcome of this planning step is the set P =
{p1, ..., pn} of all possible plans. Plans are sorted accord-
ing to their estimated cost. The estimating function is based
on the definition of a cost matrix C, of p*n dimension (rows
are journeys, columns are drivers), in which an element ci,j

represents the cost of journey ji when the driver dj is as-
signed3.

Then, given a plan pi = {ji1 , ..., jik
}, the estimating

function is defined as follows:

f(pi) =
∑

jx∈pi

miny∈D(cx,y) (8)

See more details of the estimating function in (Murillo
2006).

Scheduling modeling. The scheduling step consists of as-
signing drivers to the journeys of plans. First, an allocation
for the first plan p1 of P and its corresponding cost C(p1)
are computed. This cost is set as their upper bound α. Then,
all the successive plans pi of P are analyzed while f(pi) < α
(see the algorithmic schema in Figure 4).

A single allocation problem is modeled according to a
constraint-based approach. Variables represent journeys, do-
mains are drivers, and, at most, drivers can be assigned once
to a variable. Constraints are related to journeys. Note, how-
ever, that it is not necessary to take into account the over-
lapping constraint, since this constraint has been taken into
account in the journey generation preprocess. The same hap-
pens with the maximum driving time and maximum journey
length constraints. The unique constraint handled in this step
is the maximum driving time per two weeks.

Let α = ∞
for each pi in P do

if f(pi) < α then
find best allocation Ai for pi

if cost(Ai) < α then
solution = Ai

α = cost(Ai)
end-if

end-if
end-for

Figure 4: Algorithm pseudocode for the scheduling step.

To prune the search space we use the same estimating
function of equation 8, taking into account that instead of
a complete plan, we estimate the cost of the remaining jour-
neys of a plan. In the assignment step, the following heuris-
tics are also applied:

3When a driver cannot perform the journey, this cost is set to
∞.



• variables (journeys inside a plan) have been sorted accord-
ing to their cost: the cheapest one first

• values (drivers) are also sorted according to their cost
(minimum first)

• since there is a single constraint, no sorting is required for
them

Example. The different services required for the example
of Table 2 can be organized in 40 journeys as shown in Table
5. In general, with m services, 2m − 1 journeys can be gen-
erated corresponding to all possible combinations, but some
of them are pruned according to the overlapping and journey
length constraints as well as the intervening services. In our
case, with m = 11 we obtain 40 journeys, which is a number
less than the analytically one required, 40 << 211 − 1.

In the first step of the solution, we obtain a total of 1018
plans, as a result of the compatible combination of the 40
journeys. In general, a total of 2k − 1 plans can be obtained,
k being the number of journeys. But due to journey incom-
patibility, a lower number of plans are effectively generated.

The solution to the problem according to the jour-
ney approach is the plan p = {j1, j2, j19, j30, j31, j32}
with the following journey allocation: <
(j1, d2), (j2, d6), (j19, d9), (j30, d10), (j31, d8), (j32, d5) >.
This solution has obviously the same cost as in the service
case example.

As in the service approach, let us suppose that the max-
imum journey length changes, from 30 time units to 25.
Then, a different lower number of plans is generated, and the
optimal scheduling is the following: < (j′2, d6), (j′10, d2),
(j′14, d5), (j′11, d10), (j′1, d9), (j′19, d8), (j′17, c11) > where

j′2 = {s9, s7}
j′10 = {s2, s5}
j′14 = {s3}
j′11 = {s1, s11}
j′1 = {s10, s4}

j′19 = {s8}
j′17 = {s6}

In the case that the reduced constraint is the maxi-
mum driving time per two weeks, the generated plans are
the same, but additional resources will be required in the
scheduling step.

Analytical alternative comparison
Given a set of n drivers and m services, the service approach
has a computational complexity of

nm (9)

Regarding the journey approach, we need to analyze three
components of the complexity:
1. Journey generation: nj = (2m − 1)

2. Plan generation: np = 2nj − 1 = 2(2m−1) − 1
3. Allocation generation: np ∗ n!

(n−njp−1)! , where njp is the
number of journeys per plan. In the worst case, njp = m.

Figure 5: Analytical complexity comparison (logarithmic
scale).

Of course, the latter component is the dominant one. In
an extensive form, it is the following:

(2(2m−1) − 1) ∗ n!
(n−m− 1)!

(10)

In order to compare the 9 and 10 expressions, we can sup-
pose n = m. Then, we have the following complexity for
both approaches:

service nn

journey (2(2n−1) − 1) ∗ n!)

Figure 5 shows the corresponding plots.
Even though the analytical complexity in the journey ap-

proach is higher than in the service approach, their experi-
mental performance is better in the former, as shown in the
next section.

Experimentation
In order to experimentally analyze the different techniques,
up to 70 examples have been generated with different com-
plexities. The first example has a single service and a sin-
gle driver; the second example two services and two drivers;
and so on until the 70th example. The data corresponding to
service and drivers have been generated randomly for each
example. In this sense, the complexity of the 70th example
is greater than in a real case of the application we are dealing
with.

In the graphic of Figure 6 we can see the execution time in
milliseconds of the service and journey approaches. This ex-
ecution time includes the planning and the scheduling time
in the journey approach (the scheduling time is close to 0).
The service approach can solve the problem in a reasonable
time in up to 11 services while the journey approach can
solve it in up to 20 services.

So the journey approach shows a better performance than
the service approach. From our understanding, this is due
to three main reasons. First, in the service approach we



j1 = {9, 7, 11} j2 = {6, 10, 4} j3 = {6, 7, 11} j4 = {5, 7, 11} j5 = {5, 1, 11}
j6 = {2, 10, 4} j7 = {2, 5, 4} j8 = {10, 11} j9 = {10, 4} j10 = {9, 11}
j11 = {9, 7} j12 = {9, 4} j13 = {7, 11} j14 = {6, 11} j15 = {6, 10}
j16 = {6, 7} j17 = {6, 4} j18 = {5, 11} j19 = {5, 8} j20 = {5, 7}
j21 = {5, 4} j22 = {5, 1} j23 = {3, 11} j24 = {3, 4} j25 = {2, 10}
j26 = {2, 7} j27 = {2, 5} j28 = {2, 4} j29 = {1, 11} j30 = {1}
j31 = {2} j32 = {3} j33 = {4} j34 = {5} j35 = {6}
j36 = {7} j37 = {8} j38 = {9} j39 = {10} j40 = {11}

Table 5: Journeys of the case example

Figure 6: Execution time in service and journey approach

are dealing with more constraints at once than in the jour-
ney approach, in which we consider some constraints in the
planning step and some others in the scheduling step. In
our problem, even though constraints can be quite complex
they have few inter-dependencies, and they can be split and
treated locally. Dealing whit all constraints together can
have a multiplicative impact on the performance, as the re-
sults show in the service approach.

Second, in the journey approach the number of alterna-
tives in the search space is also reduced. A driver can only
be assigned once, so when he is assigned this value, he is
pruned for the remaining assignments.

And third, dealing with the planning and the scheduling
separately facilitates the definition of more specific heuris-
tics and specialized estimated cost functions. Particularly,
in the journey approach we can estimate the intervening ser-
vices cost more accurately.

The better performance with the journey approach, how-
ever, is not gratuitous. First of all, the modeling effort is
higher. And second, we need to store all the plans in mem-
ory. In Figure 7 we can see the number of plans generated in
the journey approach. Only a very small part of them are an-
alyzed (see Figure 8); the rest are pruned for the estimating
function. Memory requirements, however, can be improved
by storing only potential plans. Our current work is focused
on that.

Conclusions
Even though there has been recent interest in developing in-
tegrated frameworks for planning and scheduling, there is

Figure 7: Number of plans generated.

Figure 8: Number of plans analyzed.



no common agreement on whether such integration would
be practical or not (Bresina et al. 2002; Smith, Frank, &
Jonsson 2000). In this paper we have analyzed the road
passenger transportation problem from both points of view:
keeping planning and scheduling separate, and merging the
two approaches. We have solved the problem in both ap-
proaches by means of branch and bound method. The results
show that, for our particular application, keeping planning
and scheduling separate achieves a better performance. The
sequentiality of planning and scheduling filters out some of
the constraints in the scheduling process, making the latter
easier. Moreover, the domain of variables in the assignment
step is reduced.

In addition, considering planning and scheduling sepa-
rately, we can define specific heuristics and cost functions
that significantly reduce the search space. So, even though
complexity analysis indicates that the integration framework
has lower complexity than the isolated one, the experimental
results tell us the opposite.

As a drawback, the journey approach requires far more
memory than the service approach to store plans. However,
this is an issue that can be overcome in the near future.

The results obtained are particular to our problem, in
which complex constraints are tackled, but there are few in-
terdependencies between them. From the results obtained,
we will continue working in planning and scheduling as sep-
arate steps in our particular problem. We know that our re-
sults can hardly be extended to other domains, but we main-
tain the claim that keeping planning and scheduling separate
is still a good solution for some kinds of problems.
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