Methods for Optimal Pedestrian Task Scheduling and Routing

Srihari Narasimhan
IPVS, Universitit Stuttgart
Universititsstr. 38
70569 Stuttgart, Germany

Abstract

Today, sensors and cameras are often used to monitor the
movement and behavior of pedestrians, especially where
there are a huge number of visitors. The classical usage of
such devices, for example in a theme park, is to identify the
queue size in front of each attraction and thereby to predict
the time it takes until the visit can be completed. Work has
been done in the past to use statistical data that resembles the
data collected by such devices to simulate the pedestrian be-
havior. As aresult, the congestions as well as the queue sizes
at different times can be predicted. This work aims in using
the data obtained from the simulation to optimally schedule a
list of tasks to be executed as well as to find an optimal path
between each destination. As an example, one might think
of a scenario where a customer enters a theme park would
wish to visit as many attractions as possible in the alloted
time or a large clinic where a patient has to be routed through
various departments such as registration, OP, X-Ray, ward,
etc. The problem involves finding the optimal sequence of
the tasks and determining the fastest path between the des-
tinations, both combined. Since the data varies over time,
the problem is time dependent or dynamic. In the past, sev-
eral methods have been proposed to solve dynamic shortest
path algorithms and scheduling problems. However, due to
the stochastic nature of the available data, it is not necessary
to find the best schedule and route that takes the minimum
amount of time but, it is rather important to find an optimal
solution in a short time. In this paper, we study and compare
different combinatorial optimization methods and heuristics
that can used to determine an optimal schedule.

Introduction

Pedestrians are one of the most commonly seen entities in
day to day life. The most common activity of a pedestrian in-
volves navigating his way to the desired destinations and ex-
ecuting a specific task at each destination, whatever the task
may be. The pattern of the pedestrian movement along the
paths as well as its behavior at the destination (participation
in the queue) can be modeled and simulated (Narasimhan &
Bungartz 2006; 2005). Once an analysis is made from the
simulation, the statistics collected can be used to optimize
the pedestrian activity. As an example, one might think of a
commercial center where a customer has to execute a set of
n tasks denoted as T;|j = 1,2, ..., n. This process not only
involves waiting in the queues but also navigate between
each destinations. The customer would obviously want to

Hans-Joachim Bungartz
Institute for Informatics, TU Miinchen
Boltzmannstr. 3
85748 Munich, Germany

take the shortest route with least congestions and also com-
plete the tasks in the shortest possible time. This paper pro-
poses some of the methods that are used to optimize a visit
based on the statistics derived from the pedestrian simula-
tion.

The focus of this paper lies in using statistical data to esti-
mate traffic congestions and waiting times, which can in turn
be used to prepare an optimal plan for a new visit. Therefore,
the first step involves a careful analysis of the pedestrian be-
havior in the given scenario. Since the geometry of the sce-
nario makes an impact on the pedestrian model, the geomet-
ric aspects must also be taken into account when modeling
pedestrian behavior. The pedestrian model must be strongly
coupled with the geometry of the scenario such that the in-
teractions with the geomety is also modeled. Once such a
model is built, various scenarios can be simulated and an
overview of congestions and waiting times across each sce-
nario is recorded for different time periods. Once the simula-
tion output data is available, the next step involves applying
scheduling and optimization methods on the data obtained.
Furthermore, with the help of sensors and modern communi-
cation systems to transmit spontaneous events to the model,
it is possible to simulate the pedestrian behavior even more
precisely, thereby improve the efficiency of the optimization
methods proposed here.

This paper is structured as follows. The following section
gives an overview of the pedestrian model implemented so
far and the analysis made by simulation. The results gener-
ated from the simulation are then used for pedestrian navi-
gation and task scheduling. Next, the problem of scheduling
and routing by using the simulation data is discussed exten-
sively. Following that section, different methods to optimize
routing and scheduling problems are studied and analyzed.
A comparison of the methods are then made with an example
scenario. This paper concludes by presenting similar topics
that exist elsewhere and also an outlook towards possible
extensions to this work.

Pedestrian Simulation and Analysis

In order to analyze the pedestrian behavior, two different
pedestrian processes must be modeled. First, the queues at
the destination, where a customer waits in the queue before
executing his task, and second, the movement of the pedes-
trian along the path. Both these processes are represented

as a queuing system. In case of visiting a destination, the
queue model consists of one or more service counters to
serve the customer, and a queue where pedestrians arrive and
wait if all service counters are busy. Similarly, the queuing
model of a path consists of a number of service counters (the
number is derived from the path capacity), and a queue for
pedestrians to wait in case the path is congested. The queu-
ing system is modeled using the discrete event simulation
methodology.

Before any such queuing system can be modeled, it is first
important to analyze the geometry in which the pedestrians
or customers (hereafter also called as an entity) are modeled.
The geometry provides spatial data to non-spatial context.
For this purpose, the CAD model of the given scenario is an-
alyzed. Geometrical data such as the paths along which the
pedestrians move, possible destinations, and several other
architectural parameters such as the type of the path (stairs,
ramp, etc.), the capacity of the paths, properties of the desti-
nations, capacity of each destination, etc., are extracted.

Geometric Structure and Modeling

Pathscan (Drexl 2003) is a flexible tool, which accepts a
given CAD model, parses the geometry data, and identi-
fies all possible paths and destinations where an entity can
move. These paths are interconnected and exported as a
graph structure. Furthermore, the flexibility of Pathscan tool
also allows us to redefine the graph properties such that addi-
tional attributes can be incorporated into the graph. The re-
sulting graph contains a minimized list of paths, list of possi-
ble destinations, and the required properties of the paths and
the nodes. Fig.1 shows a snapshot of graph extraction using
Pathscan tool. For test purposes, the CAD model of the new
computer science building at the Universitit Stuttgart is used
(Giesecke, Stier, & Grumbein 2004).

” | IS
J E_N 9
e c—— 4 —’T! - — N =
'ml l

. - 0
‘ [] —
. Al

Figure 1: Snapshot of Pathscan tool used for graph extrac-
tion

Embedding of Queuing Systems into Geometry
Model

Now, the necessary geometry parameters to model a queu-
ing system are available. A queuing system consists of an
arrival event (arrival of the entities to the queue) and the ser-
vice process (task execution). The necessary input data are
generated by using random variate functions. The available
architectural data includes statistics on the type and usage
of each destination. These statistics can be used to estimate
the time an entity needs to execute a specific task. However,
the behavior of an entity (or the customer) plays a major
role in modeling a pedestrian simulation scenario. There-
fore, several customer profiles are generated that contain pa-
rameters such as possible destinations an entity would visit,
any specific timings to consider during the day, any restric-
tions (certain paths or destinations may not be accessible to
all entities), etc. It is therefore possible to model the desired
scenario by choosing from the appropriate customer profiles
and specifying their distributions.

When modeling a queue at the destination, the arrival
event is the time at which the entity leave the last path be-
fore entering a destination, and the service time is deter-
mined from both the customer profile and the destination
statistics. Similarly, when modeling the movement along
a path, the arrival event is the departure time of the en-
tity from the previous path and the service time is derived
from both the walking speed and the customer profile. Sev-
eral statistics are available to estimate the walking speed
of a pedestrian (Teknomo 2002; Knoblauch, Pietrucha, &
Nitzburg 1996) for different situations (stairs, ramps, various
pedestrian densities and congestions, uni- and bi-directional,
etc.,). These statistics are used to generate the service time
when modeling a path, based on the current path situation.
The initial arrival is modeled as a Poisson process. The ar-
rival time is hence negative exponentially distributed.

Now that a queuing system is available to model both des-
tinations as well as paths in the given scenario, each path
and the destination from the graph is replaced with a queu-
ing system. Finally, the queuing systems are interconnected
to form a queuing networks that span across the scenario.
The model is now simulated for a specific scenario (decided
on combining different customer profiles) and the status of
the queuing systems are periodically recorded. Snapshots
for each time unit (in this case, the time unit is in terms of
minutes) are captured for each path and destination. Even
though the data collected is discrete and not continuous, care
is taken that fluctuations within two snapshots are as well
recorded and adjusted with the existing snapshots. The re-
sulting data is therefore very extensive. The result gives an
overview of congestions and waiting lines that occur in the
scenario during different times of the day. The output data
contains either the sojourn time (waiting time and service
time) or the queue size (or congestion in case of a path).
The resulting data is then stored in form of a 2D Matrix (as
shown in Table.l), which lists the congestions or waiting
times for each path and node for several time stamps during
the simulation.

Time | Edges 1,2, ... | Nodes 1,2, ...
9:01 | waiting time or congestion ..

9:02

17:00

Table 1: The resulting 2D Matrix when simulated for 8 hours
(9am to Spm)

Pedestrian Navigation Using a Graph

The tight coupling of the pedestrian model and the geometry
context opens the possibility for a number of useful applica-
tions. One such application is the possibility of pedestrian
navigation system. Work has been done in the past to iden-
tify the position of the entity as well as the choice of destina-
tions to visit, thereby providing a framework for a pedestrian
navigation (Narasimhan, Mundani, & Bungartz 2006). The
graph data obtained from the CAD model is represented in
an octree structure. The graph is partitioned in a 3D space
recursively until each voxel of the octree contains utmost
one node as illustrated in Fig.2.

Figure 2: Octree model for the graph extracted from the
CAD model

The method to partition the graph into an octree is de-
scribed in (Mundani 2005). Each node of the graph is then
associated with the respective co-ordinates (z,y, z) within
the CAD model. The position of the customer in the octree
is identified from the co-ordinates of the customer (identi-
fied from a mobile navigation device). The identified posi-
tion is then translated to the corresponding node in the graph.

Similarly, the choice of destinations can be listed by search-
ing a specific region around the customer. The hierarchical
storage of the graph structure enhances the search possibil-
ities, specially for very large regions (e.g. a graph cover-
ing the whole city). Due to the hierarchy, the efficiency of
the neighbor search improves to O(logn) as compared to a
linear search of O(n). Once the position of the entity and
the choice of destinations are identified, a path search al-
gorithm is performed to identify the shortest paths to each
destination and sort the destination choices according to the
distance from the actual customer position. With the use of
simulation data obtained above, it is also possible to identify
the paths with the least congestion as well as the destination
with the shortest waiting line.

Pedestrian Visit Planning

The simulation of the pedestrian model so far gives an
overview of the status of the paths and destinations at each
simulation time stamp. It is now possible to determine the
time it takes to move from the current location to a specific
destination at time ¢ and the expected waiting time at the
destination at time ¢ + t(P;) (where t(P;) denotes the time
to walk along the i path. The waiting time at the queue and
the actual service time at the service counter ¢ are denoted by
t(WQ;) and t(ST;). The time necessary to execute a task is
denoted as t(T;) = t(P; + WQ,; + ST;).

The index i is used to represent the i*? task T}. Since
each task involves the transition to the task, waiting be-
fore the task and service of the task, the index ¢ shall
be used to also represent the path, queue and service
station of the respective task. The index j is used to
represent a set of tasks where T; € T

A task can denote any arbitrary activity that a pedestrian
would perform in a scenario (shopping, working, relaxing).
Using the statistical data obtained from the pedestrian simu-
lation, we investigate the possibilities to schedule and navi-
gate the tasks to be executed by a pedestrian.

Let us consider the scenario of a commercial building
where several number of visitors are expected regularly.
The scenario is assumed to contain several types of rooms
and service stations (e.g. offices, shops, restaurants, etc.),
and each service station has different properties. It is
also assumed that statistics regarding pedestrian arrivals and
their distributions are available as input models for pedes-
trian simulation. The scenario once simulated, gives us an
overview of congestions and queue status in the commer-
cial building throughout the simulation time period. Now,
let us assume that a new pedestrian arrives in the commer-
cial building with an intention to execute n set of tasks
within a specific period of time tg < t,,x (for example,
before closing time) or the least possible time. For experi-
mental purpose, we assume that the aim is to minimize the
time it takes to execute n tasks. Considering the conges-
tions along the path and possible waiting times at the des-
tination, we determine a schedule for the pedestrian visit
such that S = min{) ;" ¢(7;)}. Let list of tasks be
Tjlj = 1,2,...,n. The visitor starts his visit at source,
visits n destinations and traverses to the sink. Therefore,

the set of paths, denoted as P;|j = 1,2,...,n,n+ 1, con-
sists of m paths to each destination and the last path to the
sink (see figure 3).

source ' ' : : sink
t(Py) P,) Pus1)

tWQL+ STy) t(WQy+ 3T; HWQs + sn HWQ, + bT,,

Figure 3: Set of tasks to be executed by a pedestrian

The pedestrian visit planning problem consists of two
components namely, scheduling the tasks and routing be-
tween each task. In the example scenario considered here,
the pedestrian would wish to obtain a feasible schedule ei-
ther in advance, e.g. through a web-based interface, or via
some hand-held devices. In either cases, it is important com-
pute a feasible itinerary within a short span of time. In this
section, we present the various techniques that were used to
solve these two components.

Pedestrian Routing: Fastest Path Problem

The task scheduling problem involves both sequencing of
the tasks and movement of the pedestrian between the tasks.
To reach a destination node, the pedestrian must find his
way from his current position to the destination node. A
path must be found such that the pedestrian is able to walk
easily without congestions and reach his destination in the
shortest possible time. The path search algorithm makes use
of the congestion data obtained from the pedestrian simu-
lation. Even though the edge value is dynamic, the pedes-
trian simulation records the edge data as discrete and not as
continuous values. A generalized static version of the Dijk-
stra’s algorithm can be used to calculate the fastest path be-
tween two points in a discrete dynamic graph (Chabini 1998;
Dean 1999). This algorithm works in the same way as the
static algorithm and has a complexity of O(m + n - log(n)).
However, in reality, the computational needs and the run-
ning time for a discrete dynamic shortest-path algorithm is
high. This is because of the construction and use of a time-
expanded network (the edges of the graph should contain all
discrete data). Also in a one-to-all shortest path problem,
such data network is necessary even though the actual num-
ber of destinations is much lesser than the actual number of
nodes present in the model (30% in the experimental model
used for this work). Also due to the stochastic nature of the
simulation, the edge values are more an estimate and not ex-
act values.

Alternatively, we use a much simpler algorithm to com-
pute the fastest-path without a time-expanded network by
carefully manipulating the graph with certain stochastic pa-
rameters. The fastest path is determined as follows. Ini-
tially, the weights of the edges of the graph is replaced with
the time it takes to cross the path (depending on the aver-
age walking speed, type of the path and the length of the
path). The shortest-path algorithm now gives us the fastest
path between two points. Now, any congestions that occur
along this path will reduce the total time needed to reach the

destination. Experiments have been made and it was found
out that the congestions increase or decrease gradually and
continuously. In the test model used here, it was found that
the longest walk (the farthest points) do not take more than
about 10 minutes to walk. Therefore, we consider the traf-
fic that occur along the paths during the next 10 minutes
and stochastically determine a mean value such that the edge
weights of the graph is replaced with the stochastic values.
This method has a complexity of O(n) and saves the trouble
of creating a time-expanded graph.

Pedestrian Task Scheduling: Task Sequencing

We now have a generalized path search method that iden-
tifies an optimal path between two nodes. The next stage
involves finding a schedule (sequencing the tasks) such that
the total time taken to complete the visit is within the alloted
time limit. The schedule S involves sequencing of tasks
T;|l7 = 1,2,...,n and we assume that the time taken to
complete each task includes the ¢(F;), t(WQ;) and ¢(ST;).

Brute-Force Search Theoretically, the only accurate so-
Iution will be to use a brute-force search. A brute-force
approach identifies the optimal sequence of tasks by deter-
mining the time taken by all possible sequences S;|j =
1,2,...,n! and identifying the sequence which takes the
least time. Even though, the brute-force search is a straight
forward method and gives us the accurate solution from the
available data, the computing resources required are enor-
mous. The brute-force approach for scheduling the tasks
have a computational complexity of O(n!). Even for small
n (e.g. n = 10 or n! = 3,628,800 comparisons), modern
computer requires many hours of computation. However, for
very small problems (e.g. n = 4 takes about 0.2 s), brute-
force search can be used, specially when a large scenario
can be decomposed into smaller domains. Since a pedes-
trian requests for a schedule on-the-fly, brute-force search is
inappropriate for pedestrian task scheduling.

Due to the stochastic nature of the simulation data, there
is no guarantee that the schedule determined from a brute-
force search is indeed the fastest and the most optimal sched-
ule. This is because, the simulation attempts to capture the
congestions and waiting time situations in a macroscopic
level and a precise behavior modeling of each pedestrian is
therefore not possible

it is not possible to predict the occurrence of a slow
moving group at a specific time and path that would
decrease the walking speed.

Also, if considering such negligible details, a small change
could create an impact to the final schedule. That is, if it is
assumed that the pedestrian would start at time ¢, arrive at the
destination at £+ /At, start the task execution at t -+ At + Ato,
an unexpected change in the A value will then render the
schedule invalid and require a new computation.

Greedy Heuristic We use the greedy heuristic to optimize
the pedestrian schedule. In a greedy heuristic, the algorithm
follows the problem solving meta-heuristic of making the
locally optimum choice at each stage with a hope of finding
the global optimum. There are three different ways to per-

form greedy heuristic for the task scheduling problem and
they are listed as follows. An analysis with an example is
made later.

Greedy Path Search: In the first approach, the algorithm
always looks for the task that can be reached fastest. The
generic path search algorithm is used to measure the time it
takes to walk between the starting point and all destinations.
The destination which can be reached fastest is chosen. The
greedy path search algorithm has a complexity of O(n) for
the first time and O(n—1),O(n—2), ... and so on for con-
secutive searches. The major disadvantage with this method
is that there exists no control in the sequencing of the tasks.
Therefore, the pedestrian might choose a destination that is
most crowded currently.

Greedy Sequencing: In contrast to the greedy path search
method, the next approach chooses the next task that can be
executed the fastest. The service time ST; of any task is
generally consistent at any time of execution. So, the algo-
rithm identifies the current waiting time at each destination,
and chooses the task, which requires the least waiting time.
The computational complexity is same as the greedy path
search method. In a greedy sequencing algorithm, the loca-
tion of the destination (distance from the current position)
is ignored. Therefore, a pedestrian might have to walk long
distances between each task.

Greedy Routing and Scheduling: This approach essentially
combines both greedy path search and greedy sequencing
methods to choose the appropriate destination by counting
the length of the path as well as the waiting time at the desti-
nation. In this method, the sum of waiting time and walking
time the time ¢(P; + W (Q);) is calculated for each destination
and the destination with the least walking and waiting time
is chosen.

Since the future states of the destinations are not taken
into account, the greedy approach does not always give us
the appropriate solution. Also, the use of such methods are
decided based on the actual scenario. For example, if there
are no waiting times, a greedy path search method is appro-
priate.

Stochastic Optimization

The greedy search mentioned above is a local search tech-
nique. The drawback of a greedy search can be avoided by
iteratively determining a schedule and checking if the new
schedule is faster. However, a greedy search always chooses
the fastest task and any number of iterations will result in the
same schedule. Therefore, a probabilistic approach is made
to determine if a faster schedule exists. We use simulated
annealing to determine the optimal pedestrian schedule.

In a simulated annealing method, many iterations are
made to determine the optimal solution. At each step, some
neighbor sequence S’ of the current sequence S is chosen
using probabilistic methods. S’ is accepted as an optimal so-
lution if it turns out to be better than .S. The probabilities are
chosen such that the system finally tends to result in a faster
schedule. The process is iterated until the an optimized solu-
tion is identified (with a termination condition). The proba-
bilistic methods used to determine S’ is not completely at
random. Instead, the profiles and the input data that are

used for the simulation are analyzed and the times when the
congestion is at minimum, are identified. The probabilistic
methods used to determine S’ are coupled with these data
such that the number of iterations are minimized

Counting on Constraints and Preconditions

In typical shop scheduling problems, the job characteristics
(B are considered for scheduling. Similarly, the pedestrians
arriving at a scenario may have different priorities and pref-
erences (referred to as constraints) such as precedence rela-
tion for tasks T; < T}, path preferences (avoid stairs or es-
calators), queue priorities (preemptive service, queue balk-
ing and reneging), and a specific time of execution (execute
task T; at time §). Such constraints are defined within the
pedestrian profiles and are incorporated when scheduling the
tasks.

Apart from pedestrian constraints, a careful analysis of
the pedestrian simulation data can give us specific situations
such as times when certain paths are heavily congested or
times when certain destination nodes are free of any ac-
tivities. Such preconditions can be used together with the
scheduling methods discussed above. In general cases, the
congestions in a path or destination changes continuously
and gradually. Rapid fluctuations are seldom seen along
these paths. However, due to stationary processes, such fluc-
tuations along the paths or nodes are possible. A stationary
process is a stochastic process whose probability distribu-
tion at a fixed time or position is the same for all times or
positions. As a result, parameters such as the mean and vari-
ance also do not change over time or position. However, the
time before and after a stationary process experiences a rapid
fluctuation near the geographical location of the process. A
classical example of a stationary process is a cinema hall. In
case of a cinema hall, the probability distribution between
the between the start and end of the process (a show) re-
mains constant. Therefore, pedestrians arrive shortly before
the start of the process and the inter-arrival times reduces
rapidly before the process. This process causes congestions
along the paths in the vicinity of the destination (cinema
hall). Similar fluctuation is seen once the process is com-
plete is over (see Fig.4). From the simulation data, it is pos-
sible to identify stationary processes and thereby identify the
congested paths at a given point of time.

Occupation -----

Arrival Process/ Arrival Process ——

Occupation level

start

Figure 4: The arrival pattern before and after a stationary
process

Similarly, long waiting times that occur in the scenario
can be detected from the simulation data. These observa-
tions can be used to ensure that the task is scheduled such
that the lengthy queues are avoided. In one of the test models
simulated here, the following parameters were considered.

e About 3000 customers visit the building, each with a spe-
cific list of tasks to execute (derived from the customer
profile).

e Utmost 1000 customers are present in the building at any
given point of time.

e A restaurant, with a capacity for 40 people is chosen for
analysis, and simulations are run to study its occupation
during different times of the day.

e The probability of the time of visit is determined from
the customer profile. In general, the probability of visit is
high during noon.

e It is assumed that the entities wait in the queue as long as
they are served. Also, it does not deter further additions
(queue reneging and balking are deactivated).

e The simulation is run for a period of 8 hours (9am to
Spm).

The plot in Fig.5 shows the number of customers (entities
in the queue and the entities being served) during different
times of the day. From the plot, it can be seen that the restau-
rant is overloaded shortly after noon and takes more than an
hour to fall below the threshold line. Such information can
be used as a precondition when planning a schedule. For in-
stance, if the schedule includes visit to a restaurant, the visit
can be fixed shortly before noon.

80

AT
AN
o, | by

)]
=]

s
(=3

(<)
f=1

/

Number of customers
o
s

I=3

9:00
10:00 A
11:00 A
12:00 A
13:00 A
14:00 A
15:00 A
16:00 A
17.00 -

Time of the day

Figure 5: Number of visitors for a sample restaurant (capac-
ity=40) recorded during the simulation

A tabu list of the above mentioned preconditions and con-
straints can be made and the list can be used by the schedul-
ing algorithms to improve the efficiency of the algorithm.
The implementation details are not discussed in this paper.

Nearest Neighbor Search

The nearest neighbor search attempts to find the next closest
destination (in terms of distance) to visit. Nearest neighbor
search is similar to greedy path search method excepting that
the nearest neighbor search is a static algorithm. In practi-
cal situations, it can be observed the customer tends to stay
in the region and finish the tasks located within the region
before moving to the next region. The classical example is
a theme park where the attractions are grouped and sorted
according to the theme and a visitor normally makes a tour
from the first area to the next closest and so on. The nearest
neighbor search makes an attempt to localize the search for
optimal path by splitting the graph into several subgraphs
(regions), optimizing the plan for each subgraph and find-
ing the shortest connection between each subgraph. The
scheduling methods explained earlier are used to schedule
the tasks optimally within the subgraph.

Domain Decomposition using Octrees Octrees are very
efficient method to partition and store geometry data hier-
archically. Octrees for very large graphs (greater than level
12) can be generated on the fly (Mundani et al. 2003). For
particularly large graphs (such as a whole campus network),
octrees are used to partition the graph. The octants of the oc-
trees are mapped with each other through a Lebesgue curve.
This leaves each domain to be processed individually and
the interconnection between the domains are connected us-
ing space filling curves. Furthermore, there is a possibility
to parallelize the optimization algorithm. The analysis of the
nearest neighbor search and decomposition of larger graphs
are not within the scope of this paper and hence not dis-
cussed here.

Results and Analysis

An hypothetical pedestrian scenario, which occurs within
the sample geometric model used for test cases, is mod-
eled and simulated. As mentioned earlier, the new building
erected for the computer science department will be used
as a test environment here. The dimensions of the building
measure approximately 67m x 79m x 16m (I X b x h) in-
cluding basement. The building consists of a total of four
floors. The graph extracted using the Pathscan tool con-
sists of a total of 600 nodes and 540 edges. The path types
(stairs, ramps, private areas) and the path capacities are de-
fined within the graph data. In the test scenario used here,
the customer has a choice of about 250 destinations to visit.
There are about 15 different classes of destinations and each
class differs with the expected service time of a task to be ex-
ecuted. All 250 destinations fall under these 15 categories.
The capacity of each destination is also defined.

Different pedestrian profiles and their distributions were
created. The pedestrian profile chosen was a mix of regu-
lar employees (tend to stay longer and restrict the visit to
office rooms) and visitors (tend to stay shorter and visit the
public area). Differences exist in the set of tasks to be exe-
cuted and the personal behavior (walking speed, disabilities
and restricted access if any). Each pedestrian executes on
an average of about 10 tasks and the average service times
are set in the range of 5-20 minutes per task (office stay

takes longer). During the simulation run time, about 5000
pedestrians visited the scenario and a maximum of about
500 pedestrians were present in the building at any given
point of time. The scenario was simulated for a period of §
hours (9am to Spm) and the simulation took 117 seconds to
complete on a Pentium 4 processor with 3 GHz speed and 1
GB main memory.

Once the simulation is complete, statistical data of transi-
tion times along each path and waiting times at each destina-
tion, similar to the layout shown in table 1, were collected.
Now, a pedestrian arrives in the scenario with a set of tasks to
execute. For test reasons, a random list of tasks were gener-
ated. The different methods shown in this paper were used to
determine the optimal sequence in which the tasks must be
executed (sequence involves both transition along the path
and execution of the task). It was assumed that there exists
no specific constraints. It was also assumed that there are
no available preconditions to use with the scheduling algo-
rithm.

About 10 destinations, where a task can be executed, were
generated at random. Different problem sizes were chosen
(the first 4,6,8 and 10 tasks) and the scheduling methods
were implemented for each problem set. Initially, the time

taken to execute the tasks in the generated sequence is com-
puted. Then different methods were used to determine the
corresponding solutions and a comparison was made with
the original sequence. Figure.6 shows the results from the
methods used in this thesis. The above defined scenario had
generally less waiting times due to the short service times
and availability of many rooms.

mBrute force 0 Greedy path search

@ Original Sequence
m Greedy routing and scheduling @ Simulated annealing

0 Greedy sequencing

200

100

Task execution time in minutes

Number of tasks

Figure 6: The comparison of the results obtained from the
various methods used to schedule the tasks

The greedy sequencing approach did not differentiate
with marginal differences in waiting times. Therefore,
greedy sequencing method is found to be inappropriate in
pedestrian task scheduling. The results from the greedy path
search method was often close to the best result. However,
there existed inconsistencies in several other experiments
performed. Of all the greedy search methods, the method
that combined the path search and waiting time, performed
most consistently. But, for large problem sizes, incon-
sistencies were noticed. The simulated annealing method

produced very consistent results for different scenarios and
problem sizes. The results were close to the optimal solution
but never the same as the optimal solution.

The computing times were measured for each method and

different problem sizes. The greedy search had the least
complexity and therefore took the least amount of time. The
computing time for all greedy search methods were linear

with respect to the problem size (see figure.7). Due the
search mechanism, the greedy approach takes the least time.

and routing \

\ Greedy path search Greedh ing — — Greedy

0 /

Computing time in seconds

Number of tasks

Figure 7: Comparison of the computing speed of the greedy
methods used to schedule the tasks

The brute force search always yields the optimal solution
but there is a factorial increase in the running time (see in
figure.8). For a problem size of n = 10, the brute force
search lasted about 18.5 hours in comparison with just 0.2
seconds for n = 4. The computing time of the simulated
annealing method depends on the number of iterations per-
formed. In this example, between 100 and 230 iterations
were performed for different problem sizes.

‘+S\mu\aled annealing —=— Brute Force Search \

Computing time in seconds
© & a @ N
g 8 8 8 3

»
8

3
-

o

Number of Tasks

Figure 8: Computing speed comparison of brute force and
simulated annealing

Conclusion and Outlook

So far, various methods have been proposed to optimize a
pedestrian visit. The aim of this work is not to impose a

control on every pedestrian such that entire system func-
tions optimally, but rather to provide a service to the cus-
tomer by planning the visit — either a priori before the visit
or in real-time through mobile navigation devices. Also, the
idea is to compute the task sequence by considering the ex-
pected congestions (crowded restaurant during noon) rather
than considering all waiting times and path conditions to de-
termine the best solution. The integration of the pedestrian
simulation into the geometry context is the key to enhance
the system into an intelligent navigation system. This work
is purely driven by the pedestrian simulation and the statis-
tics produced out of it. It must be noted that the quality of
pedestrian simulation purely depends on the accuracy of in-
put modeling. Care has been taken to carefully model and
validate the statistical data used for the simulation. How-
ever, spontaneous changes such as emergency situations, ac-
cidents, breakdown, etc., are not computed through simula-
tion. With the use of sensors and modern communication de-
vices to transmit the actual status of congestions, the simu-
lation can be altered dynamically. The NeXuS project (Spa-
tial World Models for Mobile Context-Aware Applications)
at the Universitat Stuttgart (Hohl et al. 1999) for instance
enhances mobility by inducing spatial-aware application. In
this project, work has also been done in using communica-
tion devices to transmit information between each other and
therby constantly update the service database. By integrat-
ing the pedestrian simulation model and the task scheduling
strategies with the context model database, updated infor-
mation can continuously be received, thereby leading to a
more intelligent task scheduling and pedestrian navigation.
This however is still an open avenue for research.

References

Brucker, P. 1998. Scheduling Algorithms. Springer-Verlag,
2nd edition.

Chabini, I. 1998. Discrete Dynamic Shortest Path Prob-
lems in Transportation Applications. Transportation Re-
search Records 1645:170-175.

Dean, B. C. 1999. Continuous-Time Dynamic Shortest
Path Algorithms. Master’s thesis, Massachusetts Institute
of Technology.

Drexl, T. 2003. Entwicklung intelligenter Pfadsuchsys-
teme fiir Architekturmodelle am Beispiel eines Kiosksys-
tems (Info-Point) fiir die FMI in Garching. Master’s thesis,
Technische Universitdt Miinchen, Garching bei Miinchen,
Germany.

Giesecke, S.; Stier, M.; and Grumbein, S. 2004. Pfadsuche
in Architekturmodellen und Stereoprojektion. Software
Praktikum, Universitét Stuttgart.

Hohl, F.; Kubach, U.; Leonhardi, A.; Rothermel, K.; and
Schwehm, M. 1999. Next Century Challenges: Nexus —
An Open Global Infrastructure for Spatial-Aware Applica-
tions. In Proc. of the fifth Annual Intl. Conf. on Mobile
Computing and Networking (MobiCom’99).

Knoblauch, R.; Pietrucha, M.; and Nitzburg, M. 1996.
Field Studies of Pedestrian Walking Speed and Start-up
Time. Transportation Research Record 1538.

Mundani, R.-P.; Bungartz, H.-J.; Rank, E.; Romberg, R.;
and Niggl, A. 2003. Efficient Algorithms for Octree-Based
Geometric Modelling. In Proc. of the Ninth Int. Conf. on
Civil and Structural Engineering Computing. Civil-Comp
Press.

Mundani, R.-P. 2005. Hierarchische Geometriemodelle zur
Einbettung verteilter Simulationsaufgaben. Ph.D. Disserta-
tion, Faculty of Computer Science, Electrical Engineering
and Information Technology, Universitit Stuttgart.

Narasimhan, S., and Bungartz, H.-J. 2005. Congestion-
Aware Optimization of Pedestrian Paths. In Hiilsemann,
Frank and Kowarschik, Markus and Riide, Ulrich., ed.,
Proceedings of the 18th Symposium Simulationstechnique
ASIM 2005, 242 — 247. Erlangen, Germany: Erlangen:
SCS Publishing House.

Narasimhan, S., and Bungartz, H.-J. 2006. A Framework
for A Graph- and Queuing System-Based Pedestrian Sim-
ulation. In H. R. Arabnia., ed., Proceedings of the 2006
International Conference on Modeling, Simulation and Vi-
sualization Methods (MSV’06), 87 — 93. Las Vegas, USA:
CSREA Press.

Narasimhan, S.; Mundani, R.-P.; and Bungartz, H.-J. 2006.
An Octree- and A Graph-Based Approach to Support Lo-
cation Aware Navigation Services. In H. R. Arabnia., ed.,
Proceedings of the 2006 International Conference on Per-
vasive Computing and Systems (PSV’06), 24 — 30. Las
Vegas, USA: CSREA Press.

Reinelt, G. 1994. The Traveling Salesman: Computational
Solutions for TSP Applications. Lecture Notes in Computer
Science. Springer.

Spall, J. C. 2003. Introduction to Stochastic Search and
Optimization. Wiley-VCH.

Teknomo, K. 2002. Microscopic Pedestrian Flow Charac-
teristics: Development of an Image Processing Data Col-
lection and Simulation Model. Ph.D. Dissertation, Tohoku
University, Japan.

