Planning in probabilistic domains using a deterministic numeric planner
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Abstract

In the probabilistic track of the IPC5 —the last Interna-
tional Planning Competitions— a probabilistic planner
based on combining deterministic planning with replan-
ning —FF-REPLAN— outperformed the other competi-
tors. This probabilistic planning paradigm discarded the
probabilistic information of the domain, just consider-
ing for each action its nominal effect as a deterministic
effect. Thus, in certain domains, the plans proposed by
this approach are not robust, so replanning occurs too
much frequently. This paper describes a new approach
to solve probabilistic planning problems, also based on
deterministic planning and replanning; but without re-
jecting the probabilistic information of the domain. In
this approach, the probabilistic domain is compiled into
a new deterministic domain and the probabilistic infor-
mation is translated to an action ‘cost model’, used by a
numeric planner to improve the robustness of the plans
found, reducing the frequency with which replanning
occurs.

Introduction

In 2004, the Probabilistic Planning Competition took place
for the first time as a separate track alongside the Fourth
International Planning Competition (IPC4)'. The main ob-
jective of this event was to establish a common representa-
tion language (Younes ef al. 2005), and to define bench-
marks and methodologies to evaluate and compare the per-
formance of probabilistic planners. The participant plan-
ners had to solve sets of problems from different probabilis-
tic domains. The effects of executing the non-deterministic
actions was simulated using software provided by the or-
ganisers. In 2006 the competition took place for a second
time and, as in 2004, the probabilistic planner FF-REPLAN
outperformed the other competitors. FF-REPLAN is based
solely on deterministic planning, discarding any probabilis-
tic information when proposing plans: it is reliant on replan-
ning should an unexpected state be reached during plan exe-
cution. The fact that FF-REPLAN outperformed other plan-
ners in general terms, does not mean it is more suitable to
solve any probabilistic problem than specialised probabilis-
tic planning techniques, such as solving Markov Decision
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Processes (MDPs) (Boutilier, Dean, & Hanks 1999). A more
detailed analysis of the competition results reveals that:

e In all domains FF-REPLAN finds solutions to many more
problems than any other planner. The replanning ap-
proach is much more robust to unexpected states than
planners that finding policies (total functions mapping
states into actions: m = .S — A).

e In all domains FF-REPLAN is competitive in terms of
computation time with the state-of-the-art probabilistic
planners. Replanning using the deterministic planner
FF (Hoffmann & Nebel 2001) is sufficiently fast to al-
low FF-REPLAN to compete with the other probabilistic
planning paradigms.

e In several domains FF-REPLAN is not able to find the
shortest plans to solve problems. Specifically, in the
domains: Blocksworld, Drive and Pitchcatch from the
IPC5, FF-REPLAN takes more turns to solve a problem
than other probabilistic planners. In these domains the
plans proposed by FF are not as robust as they could be,
so the execution of those plans fails more often, meaning
that a greater number of actions must be executed to solve
each problem.

The aim of the approach presented in this work is to de-
velop a probabilistic planning paradigm also based on com-
bining deterministic planning and replanning techniques —
thereby being able to deal with unexpected states and to
compete with the state-of-the-art planers in terms of com-
putation time— but without discarding the actions’ non-
nominal effects > and the probabilistic information of the
domain, so more robust plans can be found. In the paper we
describe how to transform a probabilistic planning domain
into a deterministic one compiling the probabilities associ-
ated with the actions’ effects into a ‘cost model’.

The organisation of the paper is as follows: first we de-
scribe how the probabilistic domain is compiled into a deter-
ministic one, how the probability values are transformed into
a cost model and how this information is handled to solve
probabilistic planning problems. Then we demonstrate the
performance of our approach in several domains from the

>The nominal effects of an action are those that represent the
most likely outcome of the action
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Figure 2: Transforming the probabilistic action action?2 into four Alias Actions

probabilistic track of the IPC5. Finally, we discuss some
related work, conclusions and future work.

Probabilities as a Planning Action Cost Model

This section describes how a probabilistic domain is pro-
cessed to solve probabilistic planning problems using a stan-
dard deterministic numeric planner and without discarding
the probabilities associated with the actions’ effects.

From Probabilistic to Deterministic

Every potential effect of a probabilistic action is transformed
into an Alias Action. An Alias Action is a deterministic ac-
tion representing exactly one effect of a probabilistic action
with an associated cost value denoting the risk of the action
failing. Figure 3 shows the Alias Action resulting from com-
piling the nominal effect of the probabilistic action PICK-UP
from the Blocksworld domain of the probabilistic track of
the IPCS.

In PPDDL (Younes et al. 2005), the potential different
effects of an action are described as trees. These trees may
branch in multiple paths, with probability values associated
to them. The sum the probability values associated to all
the branches must be 1. When the effects of the actions are
described by just one tree, as happens in Figure 1 the trans-
lation process is immediate as every leaf in the tree will gen-
erate one Alias Action. In the example shown in Figure 1,
the sum of the probability values pl1 + p12 + p13 must be
L.

When the effects of the actions are described by more than
one tree (for example, in Figure 2, the potential effects of
the action?2 are described by two trees), it is necessary
to compute all possible combinations of the different effects

(raction pick-up-ALIAS-0
:parameters (?bl - block ?b2 - block)
:precondition (and (not (= ?bl ?b2))
(emptyhand)
(clear ?bl)
(on ?bl ?b2))
holding °?bl)
clear ?b2)

:effect (and

not (emptyhand))
not (clear ?bl))
not (on ?bl ?b2))

(
(
(
(
(
(increase risk 0.287682)))

Figure 3: Alias Action corresponding to the nominal effect
of the action PICK-UP from the Blocksworld domain

the action can cause. Each combination of effects generates
one Alias Action. In the example shown in Figure 2 p21 +
p22 must be equal to 1 and p23 + p24 must be equal to 1.

The Action Cost Model

Intuitively, a metric indicating the robustness of the actions
should allow a numeric planner to find robust solutions. As
a first approach, this metric represents the risk of failing to
achieve some effects when the action is executed by attach-
ing a cost to the action. The cost of applying an action can
be defined by the expression:

risk; =1 — prob;

where prob; is the probability of the effect 7 being true when
the action has been executed. Using this way, minimising
the product of these, as a metric to guide search, would lead
the planner towards robust solutions.



Generally, however, numeric planners do not deal very
efficiently with minimising products of values; so using this
theoretically correct metric will not in practice lead to good
experimental results in terms of quality and time. Instead,
numeric planners are better designed to minimise the sum
of cost values. Thus, based on a property of logarithms,
log(a) 4+ log(b) = log(a * b), we propose the following
definition for the metric:

risk; = —log(prob;)

Using this expression, minimising the sum of the negative
logarithms of the success probabilities results in the product
of the failure probabilities being minimised.

Planning with costs

The deterministic planner used in this work is
LPG (Gerevini & Serina 2002), version LPG-TD-1.0
with the quality option to find plans minimising the
risk metric. With this option selected, LPG incrementally
finds the best plan in terms of cost action that it can derive
within an user-specified CPU-time limit. This planner is
used to find a plan with the compiled probabilistic domain
consisting of deterministic Alias Actions. We call this
plan the PAC-PLAN (ProbabilitiesAreCosts-Plan). Once
the PAC-PLAN is found, it is translated into an equivalent
sequence of actions containing just the original actions
from the probabilistic domain. To solve a probabilistic
problem, this plan is executed step-by-step. When a plan
action cannot be executed it means that a previous action
modified the state in a non-desired way: in these cases a
new PAC-PLAN is computed to try to solve the probabilistic
problem from the new current state.

This approach is non-planner-dependent an any other
planner able to handle metric minimisation can be used in-
stead of LPG.

Experiments

This section describes experiments to demonstrate that us-
ing the cost model we get from compiling the domain proba-
bilistic information leads the planning process towards more
robust solutions. First we describe the test domains and then
we report the results of our experiments.

The Domains

We have tested our approach with probabilistic planning
problems used in the IPC5 to evaluate the performance of
the participant probabilistic planners. The domains chosen
are those whose language constructs are supported by the
current version of the planner. The result of executing ac-
tions has been simulated with the software provided by the
competition organisers.

Blocksworld In this domain, the blocks are in some initial
configuration, on other blocks or on the table and a goal con-
figuration is specified. A gripper can be holding one block,
holding a tower of them or be empty. When trying to per-
form an action, the gripper can fail resulting in blocks falling
down.

Elevators In this domain there are coins scattered all over
a building that have to be collected. To collect them one can
move over the building. The movements can be horizon-
tally, in the same floor, or can consist on taking an elevator
to move to a different floor. Moving horizontally is subject
to the risk of falling down into the elevator shaft and finish-
ing on a different floor. This situation does not lead to an
unrecoverable dead end, simply to an unexpected state.

Exploding Blocksworld This is a version of the classic
Blocksworld domain where blocks can explode when they
are put down. The explosion of a block can affect to the
table or other blocks.

Tireworld This domain involves driving a car between
two locations. Every time the car covers a stretch of the
journey one of its tyres may become flat with a given prob-
ability. When the car has a flat tyre it has to be replaced
by a spare one, however, spare tyres cannot be found in all
locations.

Tree This domain involves moving from a starting level to
an upper one. Operators allow to increase just one level at a
time. The higher the level reached the more operators there
are to get the next one, however the operators also become
less reliable.

Zeno Travel This is a transportation domain involving the
transportation of people planes. A plane has two different
modes of movement: fast and slow. The fast movement con-
sumes more fuel than the slow movement. With some prob-
ability actions can fail to execute, and not cause any new
effects, so they have to be repeated.

Results

Two configurations of the proposed system are used for eval-
uation:

e One in which LPG-TD-1.0 with the quality option is
used, minimising the metric: risk; = —log(prob;) and
with 30 min as the time limit to find the best solution in
terms of the metric.

e One in which the speed option is used. In this mode,
LPG-td finds a solution (of any quality) as quickly as pos-
sible. This configuration serves as a control to allow com-
parison: the metric is ignored during search, so any dif-
ferences in performance can be ascribed to the use of the
risk metrics.

As in the Probabilistic Planing Competition, the planner
attempts each problem 30 times. The planner is allocated a
total of 30 minutes to solve all 30 runs of a given problem;
if this time limit is exceeded the remaining runs are said to
have failed. All results are generated using a machine with
a 3.4 GHz Pentium D processor and 2GB of RAM. Three
different measurements are recorded:

1. Number of solved problems. The number of times the
planner has succeed on solving a problem.

2. Time. The average time the planner needs to solve a prob-
lem.



3. Turns. The average number of actions the planner needs
to execute to solve the problem.

On problems that the planner fails to solve the values for
time and turns are discarded and are not included in the com-
putation of the averages. The values obtained for these mea-
surements in the aforementioned domains are shown in Fig-
ures 4 to 9. Note that all results for time taken and number
of turns are presented on a logarithmic scale.

In the Blocksworld domain, results for which are shown in
Figure 4, the quality version of the planner achieves greatly
improved coverage compared to the speed version. On all
mutually solved problems the quality version requires fewer
turns to reach the goal state. The quality version does, how-
ever, often take longer to solve problems due to the time
spent in finding a more-optimised plan.
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Figure 4: Results obtained running both versions of the plan-
ner in the IPC 5 Blocksworld domain

The results obtained in the Elevators domain are shown in
Figure 5. The observations support the expected pattern that
the quality version generally takes slightly longer to solve
problems, but is more robust, requiring fewer turns to solve
problems. Here we observe that the planner is producing
more robust plans, meaning replanning will occur less fre-
quently, but it is forced to spend more time in order to gener-
ate those plans. The version of PAC-PLAN reasoning about
cost consistently solves more of the presented problems than
the speed version. Indeed there are two problems, problems
9 and 10 that are solved by the quality version and not by the
speed version. In the case of problem 9 the planner is able to
solve most of the problems; on problem 10, however, only 2
of the problems are solved.

In the Exploding Blocksworld domain, results for which
are shown in Figure 6, the quality version again achieves
greater coverage than the speed version. The number of
turns used by the quality version is lower than that required
by the speed version. The speed version does, however,
solve the problems more quickly.

The results in the Tireworld domain, shown in Figure 7,
show that the quality version of the planner is using fewer
turns to solve problems. The speed version is still solving
many of the problems more quickly than the quality version;
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Figure 5: Results obtained running both versions of the plan-
ner in the IPC 5 Elevators domain
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Figure 6: Results obtained running both versions of the plan-
ner in the IPC 5 Exploding Blocksworld domain

it is, however, pleasing to note that the quality version does
successfully solve 5 of the problems more quickly than the
speed version. The reduction in the number of turns used
is sufficient, in one third of the problems attempted, to over-
come the increased effort in optimising the plan. The quality
version of the planner is able to generate a lower risk plan,
reducing the frequency with which cars have to take detours
in order to change a tire, or with which they fail. The rel-
ative coverage varies on the different problems with neither
version clearly emerging as consistently able to solve more
problems.

The results for the Tree domain, shown in Figure 8, are
especially positive. The quality version of the planner again
shows that the number of turns can be reduced, in some
problems by an order of magnitude, by reasoning about the
probabilities during the planning process. Clear benefits are
also seen on several problems in terms of time taken: in this
domain the extra effort expended attempting to optimise the
plan with respect to achieving minimal risk is actually giv-
ing an improvement in the time taken to solve more than half
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Figure 7: Results obtained running both versions of the plan-
ner in the IPC 5 Tireworld domain

of the mutually solved problems. Improved coverage is also
seen for the quality version.
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Figure 8: Results obtained running both versions of the plan-
ner in the IPC 5 Tree domain

In final domain to be considered, the Zeno Travel domain,
the speed version outperforms the quality version both in
terms of coverage and time taken to solve problems (see Fig-
ure 9). This is because the planning phase of this problem
is expensive. Asking the planner to minimise the risk met-
ric in an already difficult problem results in a lot of time
being spent during the planning phase. Despite the number
of turns being smaller when the quality version can solve a
problem, this benefit is not sufficient to make the quality ver-
sion as robust as the speed version. The overheads incurred
by spending extra time planning are not overcome by a suf-
ficient reduction in the number of turns, leading to fewer
problems being solved. The easier planning problems posed
in the other domains considered require less time to opti-
mise, as in this case the difficulty of the induced determin-
istic planning problem increases the time taken to optimise
the problem increases more steeply.

Analysing the obtained results it can be seen that:
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Figure 9: Results obtained running both versions of the plan-
ner in the Zeno Travel domain

e The number of problems solved by the planner is gener-
ally improved when the probabilities are taken into ac-
count.

e On problems solvable without optimising to improve the
chance of the plan succeeding, the overall time required
to solve problems is still generally lower if the planner
does not reason about probabilities during planning; in-
stead finding a potentially poor solution very quickly. In
these cases, the cost of optimisation is not outweighted
by the improved plan quality. This is also affected by the
fact that much of planning research is concentrated on sat-
isfycing planners, and optimisation of plans with respect
to a given metric is not as widely researched 3.

e Reasoning about probabilities generally decreases the
number of turns required to solve problems. In minimis-
ing the risk that a plan will fail the planner is able to gen-
erate a plan that is less likely to fail, or at least that will
fail fewer times.

Related Work

The problem of probabilistic planning has been widely re-
searched. In literature several different techniques to solve
these problems are documented; however, these techniques
can be grouped in three main approaches:

1. Reinforcement Learning (Kaelbling, Littman, & More
1996). Reinforcement Learning techniques allow systems
to solve problems in worlds where the domain dynam-
ics are not completely known. This technique attempts to
learn optimal policies to achieve particular goals by trying
actions and observing the results.

2. Solving Markov Decision Processes (Boutilier, Dean, &

Hanks 1999). These systems transform probabilistic plan-
ning domains into non deterministic state-transition sys-
tems with probabilities assigned to transitions. The plan-

3 Although optimal planning does attract research interest most
optimal planners optimise a fixed, author chosen, metric—usually
makespan



ning goals are seen as utility functions and solving prob-
abilistic planning problems becomes the task of finding a
policy that maximises this utility functions.

3. Extending classical planning algorithms. The work pre-
sented in this paper lies in this category. The first at-
tempts to face probabilistic planning problems followed
this approach, most were extensions to partial order plan-
ning (Onder & Pollack 1999). In recent years this line
of work has been resurrected through the development
of planners based on the Graphplan framework. An ex-
ample is the probabilistic planner PARAGRAPH (Little &
Thiébaux 2006), which participated in IPCS5.

When deciding on the best approach to use in solving a
given probabilistic planning problem several facts must be
taken into account:

e The initial knowledge of the world. Both, planners based
on solving MDPs and planners based on extending classi-
cal planning algorithms assume an initial perfect knowl-
edge of the domain theory. They suppose that all the po-
tential action effects and the probabilities associated with
them are known ‘a priori’. This is a very restrictive as-
sumption as it is not true in most realistic domains.

e The need for a critical speed response. Planners using re-
planning can have response times that are too long for cer-
tain situations. Finding a new plan to overcome an unex-
pected state can take too long in some domains. Planners
based on finding policies do not encounter this problem.

o The reversibility of the actions effects. When the effects
caused by actions executions are easily reversible a simple
approach, as FF-REPLAN, based on using a deterministic
planner together with replanning techniques can be suffi-
cient.

e Changeability of goals. Approaches based on finding
policies can not deal with changeable goals domains. In
these cases systems based on replanning or plan repairing
are more suitable.

e Need for generalisation and transference of the solutions.
Solutions expressed as policies to find particular goals are
not easily generalised to solve similar problems. Further,
the knowledge acquired solving one problem is not easy
to transfer to other applications or communicate to hu-
mans.

Conclusions and Future Work

In this paper we have presented a new approach to solve
probabilistic planning problems with a deterministic stan-
dard numeric planner. This approach, although based on a
deterministic planner, does not discard the non-nominal ac-
tion effects and the probability values of the actions effects
so it is able to get good performance in domains where the
actions effects are not easily reversible.

According to the results of the Probabilistic Planning
Competitions IPC4 and IPCS5, the paradigm based on com-
bining deterministic planning and replanning seems to be
the best approach to solve probabilistic planning problems.
Indeed our planner outperforms all other planners in the

competition that take action probabilities into account. This
statement is, however, not generally true for all domains as
this approach outperformed the other competitors mainly be-
cause the kind of test benches used to evaluate the planners.
In the competition test benches, the world dynamics of all
the domains is ‘a priori’ completely specified, there is no
need for a quick speed response and in most of the used do-
mains the effects of actions are reversible.

In the future we plan to test our approach with different
definitions of the actions cost model. We also plan to study
how metrics can be combined with our cost model to get
good performance in planning domains that involve max-
imising any other feature besides robustness, such as fuel
in the Zeno Travel domain.

One weakness of our approach is that because replanning
is used to handle unexpected states, the response speed can
be slow. Replanning means that our planner requires more
time to take some decisions than systems based on policies.
We would like to integrate plan repairing techniques in our
system to reduce the number times the planner must replan.

When developing real planning applications, having ‘a
priori’ a perfect description of the dynamics of a proba-
bilistic domain is unusual. Another important line of fu-
ture work is dealing with planning domains with incomplete
action model. We plan to integrate relational learning algo-
rithms with this paradigm of probabilistic planner and learn
the likely outcome of actions from executions models.
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