Fast Trajectory Planning for Multiple Site Surveillance
through Moving Obstacles and Wind

Michaél Soulignac

Patrick Taillibert

THALES Aerospace Division
78990 Elancourt, France
{firstname.lastname}@fr.thalesgroup.com

Abstract

In many civil and military applications, Unmanned
Aerial Vehicles (UAVs) have to visit a partially-ordered
set of strategic sites, often in presence of obstacles and
wind. In this paper, we present a trajectory planning
algorithm specially designed for this kind of mission,
and possibly runnable during flight. The main idea of
our approach is to proceed in three steps: paths build-
ing, sites ordering and velocity tuning. This separation
allows to obtain a fast but incomplete method.

Introduction

Unmanned Aerial Vehicles (UAVs) are more and more used
both in civil and military missions. Civil missions mainly di-
vide into rescue and prevention tasks. In rescue operations,
UAVs are sent to locate survivors in hostile environnements,
for instance after a natural hazard. In prevention ones, UAVs
keep a watch on a limited area. This area can be a piece of
forest (to prevent fires) or sea (to prevent oil spills). Military
missions consist in gathering data in enemy terrain (about
troops, radars, warehouses, etc.). In addition to preserve
pilot life, UAVs are accurate and often stealth. Thus, they
represent a strategic benefit.

These two types of mission can be seen as the partially-
ordered surveillance of several sites, possibly in presence of
obstacles and wind. Most of the existing planners can solve
a part of this problem very efficiently. Only few planners
can handle all the constraints, but they are quite slow.

Consequently, we propose a planning method able to han-
dle all the constraints quickly. This method is based on a de-
composition of the initial problem into three sub-problems:
the generation of the subpaths between sites, the ordering of
the sites and the tuning of the UAV’s velocity. This decom-
position allows to obtain good performances but leads to an
incomplete method.

State of the art

In this section, we will first present the existing planners.
Then, we will explain a potential field method, called wave-
front expansion, from which the first step of our algorithm is
inspired.

The existing planners

Most of the existing planners are designed to link two points
in presence of possibly moving obstacles. This is a common

problem in robotics: the robot has to reach a goal in a par-
tially known environment. As the obstacles can be discov-
ered during the exploration, the trajectory planning method
has to be very fast. Generally, the space is discretized into
a grid in order to apply discrete methods, as grid potential
fields (Brock & Khatib 1999) (Kitamura et al. 1995) or vari-
ants of A* (Fraichard 1999). These efficient (re)planners
deal neither with wind nor with multiple points.

The planners which integrate (or could integrate) these
constraints mainly use continuous optimization methods.
Among them, we can find genetic algorithms (Torroella
2004) and mixed integer linear programming (Chaudhry,
Misovec, & Andrea 2004) (Richards & How 2002). In both
techniques, the computation time is too long to replan the
trajectory during the flight. Indeed, the first technique re-
quires a lot of generations, and the second one has to deal
with a huge number of variables.

The potential field Method

The potential field method was introduced by Khatib for
robotics applications (Khatib 1980). Indeed, it allows a
robot to build a collision-free path from any point to a goal
point among static obstacles. This is done in three steps.
First, an attractive potential field is associated to the goal and
repulsive ones to the obstacles. Then, the global potential
field (correponding to the sum of all potentials mentionned
above) is calculated (an example is given in fig. 1). Finally,
the robot moves systematically towards the lowest values of
the global potential.

Static —>
obstacles

@

Figure 1: Global potential field (b) associated to the envi-
ronment (a). This example is taken from (Latombe 1991).

In most cases, the robot reaches the goal without any
problem; but in some particular situations, it may get stuck
at a local minimum.

To solve this problem, Dorst (Dorst & Trovato 1988)
proposed to dicretize the space into a grid and compute
the potential field values in a local way, called wavefront
expansion. This expansion begins by setting the goal cell to
0. Next, every Von Neuman neighbor ! of the goal cell is set
to 1; next, every Von Neuman neighbor of the 1-valued cells
are set to 2 (if it has not been evaluated yet); etc. The three
first stages of the wavefront expansion are drawn in Fig. 2.

Goal

1 2

V
o
-
P~
N
NP ok |
=
N

@ (b) ©

Figure 2: Evolution of the potential field wavefront (cells
filled in grey). Cells labels represent potential field values
(undefined in empty cells).

By construction, every cell labeled by 7 > 0 has a neigh-
bor with a lower potential field: the one labelled ¢ — 1. Thus,
there is no local minimum.

Problem statement
Unformal Description

An UAV has to observe a set of M sites in a minimum time
and with respect to some precedence constraints and time
windows. The UAV flies at a constant altitude in an environ-
ment which may contain windy or forbidden areas (called
wind zones and obstacles respectively), with a maximal ve-
locity constraint.

Formalization

The environment is modelized by a 2-D euclidian space P.
The UAV is considered as a punctual mobile U. Its velocity
vector (relative to the air) is denoted v. Its maximal velocity
is denoted v™**.

Static obstacles and wind zones are supposed to be finite
surfaces of any shape. In a wind zone, the velocity and the
direction of the wind are constant.

Each moving obstacle O is a disk of radius r(O). This
corresponds to a punctual mobile surrounded by a circular
safety zone. The mobile (i.e. the center of the disk) performs
successive straight-line moves at constant velocity.

Finally, each site is represented by a single point denoted
S; (i € 1..N) and has the following properties :

1. The time window w(S;) = [d; ,d;] contains the minimal

1 1
and maximal visit dates for the site .S;.

2. The set pred(S;), containing all the sites to be visited be-
fore S; (precedence constraints). By convention, we as-
sume that S7 and S are the first and the last sites. Con-
sequently we have:

'the Von Neuman neighborhood of a cell C' contains the adja-
cent cells to C which are situated in the four cardinal directions

(a) pred(S1) = 0 (S1 has no predecessor)

(b) Vi € [2,M] : S1 € pred(S;) (51 is before all other
sites)

(c) pred(Syr) = {S; |i = 1..M —1} (Spy is after all other
sites)

Finally, the trajectory is the curve v of minimal length
going through all the sites, on which the UAV’s velocity
is tuned.

« |

o
/ Vl// \.

{, S4
1
|
|
2)
1
|

. :

s1 | ®
S s3
V3 N

Figure 3: An example of mission. This mission contains
5 sites (dark points), 2 static obstacles (dark regions) and
4 wind zones (grey arrows represent the velocity vector of
wind), and 1 moving obstacle (grey disk). This latter per-
forms 3 straight-line moves at constant velocity v;.

Abstraction

Using these precedence constraints, we can build a directed
graph modelizing the allowed moves between sites. This
graph is called accessibility graph and denoted G = (S, A),
with:

e S ={5;]ie€[l, M]} the set of nodes (nodes are sites).

o A=/{aij =(i,5)|4,j € [1, M]} the set of arcs. An arc
a;; is directed from ¢ to j and means "S; can be visited
after S;". It is valued by the cost ¢;;: the minimum time
required to move from S; to S; (i.e. at velocity v™%%,
exploiting wind and avoiding obstacles).

For instance, let us consider a 5-site mission with the fol-
lowing precedence constraints:

e pred(S1) = 0 (take-off site)
e pred(Ss) = pred(Ss) = pred(Sy) = {S1} (free sites)
e pred(Ss) = {51, 52,53, 5S4} (landing site)

The corresponding accessibility graph is given in fig. 4.

Given an accessibility graph G, we can formulate our tra-
jectory planning problem as finding the hamiltonian? path of
minimal cost in GG, and then tune the UAV’s velocity. The
cost of arcs is initially unknown and has to be computed tak-
ing wind and obstacles into account.

2 An hamiltonian path visits each node exactly once

Figure 4: An example of accessibility graph associated to
the mission of fig. 3

Our trajectory planning algorithm

Our algorithm proceeds in three steps. The first one, called
subpaths generation, consists in building a time-optimal
subpath for each arc of G. The second one, called sites or-
dering, tries to find the sequence of sites which minimizesf
the mission duration. The last one, called velocity tuning,
consists in adapting the UAV’s velocity to avoid the moving
obstacles.

1. Subpaths generation

This step consists in building a time-optimal subpath for
each arc (the cost of the arc will be the time required to move
along the subpath).

These subpaths are computed in three phases: first, the
space is discretized; then, an extended field wavefront ex-
pansion (incorporating information on both wind and static
obstacles) is performed; finally the subpaths are build by
"surfing" the weakest values of potential field.

(a) Space Discretization

The space P is discretized into a L x C' rectangloid grid
(L and C are respectively the number of lines and columns).
Each cell X in the grid has the following attributes:

e grid coordinates : coord(X) = (I,c) € R?
e an identifier: id(X) = i € Z, stating the nature of the
cell:

1. ¢ = —1 means that the cell belongs to a static obstacle,

2. ¢ = 0 means that the cell is empty,

3. i € [1, M] means that the cell contains the site .S;.

e a"wind vector" wind(X) € R?, representing the velocity
vector of the wind present in the cell.

These attributes are illustrated in fig. 5.

(b) Extended Wavefront Expansion

A potential field wavefront W; is associated to each site
S;. However, since the algorithm introduced by Dorst do not
take the wind into account, we also introduce an extension
called extended wavefront expansion. The main differences
with the classical wavefront expansion are:

e The potential field meaning: the potential field p;(C) as-
sociated to a cell C represents the minimum time required

T T T T
[AR SENGTG Y
Ry Y M [

~a

A
¥
v
)
'

TsrTAaTTrrTAaT T
[A N N NEN
P R L [Py B
VTR
“r-AatTr-ator-
,I—}I—’I—-}I—)

deebodaaoL o

AN

Pafind

mebodeoobodoobodooL-]
[
-

P iPat

ol|lrloiociciciofn

/x:/':/':_>:\‘:\‘:\‘:\‘

(b)

Figure 5: Space discretization. This figure depicts the dis-
cretization of the environnement of fig. 3 into a 8 X 7
grid. Picture (a) shows the attribute id(X) and picture (b)
wind(X).

| TR R 12d43 1.7 0 4.8 24
e VA e 1.5y 1.1 0 2.2
T TR 13.0[2.6 2.4 0 2.6 2.4 X
i e S

) (b) ©

12.0 48 1.7 2.4 46

1L5IEI!I!2&133

13.02.6 2.4 2.8 4.0

12.0 4.8 1.7 2.4 46

B o [11[22 K

130&!!!!!2&8 4.0

11.55.3 |3.5

(d) (e) ®

Figure 6: Extented Wavefront expansion. Picture (a) is a
focus on the site So, in fig. 5. Pictures (b) to (f) present
different stages of the wavefront 5. The current wavefront
is drawn in dark grey and new cells in light grey.

to reach C' from S;. Because of the wind, its computation
is more complex and requires float numbers.

e The wavefront shape: the wavefront is always ordered
by increasing potential field values. Thus, it is expanded
where the wind is favorable first. It is illustrated in fig. 6:
the right side is expanded faster than the left side, because
the wind is globally right-directed (see fig. 5).

The algorithm is given below.

EXTENDED_WAVEFRONT_EXPANSION(C};, L)
> Input: C; : the cell containing the site .S;
> Input: L : the list of grid cells
I Begin
2 W; «— {Ck}

3 while W; # 0 do

4 H «— HEAD(W;)

5 N < MOORE_NEIGHBORHOOD(H)

6 DELETE(H, W;)

7 for each C' € N do

8

if p;(C) is undefined and id(C') > 0 then
9 Lpi(C)Hpi(H)—l-t(H,C)
10 INSERT_IN_INCREASING_ORDER(C, W)
11 End

The function HEAD(L) returns the first cell

(thus the cell with the smallest potential) of L;
MOORE_NEIGHBORHOOD((") returns the Moore
Neighborhood of C, i.e. the 8 adjacent cells to
C'; DELETE(C, L) removes the cell C from L; IN-
SERT_IN_INCREASING_ORDER inserts a cell C' into L such
that L stays ordered by increasing potential field values;
finally, the quantity ¢(C,C") represents the minimal time
required to move from C center to C” center.

(¢) Surfing

The potential field associated to the site S; allows to build
subpaths from \S; to any other site S;. The subpath S; — S
can be computed using a greedy algorithm called surfing
(Lengyel et al. 1990):

SURFING(S, G, L)
> Input: S : the start cell
Input: G : the goal cell
Input: L : the list of grid cells
Qutput: P : a path between S and G
Begin
C S
P10
while C' # G do
P—PuUC
LC < LOWEST_NEIGHBOR(C, L)
End

The function LOWEST_NEIGHBOR(C') gives the cell in
the Moore neighborhood of C which has the lowest potential
field value. The surfing is thus analog to a gradient descent
applied to the potential field function.

The building of subpath S3 — Sy in the environment of
Fig. 5 is shown belows.

N ANwWwN~V V V

12.0(4.8|1.7 (2.4 |46

11.5| Oel.1 2.2 |33 2

13.0|2.6 |2.4 [2.8 4.0

15.7|11.5(5.3 |35 4.6 4

@) (b)

Figure 7: Subpath building. Picture (a) illustrates the surfing
algorithm in the potential field of site S5 (shown in Fig. 6).
Picture (b) presents the resulting subpath. Its cost is 4.6, the
potential value of the start cell.

(d) Result

These three phases done, the accessibility graph is now
valuated. A time-optimal subpath is associated to each arc.
This result is illustrated in Fig. 13.

2. Sites ordering

Searching the optimal sequence of sites, i.e. the one which
minimizes the mission duration, is an instance of the Trav-
elling Salesman Problem. Precisely, it is known as the Trav-
elling Salesman Problem with Time Windows and Prece-
dence Constraints (TSP-TWPC). At best, this problem can

Figure 8: Accessibility graph of fig. 4 after arcs evaluation.
The costs (black labels) represent the time spent by moving
from a site to another along optimal subpaths. For instance
the cost 4.6 is associated to the subpath drawn at the right.

be solved in an exponential time using dynamic program-
ming (Mingozzi, Bianco, & Ricciardelli 1997). This leads
to huge computation times even on small missions.

To guarantee good performances, we decided to look for a
suboptimal sequence of sites. This can be done using meta-
heuristics, as genetic algorithms (Fabian & Perez 2005).
However, a lot of parameters need to be set, and since they
are based on a random process, they are generally unforsee-
able. Consequently, we opted to a simple and determinist
algorithm: a Depth-First Heuristic Search (DFHS) in the
accessibility graph.

This search is similar to a classical depth-first search, but
the children of a node, given by a neighborhood function
M, are ordered by increasing values of an evaluation func-
tion f, containing an heuristic part. For f, we choose the
evaluation function of the Ax algorithm (Hart, Nilsson, &
Raphael 1968), defined by:

f(X) = g(X) + h(X) (1)
where g(X) is the elapsed time from the start node to the
node X, and h(X) is an estimate of the minimum time re-
quired to reach a goal node from X. h is called the heuristic
function.

Our DFHS algorithm has two specificities. First, the
neighborhood and heuristic functions are adapted to our
problem. Second, the search is controlled by a timeout:
when the allocated time is elapsed, the search is stopped and
the best path found is returned.

(a) The neighborhood function

The neighborhood function N(X) provides the children
of a node X. Normally, the children of a site S; are all the
sites S linked to .S; by an arc a;; in the accessibility graph.
For instance, S3, Sy and S5 are potential children of Ss.

Indeed, as the path in the accessibility graph has to be
hamiltonian, the UAV cannot go directly to the goal node S4
while the other sites have not been visited. Thus, the move
So — Sy is only possible if Sy is a leaf of the search tree.

Formally, if R(X) = {i € [1, M]} denotes the numbers
of non-evaluated nodes at node X, N (X) is defined by :

R(X if R(X)={M
N(X):{Rng\{M} eJlee()= @

(b) The heuristic function

In most applications, h represents the straight-line dis-
tance (or time) from the current node to the goal node. But
in our case, the strait-line move considerably underestimates
the remaining time to reach the goal, since in most cases the
UAV must visit some sites before.

To avoid this problem we propose using arc costs to com-
pute h. Let S; denote the node to be evaluated. Then h(.S;)
is given by:

h(SZ) — tlmin + Z t;nin 3)
JEN(S:)
where 7" is the minimal cost to go from node Sy, to a
non-evaluated node:

£ — min 4)
LER(S;)
As an example, let us consider the heuristic evaluation of
node S; in Fig. 13. The remaining nodes -excluding Ss- are

S3 and S4. So h(S2) is given by :

h(S2) = "+ ez 7"
— ténzn + tgnn _’_tznn (5)
= 46+8.34+26.5=394

Whereas the straight-line time h(S>) is given by *:

h(S) = \/(,TM —22)%2 4 (ypr — y2)? 3162

= v + max x wind(X) 5+3

(6)

We can observe that ~(S2) is much less optimistic than
h(S2).

(c) Example

7.9 168 12.3
OO G @EE
47.3 70.0 81.4
[7.9,39.4] [16.8,53.2] [12.3,69.1] 25 -6 /
99.6 76.2 26.5
[35.4,64.2] [12.5,63.7] %
94.9

[39.0, 55.9]

@ (b) ©

Figure 9: First stages of a DFHS in accessibility graph of
fig. 13. The arcs ars labelled with their costs and the nodes
with the function values f [g, h]. For each stage, the selected
node is showed with an arrow.

3the maximal wind max x wind(X) is added to v™*" to guar-
antee admissibility of function h

(d) Result

The result of the ordering step depends on the state of
the search tree when the timeout occurs. If at least one leaf
has been reached in the allocated time, then the best path
found is returned. The corresponding path in the discretized
environment is denoted P. Both paths are illustrated in fig.
10. Else it is considered that the problem has no solution.

[
ST
[

@) (b)

Figure 10: Result of sites ordering: (a) the best hamiltonian
path found (bold arrows) and (b) the corresponding path in
the discretized environnement of fig. 5.

Using a timeout allows to obtain a "good" solution in a
limited time, but is a source of incompleteness.

3. Velocity tuning

This step allows the UAV to avoid the moving obstacles. Its
velocity is tunned on the path P by an algorithm that we call
broken lines. This algorithm works in a 2-D spacetime.

(a) Spacetime building

The spacetime S has two dimensions: the length [travelled
on P and the elapsed time ¢. The first one is approximated
by the position of the cells C' in the list P, given by the
function rank(F, L). The second one is discretized using
a constant step 7. We obtain a L x T grid, where 7' is the
maximal time, i.e. the upper bound in the time window of
the last site.

Figure 11: The spacetime corresponding to the path of fig.
10. Black cells are fordidden because of time windows, grey
cells are forbidden because of the presence of moving obsta-
cles.

The flag frb(l,t) is true if the cell of coordinates
(I,t) is forbidden. This is the case if X is out-

side the time windows or if X is occupied by a mov-
ing obstacle. These situations are detected by two
procedures OUTSIDE_TIME_WINDOWS and COLLI-
SION_WITH_MOVING_OBSTACLE.

The first one computes the times windows for all the cells
of the path. The time steps outside these windows leads to
forbidden cells in the spacetime. The second one computes
the position of moving obstacles for each time step and for-
bids the occupied cells. The both procedures are decribed in
appendix.

The fig. 11 gives an example of spacetime.

(b) Broken lines algorithm

The idea of this algoritm is to fly at constant velocity while
is is possible. In this perspective, a line is drawn in the
spacetime between the start cell S and the goal cell G. If the
line collides no obstacles, the algorithm stops. Else, a free
cell I is chosen near the collision cell, and the algorithm is
recursively called for the lines [SI] and [IG].

BROKEN_LINES(S, G, F)
> Input: S : the start cell
> Input: G : the goal cell
> Input: F': the set of forbidden cells
> Output: W : a set of waypoints
1 Begin
W — {S,G}
D < DISCRETIZE_LINE(S, G)
C—DnNnF
if C' # () then
H «— HEAD(C)
I «+— NEAREST_FREE_CELL(H)
W1 < BROKEN_LINES(S, I, F)
9 W2 «— BROKEN_LINES(I, G, F)
10 W—WUuWwluw2
11 return W
12 End

The function DISCRETIZE_LINE(X, Y) returns the cells
which intersect the line [XY7]; the function NEAR-
EST_FREE_CELL(X) returns the nearest free (i.e. non-
fordidden) cell in the same column of X.

The fig. 12 shows a run of the broken lines algorithm.

Co N O\ i A W

(¢) Limitations

tuning the UAV’s velocity is another source of incomplete-
ness. Indeed, there is some cases where the UAV must by-
pass the moving obstacle, for instance when the UAV and
the moving obstacle are face to face. The broken lines algo-
rithm will fail in such situations.

Implementation

Our planner, called Airplan, has a modular architecture. It
is composed of a master module, called supervisor, which
takes orders from a Graphical User Interface (GUI), and
slaves modules, associated to each step of our planning al-
gorithm.

This architecture can be adapted according to priorities.
If resources have priority, the same slave modules can be
shared by different master modules. If computation time has

© (d)

Figure 12: The broken lines algorithm in the spacetime of
fig. 11. Forbidden cells are drawn in black, discretized lines
in light grey and intersections in dark grey. On each figure,
the first intersection cell is shown with an arrow. The boxed
cells are the waypoints returned by the algorithm.

expansion

1.N

1 1.1
1.1 ;
Broken
lines
1.1

Figure 13: Airplan architecture. Arrows symbolize commu-
nication between modules.

priority, wavefronts expansion can be parallelized by affect-
ing one module by wavefront different machines.

Each module is developped in Prolog, and the GUI in
Java.

Experimental results

All the results given in this part where obtained by running
Airplan on a 1.7Ghz PC with 512M o of RAM.

1. Global Computation time

Table 1 presents the average computation time (in seconds)
required to plan a path in a square grid of size L x L
(to reduce size influence to one variable) containing M
sites. This mean is computed on 100 randomly generated
missions.

Table 1: Computation time (in seconds) for different grid
sizes (L) and number of sites (M)

L 10 20 30 40 50 60
M
5 0.03 | 0.14 | 0.33 | 0.65 | 0.98 | 1.50
10 || 0.06 | 0.33 | 0.77 | 1.47 | 2.37 | 3.48
15 || 0.11 | 0.52 | 1.25 | 2.41 | 3.84 | 5.81
20 || 0.16 | 0.77 | 1.83 | 3.42 | 5.39 | &.17
25 | 0.23 | 1.03 | 2.42 | 448 | 7.30 | 10.88
30 || 0.29 | 1.26 | 3.01 | 5.62 | 9.30 | 14.29

2. Example

.In this section we apply our method on an example contain-
ing :
e 9 sites, with the following precedence constraints:

- Vi€ [2,6] : pred(S;) = Si—1 (successive sites)

- Vi€ [7,8] : pred(S;) =0

e 6 rectangular wind zones

(free sites)

e 4 rectangular static obstacles
e | moving obstacle

This mission, discretized into a 40 x 40 grid, is shown in
fig. 14.

A trajectory has been found in 1.9 seconds. It is shown in
fig. 15 and the moving obstacle avoidance in fig. 16.

&
s]
20
= [0,20]
1. 115,20
[0.5]
\
[0,10] =
[20,25]
I 5 Y Y A I A o
10.1 13.1
a
[
['1”'15}
\ .
o
[5,20]

Figure 14: The mission. The sites are grey squares, labelled
with their numbers and their time windows. Static obstacles
are grey rectangles. The moving obstacle is drawn on lower-
left of the grid, with its safety zone (a discretized disk) and
its trajectory (two straight line moves). The arrows represent
wind vectors.

[0,10] -

[]
Y
Il-r\lhl/lﬂl

ael

[TTTTT [TTTTT [TT™

0.1

|

fH0,15]
[TTTTT]

H

-
_FFD: 15,20]

Figure 15: The planned trajectory

| — | —
U
U
e R =Py
oﬂ]
B |1 e

| — | —
U (@] U (6]
A] 10 [] 1a
L1 lwl |
[T [T
LJ [T1 :'_1 LJ [T71

Figure 16: Details on the moving obstacle avoidance. The
UAV is denoted by U and the moving obstacle by O. Arrows
symbolize velocity vectors.

Conclusion

In this paper, we have shown that the combination three al-
gorithms allows to obtain a fast trajectory planning method.
For reasonable grid resolution (a 30 x 30 grid) and number
of sites (M < 20), the method is usable to replan the trajec-
tory during the flight. However, the method is incomplete; it
is the price to pay for good performances.

Further work will investigate the case of multiple UAVs.

Acknowledgments

A special thanks to Aurélie Audebrand for her precious help
during the elaboration of this method and to Benjamin De-
veze, Paul-Edouard Marson, Katia Potiron, Michel Rueher
and Nicolas Viollette for their careful reading of this paper.

Appendix

Procedure outside_time_windows

OUTSIDE_TIME_WINDOWS(P,T")

> Input: P : a path

> Input: 7" : the upper bound for time

1 Begin

2 foreach C € P do
3 S1 < PREVIOUS_SITE(C)
4 Sy < NEXT_SITE(C)
>w(Sh) = [dy,dy]
> w(Ss) = [dy , d]
5 t™ «—dy +1(51,0)
6 tt e df —t(C,Ss)
7 Il — RANK(C, P)
8 fort — Otot~ do

9 | fro(l,t) « true
10 fort «— t* to T do
11 | fro(l,t) < true
12 End

The functions PREVIOUS_SITE(C) and NEXT_SITE(C)
return the sites before and after C' repectively. Next, us-
ing the time windows of these sites, the time window for C,
defined by [t~,t "], is computed. Then all the times steps
outside this window lead to forbidden cells in S.

Procedure collision_with_moving_obstacle

COLLISION_WITH_MOVING_OBSTACLE(L, P,T)
> Input: P : a path
> Input: L : alist of moving obstacles
> Input: 7" : the upper bound for time
I Begin

2 n <+ LENGTH(L)
3 fort«— 0toT do
4 for i — 1 ton do
5 O < GET_ELEMENT(%, L)
6 C < COMPUTE_POSITION(O, t)
7 (Tey Ye) « coord(C)
8 (%o, Yo) «— coord(O)
9 if (1. — 20)% + (Y — ¥o)? < r(O)? then
10 l — rank(C, P)
11 Lfrb(l,t) — true
12 End

The function GET_ELEMENT(z, L) returns the sth element
of the list L; COMPUTE_POSITION(O, t) determines the po-
sition P of the moving obstacle O at time step ¢. If a cell C
is inside a circle of center P and radius r(O), it is forbidden.

References

Brock, O., and Khatib, O. 1999. High-speed navigation
using the global dynamic window approach. IEEE Interna-
tional Conference on Robotics and Automation 1:341-346.

Chaudhry, A.; Misovec, K.; and Andrea, R. D. 2004. Low
observability path planning for an unmanned air vehicle
using mixed integer linear programming. Proceedings of
IEEE Conference on Decision and Control 4:3823-3829.

Dorst, L., and Trovato, K. 1988. Optimal path planning by
cost wave propagation in metric configuration space. Pro-
ceedings of SPIE-The International Society for Optical En-
gineering 186—-197.

Fabian, J., and Perez, L. 2005. An evolutionary approach
for a topologic constrained routing problem. EEE Interna-
tional Parallel and Distributed Processing Symposium.

Fraichard, T. 1999. Dynamic trajectory planning with dy-
namic constraints: A state-time space approach. Advanced
Robotics 75-94.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 100-107.

Khatib, O. 1980. Commande dynamique dans
I’espace opérationnel des robots manipulateurs en présence
d’obstacles. PhD Thesis - Ecole Nationale de
I’Aeronautique et de I’Espace.

Kitamura, Y.; Tanaka, T.; Kishino, F.; and Yachida, M.
1995. 3-d path planning in a dynamic environment us-
ing an octree and an artificial potential field. Proceedings
of the International Conference on Intelligent Robots and
Systems.

Latombe, J. 1991. Robot Motion Planning.

Lengyel, J.; Reichert, M.; Donald, B. R.; and Greenberg,
D. P. 1990. Real-time robot motion planning using ras-
terizing computer graphics hardware. Computer Graphics
24:327-335.

Mingozzi, A.; Bianco, L.; and Ricciardelli, S. 1997. Dy-
namic programming strategies for the traveling salesman
problem with time window and precedence constraints.
Operations research 45:365-377.

Richards, A., and How, J. 2002. Aircraft trajectory plan-
ning with collision avoidance using mixed integer linear
programming. Proceedings of American Control Confer-
ence 3:1936-1941.

Torroella, J. C. R. 2004. Long range evolution-based path
planning for uavs through realistic weather environments.
PhD Thesis - University of Washington.

