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Abstract

Model transfer refers to the process of transferring in-
formation from a model that was previously identi-
fied for one task (source) to a new task (target). For
decision tasks in unknown Markov environments, we
profit through model transfer by using information from
related tasks, e.g. transition knowledge and solution
(policy) knowledge, to quickly determine an appropri-
ate model of the new task environment. A difficulty
with such transfer is typically the non-linear and indi-
rect relationship between the available source knowl-
edge and the target’s working prior model of the un-
known environment, provided through a complex multi-
dimensional transfer function. In this paper, we take
a Bayesian view and present a probability perturbation
method that conditions the target’s model parameters to
a variety of source knowledge types. The method re-
lies on pre-posterior distributions, which specifies the
distribution of the target’s parameter set given each in-
dividual knowledge types. The pre-posteriors are then
combined to obtain a posterior distribution for the pa-
rameter set that matches all the available knowledge.
The method is illustrated with an example.

Introduction
Planning under uncertainty is central to solving many im-
portant real-world problems. An increasingly popular com-
putational framework for modelling such tasks is Markov
Decision Processes (MDP). An MDP is a stochastic con-
trol process characterized by a set of states that can be per-
ceived exactly, actions, and transition probability functions
that specify the transition probabilities from one state to the
next. Essentially, the process is Markovian in the sense that,
the outcome of applying an action to a state depends only
on the current action and state. The MDP framework is rich
and quite expressive in capturing the essence of purposeful
activity in a wide variety of tasks, including applications in
artificial intelligence, engineering, financial and medical de-
cision making. However, in practice the computational ef-
fort of solving an MDP may be prohibitive and, moreover,
the model parameters of the MDP may be unknown.

Quite often, there is knowledge available on other tasks
that one can transfer to a new task. For humans, knowledge
transfer is an integral part of life. It represents the transmis-
sion of knowledge (conveying the knowledge of a source

task to a target task) and the appropriate use of the transmit-
ted knowledge. The goal is to promote/facilitate knowledge
sharing, collaboration and networking as a vehicle for prob-
lem solving. Recent research into knowledge transfer for
tasks modelled as MDPs justifies this thinking (Singh, 1992;
Mahadevan, 2005; Sherstov and Stone, 2005; Liu and Stone,
2006). The goal is to find ways to transfer knowledge ac-
quired in a task (the source) into a new task (the target) with
a desired outcome of reducing the computational effort ex-
pended on solving the target MDP.

There are typically several types of source information,
including relevance of model variables (feature selection),
conditional independence among variables, and parameter-
specific domain knowledge. This information set can be
used to specify priors on the transition and the solution
(value or policy function) for the new task. The prior on
solution may be derived from theoretical or observed his-
torical (target) solutions of related tasks, separate from data
(observations) acquired during interactions with the target
environment. The transition knowledge and source solutions
impose specific constraints/preferences on parameters of the
true model of the new task.

Ideally, one would want to determine the parameters of
the true model such that when the model is applied with the
parameters to solve the target task, the output that results
are in close correspondence to a totality of the prior knowl-
edge available. This is a problem of parameter matching.
In many practical situations, especially those involving task
transfers, parameter matching is an important step. Unfor-
tunately searching for models that parameter match is non-
trivial because of variety of knowledge types which makes
the relationship between the available prior information and
the model of the new task difficult (sometimes non-linear
and indirect), typically, provided through a complex multi-
dimensional model transfer function.

In this paper, we present a model transfer framework that
allows one to combine a variety of knowledge types when
transferring prior information between models of Markov
decision tasks. The framework is presented within the
context of Bayesian modelling using probability perturba-
tion(Caers and Hoffman, 2006). Probability perturbation is
designed as an alternative to the standard Bayesian method
that decomposes posterior distribution into likelihood and
prior information. It uses pre-posterior to decompose the



source knowledge into ‘easy’ (or linear knowledge) and ‘dif-
ficult’ (or non-linear knowledge). The method relies on fast
non-iterative sequential simulation to generate model real-
izations. The mechanisms of probability perturbation allow
one to match the difficult knowledge by perturbing an initial
realization. The probability perturbation method moves the
initial realization closer to matching the difficult knowledge,
while maintaining the prior model statistics and condition-
ing to the linear knowledge.

The remainder of the paper is structured into six sections.
Section two contains an overview of current formalisms for
model transfer including those that use Bayesian paradigms.
A standard Bayesian framework to model learning for
Markov decision tasks is presented in section three with an
assumption that a working prior is available for the target
task. This is followed in section four by an extension of the
standard Bayesian framework to model transfer for Markov
decision tasks. A variety of transfer techniques using the
Bayesian framework is presented in section five and results
of empirical tests on a sample problem is presented in sec-
tion six. The paper ends in section seven with concluding
remarks and suggestions for future work.

Formalisms for Model Transfer
Model transfer is long recognised in many fields as a way
of taking advantage of previously acquired task knowledge
when determining a model of a new task. Unfortunately, it
is widely acknowledged, especially in machine learning, that
systems do not take sufficient advantage of model transfer.
This is partly due to the fact that there is no complete theory
of how task knowledge can be retained and then selectively
transferred when learning a new task (Thrun, 1997). Exist-
ing formalisms for model transfer differs primarily in their
procedures for using prior knowledge, representation of the
source and target tasks, and the specific goal of model trans-
fer.

There are two main reasons for the incorporation of re-
lated existing knowledge. First, existing knowledge can be
used to improve the global accuracy of models when only
impoverished data are available. Second, existing knowl-
edge can be used to improve the success of model transfer
efforts. The transferring procedures were either Bayesian or
frequentist in their use of prior information.

We assume that the task to accomplish is modelled as a
standard Markov decision processes (MDP) 〈S,A,R,P〉
with finite state and action sets S,A, reward function R :
S 7→ R, and dynamics P . The dynamics P refers to a set
of transition distributions pa

ij that captures the probability of
reaching state j after we execute an action a at state i such
that i, j ∈ S. We assume throughout that R is known but not
the dynamics P of the MDP. Once the dynamics is learnt, the
planning problem in the MDP is straightforwardly finding a
policy π : S 7→ A that optimise the expected discounted
total reward V = E(

∑∞
t=1 γt−1rt), where rt is the reward

received t steps into the future and γ ∈ [0, 1] is a discount
factor.

In the area of Markov decision tasks, model transfer
paradigms are relatively new. Whilst a generally acceptable
formalism for model transfer in this area is yet to emerge,

there have been a number of important findings. Represen-
tation wise, it has been noted that traditional MDP definition
is adequate only for solving problems in isolation - it is not
expressive enough to capture similarities across problems
and as such it is poorly suited for accomplishing knowledge
transfer. A suggested way of overcoming this difficulty is
a MDP formalism that use classes(Guestrin, 2003) and out-
comes to remove the undesirable independence of model de-
scription on the state space(Sherstov and Stone, 2005).

Transferring procedures used for models of Markov deci-
sion tasks are predominantly frequentist, the use of Bayesian
methods is limited. Bayesian approach proceeds as follows.
Start with a prior distribution that encodes the learners ini-
tial belief about the possible values of each unknown MDP.
Then, whenever a sampled realization of the unknown MDP
is observed, the current belief is updated to reflect the ob-
served data. In the context of an MDP with unknown transi-
tion probabilities, each of the unknown transition probability
is an unknown parameter taking values in the [0, 1]-interval.

Bayesian approaches have been considered from the out-
set for MDPs (Bellman, 1961; Martin, 1967) and interest
has re-emerged in this approach (see, for example (Dearden,
2000; Poupart et al., 2006; Strens, 2000; Wang et al., 2005;
Wyatt, 2001)). The Bayesian-MDP framework is known
to have a number of inherent difficulties – they are heav-
ily reliant on planning for action selection, uses various
myopic/non-myopic strategies as surrogate for dealing with
the effects that actions have on future value estimates, and
are intractable for typical real world tasks because it involves
dynamic programming over a tree of information states. Re-
searchers have generally had difficulty developing efficient
and accurate Bayesian-MDP algorithms. To date, several ap-
proximate algorithms have been proposed and are based for
example on confidence intervals (Sunmola and Wyatt, 2003;
Wyatt, 2001) and sampling (Dearden, 2000; Strens, 2000;
Wang et al., 2005), but they tend to be computationally in-
tensive at run time, preventing online learning or make dras-
tic approximations such as myopically optimizing the pol-
icy. An alternative efficient point based value iteration al-
gorithm called BEETLE was developed recently (Poupart et
al., 2006), framing the Bayesian-MDP problem as a partially
observable Markov decision process (Duff, 2002) and show-
ing through analytical derivation that the optimal value func-
tion is the upper envelope of a set of multivariate polynomi-
als. Also relevant is the recently emerging body of work
on using imitation techniques to accelerate reinforcement
learning (Price, 2003). Imitation frameworks typically use
observations of other agents to provide an observer agent
with information about its action capabilities in unexperi-
enced situations.

Finally, the specific goal of model transfer for Markov
decision tasks has also significantly influenced existing for-
malisms and transfer procedures. The formalisms split
between those that consider transition and reward knowl-
edge, and those that focus primarily on the solution knowl-
edge i.e. the value / policy functions(Mahadevan, 2005;
Bernstein, 1999; Liu and Stone, 2006). Typically, the for-
malisms do not explicitly provide mechanisms for combin-
ing these sets of knowledge during model transfer.



The transfer problem may be formulated as a misfit min-
imisation problem, misfit between the targets working prior
model of the task environment and the source’s model of the
task environment. The problem may be solved naively by
trial and error. The difficulties with this approach are as fol-
lows: (a) the parameter spaces for the model are typically
high dimensional; (b) each solution of the model can take a
long time with several dynamic programming backups; (c)
there may be many or no solutions to this high dimensional
problem as the source may contain errors; d) one would need
to integrate on-line data (experience tuples); and e) take cog-
nisance of exploration control.

Learning with a Working Prior
In a standard Bayesian framework, we assume that there is a
space P of unknown transition functions (parametric mod-
els) for the MDP and that there exists a belief state over
this space. The belief state defines a probability density
f(P |M) over the MDPs. The density is parameterised by
M ∈ M. In the Bayesian approach, the unknown param-
eter P is treated as a random variable, and a working prior
distribution f(P |M) is chosen to represent what one knows
about the parameter before observing transitions. In particu-
lar, f(P |M) is the real task-specific prior describing actual
beliefs which may be a non-informative prior when we have
no prior knowledge about P .

At each step in the environment, we start at state s, choose
an action a and then observe a new state s′ and a reward r.
We summarise our experience by a sequence of experience
tuples < s, a, r, s′ >. When we observe transitions, we up-
date the prior with the new experience. Given an experience
tuple < s, a, r, s′ > we can compute the posterior belief
state by Bayes rule:

f(P |M) =
f(< s, a, r, s′ > |P )f(P |M)

f(< s, a, r, s′ >)

=
1
Z

f(< s, a, r, s′ > |P )f(P |M) (1)

in which Z is a normalising constant. Thus, the standard
Bayesian approach starts with a working prior probability
distribution over all possible MDPs (we assume that the sets
of possible states, actions, and rewards are delimited in ad-
vance). As we gain experience, the approach focuses the
mass of the posterior distribution on those MDPs in which
the observed experience tuples are most probable. In sum-
mary, we update the prior with each data point 〈s, a, r, t〉
to obtain a posterior M which we use to approximate the
expected state values. The Bayesian estimator of expected
return under the optimal policy is:

Vi(M) = E[Ṽi|M ] =
∫
P

Vi(P )f(P |M)dP (2)

where Vi(P ) is the value of i given the transition function
P . When this integral is evaluated we transform our prob-
lem into one of solving an MDP with unknown transition
probabilities, defined on the information space M×S:

Vi(M) = maxa {
∑

i

p̄a
ij(M)(ra

ij + γVj(T a
ij(M)))} (3)

in which, for convenience, the transformation on M due to
a single observed transition i

a,r
; j is denoted (T a

ij(M)),
p̄a

ij(M) is the marginal expectation of the posterior distri-
bution, and ra

ij is the reward associated with the transition i
a,r
; j. The optimal policy is to act greedily with respect to
the Bayes Q-values.

The integral of equation (2) involved in the inference pro-
cess may be approximated through naive global sampling
(NGS) using the basic idea in Monte Carlo simulation in
which a set of weighted particles (samples P̂ ), drawn from
the posterior distribution of the model parameters f(P |M),
is used to map the integration, to discrete sums. When, for
simplicity, the model dimension is known and fixed, the in-
tegral may be approximated as follows:

Vi(M) = E[Ṽi|M ] ≈ 1
NS

NS∑
l=1

Vi(P̂l) (4)

where the particles P̂l, l = 1, . . . , NS are drawn from the
constrained posterior f(P |M), and assumed to be ‘suffi-
ciently’ independent for the approximation to hold. NS is
the sample size. Monte Carlo sampling techniques are an
improvement over direct numerical approximation in that
they automatically select particles in regions of high prob-
ability. NGS is naive in the sense that it involves global
solutions to MDPs which can be expensive. Reusing MDPS
from previous steps and doing sampling with repair will gen-
erally alleviate the deficiencies (Dearden, 2000).

Product of Dirichlet Densities
Typically, prior update and computation of f(P |M) are ren-
dered tractable by assuming a convenient, natural conjugate,
working prior: M is a product of local independent densities
for each transition distribution, and each density is Dirichlet.
The probability density of the Dirichlet distribution for vari-
ables ~p a

s with parameters M = [~ma
s : ∀s ∈ S ∀a ∈ A] is

defined by:

f(P |M) =
1

Z(M)

A∏
a=1

S∏
s=1

(~p a
s )~ma

s−1 (5)

where ~m a
s = {ma

s1,m
a
s2, . . . ,m

a
sN} for the possible N suc-

cessor states of state s ∈ S and action a ∈ A, given that
ma

ss′ > 0 ∀s′ ∈ N . The parameters ~m a
s can be interpreted

as prior observation counts for events governed by ~p a
s . The

normalisation constant Z(M) becomes:

Z(M) =
∏A

a=1

∏S
s=1 Γ(~ma

s)

Γ(
∑S

s=1 ~ma
s)

(6)

Let ~ma
0 =

∑S
s=1 ~ma

s . The mean and variance of the
Dirichlet distribution are:

E[~p a
s ] =

~ma
s

~ma
0

(7)

and

V ar[~p a
s ] =

~ma
s(~ma

0 − ~ma
s)

(~ma
0)2(~ma

0 + 1)
(8)



When ~ma
s → 0, the distribution becomes non-informative.

This means that all the ~p a
s stay the same if all are scaled

with the same multiplicative constant. The variances will,
however, get smaller as the parameter ~ma

s grows.

Working Prior Plus
We consider situations where, in addition to a working prior,
alternative source of information on the underlying MDP is
available through a task class model (TCM). A task class
model is a collection of information previously identified for
a family of related tasks. The class model describes the
structure and behaviour of a set of tasks which are its in-
stances.

Specifically, we consider situations in which information
in the task class model is classified into direct φ - ‘easy’ (or
linear knowledge) and indirect I - ‘difficult’ (or non-linear
knowledge). The direct knowledge is parameterised by the
model parameters, typically of the form:

φi = h(P ) + εi [wi] (9)

in which each expression of direct knowledge φi is specified
with a tolerance εi and an assigned weight wi that deter-
mines the importance of the expression in the TCM. Figure
1 shows a sample task class model fragment for a family
of chain tasks. The example TCM contains five equally-
weighted direct expressions that are parameterised by spe-
cific model parameters. In addition, there is one indirect
expression that provides prior information about policies for
the family of tasks modelled by the TCM . In the example,
we know through the TCM that the same action should be
selected for internal states 2 and 3.

We choose to transfer information from the TCM to a
working prior M . In principle, one could achieve the trans-
fer by specifying a transfer function g such that

M = g(M, 〈s, a, r, t〉, φ, I) (10)

However, for non-trivial task instances, g represents a com-
plex multi-dimensional transfer function that is difficult to
compute. Instead of seeking to compute g, we use the work-
ing prior and the indirect knowledge to produce a probability
distribution over all possible models of the MDP subject to
constraints on the model-space specified by the direct infor-
mation φ.

The Bayesian estimator of expected return under the opti-
mal policy Ṽi then becomes:

Vi(M) = E[Ṽi|M ] =
∫
PC(φ)

Vi(P )f(P |M, I)dP (11)

in which the quantity of interest V is expressed as an expec-
tation of functional that depends on trajectories defined by
unknown transition function P parameterised by a) a matrix
M of transition counts, and b) indirect information I , sub-
ject to constraint PC(φ) on model space.

Computation of the expectation equation 11 requires cal-
culating integrals that, for all but simple tasks, are difficult
to compute in closed form. There are two significant com-
putational difficulties - computation of f(P |M, I) subject
to PC(φ) and computation of Vi(P ) for large samples of P .

(a) A four-state chain task

direct – φ
φ1 = 1− pb

21p
b
22 [0.2]

φ2 = 1− pb
31p

b
33 [0.2]

φ3 = 1− pa
41p

a
44 [0.2]

φ4 = pa
34 − pa

22p
a
23 [0.2]

φ5 = pa
11 − pb

44 [0.2]

indirect – I
equal(π2,π3)

(b) Task class model

Figure 1: A sample task class model fragment for a family of
chain tasks. φi are task class model parameters. The indirect
expression specifies same policy for internal states 2 and 3.

We focus here on the former. We use PC(φ) to constrain the
working prior and compute f(P |M, I) using pre-posterior
densities.

Constrained Prior Density
A convenient choice of prior distribution over the parameters
given CΘ, i.e. PCΘ = [~p a

s : ∀s ∈ S ∀a ∈ A|CΘ] is:

f(P |M) =

{
1

ZCΘ (M)

∏A
a=1

∏S
s=1 (~p a

s )~ma
s−1 for p ∈ CΘ

0 otherwise,
(12a)

where ~m a
s = {ma

s1,m
a
s2, . . . ,m

a
sN} for the possible N suc-

cessor states of state s ∈ S and action a ∈ A, given that
ma

ss′ > 0 ∀s′ ∈ N .

CΘ = {φ; 0 ≤ pa
ss′ ≤ 1;

N∑
s′=1

pa
ss′ = 1 ∀s, s′ ∈ S, a ∈ A}

(12b)
and

(ZCΘ(M))−1 =
∫
CΘ

A∏
a=1

S∏
s=1

(~p a
s )~ma

s−1
d~p a

s (12c)

Pre-posterior Densities of f(P |M, I)

After observing a transition with experience tuple <
s, a, r, s′ >, the posterior distribution from which samples
of models are drawn is, in a standard Bayesian context, de-



Figure 2: Computing f(P |M, I) through pre-posterior mix-
ing.

composed into a likelihood and prior distribution as follows.

f(P |M, I) =
f(< s, a, r, s′ >, I|P )f(P |M)

f(< s, a, r, s′ >, I)

=
f(< s, a, r, s′ > |P )f(I|P )f(P |M)

f(< s, a, r, s′ >, I)
(13)

where the likelihood f(< s, a, r, s′ >, I|P ) is further de-
composed into f(< s, a, r, s′ > |P ) and f(I|P ) under the
assumptions of conditional independence. Whilst the condi-
tional independence assumption makes the inference of the
likelihood feasible, it is difficult to verify and may have con-
siderable consequence in the computation of the posterior
distribution f(P |M, I) and the resulting expected values.

We take an approach that differs from the standard
Bayesian approach. Instead of working with the likelihoods
f(< s, a, r, s′ > |P ) and f(I|P ), we use two pre-posteriors
f(P | < s, a, r, s′ >) and f(P |I) and have the pre-posteriors
combined into f(P |M, I) using the framework illustrated in
Fig. 2.

Posterior Inference
Learning a model of a task environment using the framework
of Fig. 2 and deriving a policy based on the learned model
requires the following main steps.

start with current state s, action a, transfer window
(t0, t1), φ, I , and working prior M
initialise current time step t
repeat

observe transition s
a,r
; s′

if t falls within the transfer window (t0, t1) then
update M using s

a,r
; s′ and I , subject to φ.

else
update M with s

a,r
; s′

end if
evaluate V using equation (3)

select action for the current state from V
move t to next time step

until termination condition

We assume that information transfer takes place only within
a transfer window specified by a transfer start time t0 and a
transfer end time t1. The learner is assumed to know both t0
and t1.

The learner starts by performing an action in its initial
state, observing transition and reward. It then uses the re-
sulting experience tuple < s, a, r, s′ > to update the work-
ing prior M and obtain a posterior density. This is done
using information in the TCM i.e. φ and I if the current
time falls within the transfer window otherwise the TCM
is ignored and M is updated using only the observed transi-
tion. The value function V is computed using the posterior
density and a revised policy is derived from V . The learner
then moves to the next time step and the learning loop re-
peats until a termination point is reached. An example of
a termination condition is when a specified end of learning
time steps is reached.

Updating the working prior in a transfer window entails
transferring information from the TCM to the working
prior. Two techniques for accomplishing the transfer are pre-
sented below.

Transfer Techniques
There are at least two computational challenges in transfer-
ring information from a task class model to a working prior
for a new task.
• plausible model realisations: we need to ensure that when

we generate model realisations P from a posterior density,
not only do the realisations reflect the data so far acquired
in the form of experience on the new task but that they
also satisfy the conditions specified in a TCM .

• efficient dynamic programming back-ups during model
transfer: which is a problem when there is a need to match
indirect expressions in a TCM and evaluation of a num-
ber of alternative models is required to obtain a satisfac-
tory match.

Naive Transfer
In a naive transfer approach (see algorithm 1), we first up-
date the working prior M with the observed transition s

a,r
;

s′ and then randomly sample a model realisation from the
updated working prior constrained by φ. A variety of meth-
ods exists for sampling P from a constrained dirichlet prior
in a constrained parameter MDP task environment (see for
example (Sunmola and Wyatt, 2006)).

We next evaluate the sample P using dynamic program-
ming to obtain a corresponding value function V . The sam-
ple is accepted if the estimated V satisfies the indirect ex-
pressions I in the TCM , within specified tolerances. If a
sample is accepted, we increase the number of samples by
1 and add P to a list of plausible model realisations. When
the size of the list is equal to required number of samples,
we use the list to adjust the working prior M and estimate
the posterior distribution f(P |M, I) from the adjusted M .



Algorithm 1 Estimate f(P |M, I) using Naive Sampling

Input: M , s
a,r
; s′, I , φ, and requiredSampleSize

Output: f(P |M, I), revised M
1: set noOfSamples = 0
2: update M with s

a,r
; s′

3: repeat
4: generate model realisation P from a φ-constrained

prior M
5: evaluate V for the model P using dynamic program-

ming.
6: if V satisfies the indirect expressions in I within spec-

ified tolerances then
7: increase noOfSamples by 1
8: add P to a list of plausible model realisations.
9: end if

10: until (noOfSamples=requiredSampleSize)
11: adjust M using the list of plausible model realisations.
12: estimate f(P |M, I) corresponding to the adjusted M .

Perturbation-based Transfer

A probability perturbation method (see algorithm 2) is used
to estimate the posterior distribution of f(P |M, I) from pre-
posterior densities f(P | < s, a, r, s′ >) and f(P |I). It is
easy to compute f(P | < s, a, r, s′ >) given a dirichlet prior
density. However, since I is indirect, estimating f(P |I) is
not as straightforward. We estimate f(P |I) through pertur-
bations of the current probability model f(P | < s, a, r, s′ >
). We start with a set of initial model realisations that is
drawn from f(P | < s, a, r, s′ >) constrained by φ. We eval-
uate the value functions for the model realisations and use it
to estimate the mismatch of the model realisations given I .

Algorithm 2 Estimate f(P |M, I) using Probability Perturbation

Input: M , 〈s, a, r, t〉, I , φ, δ, and sample size nSample
Output: f(P |M, I), revised M

1: generate an initial nSample model realisations from
f(P | < s, a, r, s′ >) constrained by φ

2: obtain value estimates for the nSample model realisa-
tions

3: calculate mismatch of the value estimates given I .
4: repeat
5: set f(P |I) = (1 − δ) × f(P | < s, a, r, s′ >) + δ ×

f(P |M)
6: combine pre-posteriors f(P | < s, a, r, s′ >) and

f(P |I) using a pre-posterior mixing algorithm to ob-
tain f(P |M, I)

7: draw a new nSample of model realizations from
f(P |M, I) constrained by φ

8: obtain value estimates for the new nSample of model
realizations

9: calculate mismatch of the current value estimates
given I .

10: find an optimal δ∗ that minimises mismatch
11: set δ = δ∗
12: until (I is matched to some desired level)

To improve on the match, we perturb the probability
model f(P | < s, a, r, s′ >) used to generate the initial re-
alizations rather than perturbing the initial realizations di-
rectly. This is done through a perturbation parameter γ
to obtain an estimate for f(P |I) as (1 − γ) × f(P | <
s, a, r, s′ >) + γ × f(P |M). We combine both pre-
posteriors f(P |I) and f(P | < s, a, r, s′ >) into a new
model f(P |M, I) using Journel’s tau-model(Journel, July
2002) of the following type:

f(P |M, I) =
1

1 + x
with x = b(

c

a
)τ , where:

b =
1− f(P | < s, a, r, s′ >)

f(P | < s, a, r, s′ >)
, c =

1− f(P |I)
f(P |I)

,

a =
1− f(P |M)

f(P |M)
(14)

τ allows modelling explicitly the full dependency between
< s, a, r, s′ > and I . The assumption of standardised con-
ditional independence is obtained when τ = 1.

The combined probability model f(P |M, I) is used to
populate the next realisations. There may exist a value of
δ, for which the perturbed model realisations matches I bet-
ter than the initial realizations. We find the optimum model
realisations by optimising the value δ.

EMPIRICAL RESULTS
To illustrate the benefits of transferring information from a
task class model to a new task, we experiment on a task in-
stance drawn from the task class model shown in Figure 1.
The task instance is a two action, four states, chain task.
Computing an optimal policy for the chain task when the
model is unknown requires exploration control.

The actual transition probabilities for the chain task
instance are as shown in table (1). Whilst the actual
transition probabilities are unknown to the learner at the
start of the task, the learner is aware of the parame-
ters φ of the task class model which were set as follows
(0.91, 0.79, 0.8725, 0.6156, 0). Rewards of 1000 units ac-
crue for transitions to state 4 under action b. Transitions
to state 1 for each of the two actions attracts a reward of 10.
All other transitions have zero rewards attached. The learner
starts with a working prior of 1 for transitions to states 1, 2,
and 3 and 20 for transitions to state 4 under each action.

We use a naive global sampling method with a sample
size of 50 to obtain value estimates. Throughout, in the ex-
periments, we adopt the usual standardised conditional in-
dependence assumption. Performance of the learning agent
can be measured in several ways. To account for explo-
ration and exploitation trade-off we measured the discounted
total reward to-go at each point at each time step. More
precisely, suppose the agent receives the following rewards
r1, r2, . . . , rt in a run of time length t. The reward to go
at time t′ is defined to be

∑
t′≥t rt

′γ(t′−t). In Figure (3),
we plot the discounted total reward-to-go for learning with
and without model transfer in comparison to the optimal pol-
icy (assuming model of the task environment is known from
start), as a function of time averaged over 10 runs. The trans-
fer window was set to (0, 50) time steps. As expected, the



Table 1: State transition probabilities pa
ij and pb

ij .
pa

ij 1 2 3 4
1 0.80 0.15 0.05 0.00
2 0.00 0.16 0.84 0.00
3 0.00 0.00 0.25 0.75
4 0.85 0.00 0.00 0.15

pb
ij 1 2 3 4
1 0.20 0.60 0.15 0.05
2 0.90 0.10 0.00 0.00
3 0.70 0.00 0.30 0.00
4 0.20 0.00 0.00 0.80

Figure 3: Plot of discounted total rewards over time for the
chain task with and without model transfer

optimum policy gave the largest discounted total reward at
the initial time steps, until the model of the task environ-
ment is learnt by the learning agent. The performance of
the learning agent is better with model transfer using infor-
mation in the TCM when compared with learning without
model transfer under the same starting working prior set-
tings. This simple experiment illustrates the potential bene-
fits of model transfer for Markov decision tasks based on a
task class model. The task class model provides a constrain-
ing influence on exploration early in learning for related task
instances covered by the class model.

Conclusions and Future Work
We have studied a Bayesian framework to model transfer
for Markov decision tasks in which information is trans-
ferred from a task class model to a working prior model. We
presented two transfer techniques (naive and perturbation-
based) that enable us to match the parameters of the working
priors to the information in the task class model. The poten-
tial benefit of model transfer in the framework is illustrated
with a simple example.

Work is in progress on several aspects of the framework.
We are carrying out detailed empirical comparisons of the
transfer techniques to not only study the effectiveness of
the techniques with regards to discounted total reward to-go
but also with respect to their efficiency in terms of compu-
tational time. One attraction of the perturbation-based ap-
proach is the ability to explicitly account for dependencies
between the working prior and the task class model. Study-
ing the significance of this attraction for Markov decision

processes is an area of future work. Other important areas of
future work includes studying other sampling-based model
transfer techniques for the task class model framework, in-
ferring the optimum transfer window when it is unknown
to the learner, and understanding the sensitivity of learning
through model transfer to variations in a task class model.
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