Introduction to Artificial Intelligence G51IAI

An Introduction to Data Mining

Learning Objectives

- Introduce a range of data mining techniques used in AI systems including :
 - Neural networks
 - Decision trees
- Present some real life data mining applications.

Road Map

Data mining overview
 Data mining tasks

 Olassification (supervised learning)
 Olustering (unsupervised learning)
 OAssociation rule discovery

 Summary

Note: These lecture materials are based on invited lectures from Dr Li in the School of Computer Science, University of Nottingham, 2008.

Origins of Data Mining?

Draws ideas from machine learning / AI, pattern recognition, statistics, and database systems

- Traditional Techniques may be unsuitable due to
 - High dimensionality of data
 - Heterogeneous, distributed nature of data

What is Data Mining?

Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.

Valid: hold on new data with some certainty
Novel: non-obvious to the system
Useful: should be possible to act on the item
Understandable: humans should be able to interpret the pattern

Also known as Knowledge Discovery in Databases (KDD)

What is (Not) Data Mining? – Examples

> What is **not** Data Mining?

Look up phone
 number in phone
 directory

 Query a Web search engine for information about "Amazon"

> What is Data Mining?

 Certain names are more prevalent in certain US locations (O'Brien, O'Rurke, O'Reilly... in Boston area)

 Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com)

Why Data Mining? - Commercial Viewpoint

Lots of data is being collected and warehoused

- Web data, e-commerce
- Purchases at department/ grocery stores
- Bank/Credit Card transactions

- Computers have become cheaper and more powerful
- Competition pressure is getting stronger
 Provide better, customized services, e.g. in Customer Relationship Management (CRM)

Why Data Mining? - Commercial Viewpoint

- Banking: loan/credit card approval
 - predict good customers based on old customers
- Fraud detection: network security, financial transactions
 - use historical data to build models of fraudulent behavior and use data mining to help identify similar instances
- Customer relationship management (CRM)
 - Which of my customers are likely the most loyal
 - Which are most likely to leave for a competitor?
 - Identify likely responders to sales promotions

Why Data Mining? – Scientific Viewpoint

Data collected and stored at enormous speeds

- Remote sensors on a satellite
- Telescopes scanning the sky
- Microarrays generating gene expression data
- Scientific simulations generating terabytes of data

Traditional techniques infeasible for raw data

- Data mining may help scientists in
 - Classifying and segmenting data
 - Hypothesis Formation

Why Data Mining? – Scientific Viewpoint

- Medicine: disease outcome, effectiveness of treatments
 - analyze patient disease history & find relationship between diseases
- > Astronomy: scientific data analysis
 - identify new galaxies by the stages of formation
- Web site design and promotion:
 - find affinity of visitor to pages and modify layout

Road Map

Data mining overview
 Data mining tasks

 Olassification (supervised learning)
 Olustering (unsupervised learning)
 Olustering rule discovery

 Summary

Data Mining tasks

Predictive: use some variables to predict unknown or future values of other variables

Descriptive: Find human-interpretable patterns that describe the data

Classification -- Predictive
 Clustering -- Descriptive
 Association rule discovery -- Descriptive

Road Map

Data mining overview
 Data mining tasks

 Classification (supervised learning)
 Clustering (unsupervised learning)
 Association rule discovery

 Summary

Classification: Illumination

Learn a method to predict the instance class from pre-labeled (classified) instances

Many approaches: Regression, Decision Trees, Neural Networks,

Classification (Supervised Learning)

Given a collection of records

- Each record contains a set of attributes
- One of the attributes is the class attribute
- Find a model for class attribute as a function of the values of other attributes
- Goal: assign a class to unseen records correctly
- > Approach
 - Divide the given data set into training & test sets
 - Use training set to build the model
 - Use test set to validate the model

Classification: Methods

- > Goal: Predict class yi = f(x1, x2, .. Xn)
- Regression: (linear or any other polynomial) a*x1 + b*x2 + c = yi
- Decision trees: divide decision space into piecewise constant regions.
- Neural networks: partition by non-linear boundaries

Classification: Regression

- Predict the value of a given variable Y based on the values of other variables X
 - assuming a linear or nonlinear model of dependency.

> Examples:

- Predicting sales amounts of new product based on advertising expenditure.
- Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
- Time series prediction of stock market indices.

Linear Regression

Linear Regression $w_0 + w_1 \times + w_2 \vee >= 0$

Regression computes wi from data to minimize squared error to 'fit' the data

Not flexible enough

Classification: Decision Trees

if X > 5 then dark red
else if Y > 3 then dark
red
else if X > 2 then red
else dark red

Decision Trees

- Internal node: a simple decision rule on one or more attributes
- Leaf node: a predicted class label

Decision Tree - Cont.

> Pros

- + Reasonable training time
- + Easy to interpret
- + Easy to implement
- + Can handle large number of attributes

> Cons

- Simple decision boundaries
- Cannot handle complicated relationship between attributes
- Problems with lots of missing data

Classification: Neural Networks

Neural Networks

Set of neurons connected by directed weighted edges

Basic NN unit

A more typical NN

Neural Networks

> Useful for learning complex data like speech, image / handwriting recognition

Decision boundaries:

Neural Networks

> Pros

- + Can learn more complicated class boundaries
- + Can be more accurate
- + Can handle large number of features

> Cons

- Slow training time
- Hard to interpret
- Hard to implement: trial and error for choosing parameters and network structure
- Can overfit the data: find patterns in random noise

Target marketing

Goal: Reduce cost of mailing by targeting consumers who are likely to buy a new cell-phone product.

Approach:

oFind the old data for a similar product.
oCollect information of all customers.
Business type, where they stay, how much they earn, ...
oWe know previous customers decision. This *{buy, don't buy}* decision forms the *class attribute*.
oUse this information to learn a classifier model.

Classification: Application 2 - Banking

Fraud detection

Goal: Predict fraudulent cases in credit card transactions.

Approach:

- oUse credit card transactions and the information on its account-holder as attributes.
 - When a customer buys, what he buys, how often he pays on time, etc
- oLabel past transactions as fraud or fair. This forms the class attribute.

oLearn a model for fraudulence.

oUse this model to detect fraud by observing credit card transactions on an account.

Classification: Application 2 - Banking

ical ical ous

	cate	agon cate	gon con	tinued	55				
Tid	Refund	Marital Status	Taxable Income	Good	ord	Refund	Marital Status	Taxable Income	Good
	Yes	Single	125K	No	rect	No	Single	75K	?
	No	Married	100K	No		Yes	Married	50K	?
3	No	Single	70K	No		No	Married	150K	?
1	Yes	Married	120K	No		Yes	Divorced	90K	?
5	No	Divorced	95K	Yes		No	Single	40K	?
6	No	Married	60K	No		No	Married	80K	?
,	Yes	Divorced	220K	No	1				
3	No	Single	85K	Yes					
9	No	Married	75K	No				Learn	
10	No	Single	90K	Yes	Tra	ining			
						Set		102211	er

Classification: Application 2 - Banking

Loan approval: given old data about customers and payments, predict new applicant's loan eligibility.

Previous customers Classifier Decision rules Age Salary Profession Location Customer type Good/New applicant's data

Customer relationship management Goal: To predict whether a customer is likely to be lost to a competitor.

Approach:

oUse detailed record of transactions of each past and present customers, to find attributes.
• How often the customer calls, where he calls, what time of the day he calls most, his financial status, marital status, etc.
oLabel the customers as loyal or disloyal.
oFind a model for loyalty.

Classifying galaxies

Early

Intermediate

Late

Data Size:

- 20M galaxies
- Over 10K images
- 600M pixels per image

Class:

 Stages of Formation {Early, Intermediate, Late}

Attributes (over 40):

- Image features
- Features such as light waves received, ...

Handwriting / pattern recognition

Build a ANN in Matlab:

Overfitting

ASIMO robot:James May

G51IAI – Data Mining

Data Mining

Data mining overview Data mining tasks Oclassification (supervised learning) Regression Decision tree Neural network Oclustering (unsupervised learning) OAssociation rule discovery

Summary

Supervised Learning

F(x): true function (usually not known) D: training sample (x, F(x))

G(x): model learned from D

Goal: E[(F(x)-G(x))²] is small (near zero) for future samples

0

0

Un-Supervised Learning

Training dataset:

Test dataset:

0

Un-Supervised Learning

Data set:

Supervise Vs. Un-Supervised Learning

Supervised

- > y=F(x): true function
 > D: labeled training set
- > **D**: $\{x_i, F(x_i)\}$

Learn:

G(x): model trained to predict labels of new cases

► Goal:

E[(F(x)-G(x))²] ≈ 0
Well defined criteria: Mean square error

Un-supervised

> y=?: no true function > D: unlabeled data set > **D**: {X_i} Learn Goal: Well defined criteria:

Clustering (Unsupervised Learning)

> What we have:

- Data Set D
- Similarity/distance metric

> What we need to do:

 Find Partitioning of data, or groups of similar/close items

Clustering: Illumination

Find "natural" grouping of instances given un-labeled data

Clustering

- Given a set of data points, each having a set of attributes and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Key requirement:
 - oNeed a measure of similarity between instances
 - Manhattan & Euclidean distances
 - Hamming distance
 - Other problem-specific measures

Clustering: Similarity?

> Groups of similar customers

- Similar demographics
- Similar buying behavior
- Similar health

Similar products

- Similar cost
- Similar function
- Similar store

•

Similarity usually is domain/problem specific

Clustering: Distance Functions

Numeric data:

- Euclidean distance
- Manhattan distance
- Categorical data (0 / 1 indicating presence / absence):
 Hamming distance (# dissimilarity)
- Combined numeric and categorical data:

 weighted normalized distance

Manhattan & Euclidean Distance

Consider two records $x=(x_1,...,x_d)$, $y=(y_1,...,y_d)$: $d(x,y)=\sqrt[p]{|x_1-y_1|^p}+|x_2-y_2|^p+...+|x_d-y_d|^p}$ Special cases: p=1: Manhattan distance $d(x,y)=|x_1-y_1|+|x_2-y_2|+...+|x_p-y_p|$ p=2: Euclidean distance

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_d - y_d)^2}$$

Manhattan & Euclidean Distances: Example

Clustering: Methods

Partitioning-based clustering

- K-means clustering
- K-medoids clustering
- EM (expectation maximization) clustering

Density-based clustering

 Separate regions of dense points by sparser regions of relatively low density

Partitioning-based Clustering: K-Means

Goal: minimize sum of square of distance
 OBetween each point and centers of the cluster.
 OBetween each pair of points in the cluster

> Algorithm:

o Initialize K cluster centers

 random, first K, K separated points

• Repeat until stabilization:

- Assign each point to closest cluster center
- Generate new cluster centers
- Adjust clusters by merging or splitting

Density-Based Clustering

- A cluster: a connected dense component
 Density: the number of neighbors of a point
- Can find clusters of arbitrary shape

Clustering: Application 1

Market Segmentation:

Goal: divide a market into distinct subsets of customers, where any subset may conceivably be selected as a market target.

Approach:

- Collect different attributes of customers, based on their demographical and lifestyle related information.
- Find clusters of similar customers.
- Evaluate the clustering quality by observing buying patterns of customers in the same cluster vs. those from different clusters.

Clustering: Application 2

Document Clustering

Clustering Points: 3204 Articles of Evening Post.
 Similarity Measure: How many words are common in these documents.

Category	Total Articles	Correctly Placed
Financial	555	364
Foreign	341	260
National	273	36
Metro	943	746
Sports	738	573
Entertainment	354	278

Dr Rong Qu

G51IAI – Data Mining

Road Map

Data mining overview
 Data mining tasks

 Olassification (supervised learning)
 Olustering (unsupervised learning)
 OAssociation rule discovery

 Summary

Market Basket Analysis

Consider shopping cart filled with several items

- Market basket analysis tries to answer the following questions:
 - Who makes purchases?
 - What do customers buy together?
 - In what order do customers purchase items?

Market Basket Analysis

>Co-occurrences

 80% of all customers purchase items X, Y and Z together.

>Association rules

 60% of all customers who purchase X and Y also buy Z.

Sequential patterns

 40% of customers who first buy X also purchase Y within three weeks.

Association Rule Discovery: Definition

- Giving a set of records, each of which contain some number of items
 - Produce dependency rules, which predict occurrence of an item based on occurrences of other items.

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example Association Rules

{Diaper} \rightarrow {Beer}, {Beer, Bread} \rightarrow {Milk}, {Milk, Bread} \rightarrow {Eggs, Coke}

Association Rule Discovery: Applications

Supermarket shelf management.

Goal: To identify items that are bought together by sufficiently many customers.

Approach:

- Process the point-of-sale data collected with barcode scanners.
- □find dependencies among items.

A classic rule:

- If a customer buys diaper and milk, then he is very likely to buy beer.
- So, don't be surprised if you find six-packs stacked next to diapers!

Summary

Data mining

- Discovering interesting patterns from large database
- A natural evolution of database technology, in great demand, with wide applications
- Data mining functionalities
 Classification
 Clustering
 Association rule discovery

