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Abstract: In this paper, we propose a search technique for nurse scheduling, which deals with
it as a multi-objective problem. For each nurse, we first randomly generate a set of legal shift
patterns which satisfy all shift-related hard constraints. We then employ an adaptive heuristic
to quickly find a solution with the least number of violations on the coverage-related hard
constraint, by assigning one of the available shift patterns to each nurse. Next, we apply a
coverage repairing procedure to make the resulting solution feasible, by adding / removing
any under-covered / over-covered shifts. Finally, to satisfy the soft constraints (or prefer-
ences), we present a simulated annealing based search method with the following two options:
one with a weighted-sum evaluation function which encourages moves towards users’ prede-
fined preferences, and another one with a domination-based evaluation function which en-
courages moves towards a more diversified approximated Pareto set. Computational results
demonstrate that the proposed technique is applicable to modern hospital environments.

1 Introduction

Nurse scheduling problems have been a research subject for a number of decades. We will
briefly set the scene. For a comprehensive discussion of the various approaches that have
been appeared in the literature, see the survey papers by Sitompul and Randhawa (1990),
Cheang (2003) and Burke et al (2004b). Basically, the approaches range from traditional
mathematical programming methods (Warner and Prawda, 1972; Beaumont, 1997; Jaumard et
al, 1998; Bard and Purnomo, 2005) to special purpose heuristic methods (Isken and Hancock,
1990; Randhawa and Sitompul, 1993). One of the major research directions of nurse schedul-
ing in recent years is the study of meta-heuristic methods, particularly evolutionary methods
(Easton and Mansour, 1999; Aickelin and Dowsland, 2000; Kawanaka et al, 2001; Aickelin
and Dowsland, 2004). Other meta-heuristics have also been investigated, including simulated
annealing (Brusco and Jacobs, 1993; Thompson, 1996), tabu search (Dowsland, 1998; Burke
et al, 1999), memetic algorithms (Burke et al, 2001), variable neighbourhood search (Burke et
al, 2004a and 2007) and Bayesian optimization (Li and Aickelin, 2006). Many of these meta-
heuristic approaches are attempting to solve models which capture the increasing complexity
and wide range of demands required in modern hospital environments.

Nurse scheduling can be regarded as a type of resource allocation problem, in which the
workload needs to be assigned to nurses periodically, taking into account a number of con-
straints and requirements. Hard constraints are those that must be satisfied in order to have a
feasible schedule. They are often generated by physical resource restrictions and legislation.
When requirements are desirable but not obligatory they are referred to as soft constraints,
and are often used to evaluate the quality of feasible schedules. In nurse rostering, there are a
large number of variations on legal regulations and individual preferences, depending on dif-
ferent countries and institutions. Typical issues concern coverage demand, day-off require-
ments, weekend-off requirements, minimum and maximum workforce (Burke et al, 2004b).

Hence, the nurse scheduling problem is inherently a multi-objective combinatorial problem,
with each objective, possibly in conflict other objectives, corresponding to a soft constraint
(or preference). However, until now there has been very limited work on the application of
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multi-objective techniques to this problem due to the complex nature of its real-world applica-
tions. Goal programming is the most commonly used method, which defines a target level for
each criterion and relative priorities to achieve these goals, with the aim of finding a solution
that is as close as possible to each of the objectives in the order of the priorities given (Arthur
and Ravindran, 1981; Musa and Saxena, 1984; Ozkarahan and Bailey, 1988; Ozkarahan 1991;
Chen and Yeung, 1993; Azaieza and Ai Sharif, 2005). Berrada et al (1996) proposed a tabu
search, which considers only the most promising move to improve the objective function hav-
ing the worst value at each iteration. Burke et al (2002) also presented a tabu search, but using
the method of compromising programming to take all the objectives into account. Jaszkiewicz
(1997) introduced a Pareto simulated annealing based on a weighted-sum objective function
with adaptively changing weights, which is probably the first attempt to address the problem
in terms of Pareto-based optimization.

In this paper, we present a Pareto-based search technique, towards the target of developing
more flexible systems that are capable of addressing nurse scheduling problems in the real
world. By applying an iterative heuristic which takes only the satisfaction of shift-related hard
constraints into account, we randomly generate a set of legal shift patterns for each nurse. We
then employ an adaptive heuristic to find a quick solution by assigning one of the available
shift patterns to each nurse. However, solutions obtained at this stage are rarely feasible, let
alone good quality, because the satisfaction of coverage demands (a hard constraint) has not
been guaranteed because only a limited number of shift patterns generated and none of the
soft constraints have been addressed yet. To deal with the coverage demands, we design a re-
pairing heuristic which is capable of eliminating all the under-covers and over-covers within
several iterations of its run. To satisfy the soft constraints associated with objectives, we pro-
posed a simulated annealing based search method with two acceptance criteria to deal with
the multiple objectives in different ways.

The paper is organized as follows. In Section 2, we introduce the nurse scheduling problem to
be addressed. In Section 3, we formulate its integer programming model. In Section 4, we
present an adaptive heuristic together with a coverage repairing procedure to obtain feasible
solutions quickly. In Sections 5 and 6, we describe our proposed multi-objective simulated
annealing approach and carry out the experiments on real world instances, respectively. We
finally give our conclusions in Section 7.

2 The Nurse Scheduling Problem

The nurse rostering problem tackled here is based on the situation of intensive care units in a
Dutch hospital, which involves the assignment of four types of shifts (i.e. shifts of early, day,
late and night) within a planning period of 4-5 weeks to 16 nurses of different working con-
tracts in a ward (Burke et al, 2007).

In brief, the problem has the following hard constraints:
 HC-1: Daily coverage demand of each shift type;
 HC-2: For each day, a nurse may start at most one shift;
 HC-3: Maximum number of working days of each nurse;
 HC-4: Maximum three on-duty weekends;
 HC-5: Maximum three night shifts;
 HC-6: No night shift between two non-night shifts;
 HC-7: Minimum two free days after a series of night shifts;
 HC-8: Maximum number of consecutive night shifts;
 HC-9: Maximum number of consecutive working days;
 HC-10: No late shifts for one particular nurse.

In addition, the problem has the following soft constraints:
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 SC-1: Either no shifts or two shifts in weekends;
 SC-2: Avoiding a single day between two days off;
 SC-3: Minimum number of free days after a series of shifts;
 SC-4: Maximum number of consecutive assignments of a specific shift type;
 SC-5: Minimum number of consecutive assignments of a specific shift type;
 SC-6: Maximum number of weekly working days;
 SC-7: Minimum number of weekly working days;
 SC-8: Maximum number of consecutive working days for part-time nurses;
 SC-9: Avoiding certain shift type successions (e.g. day shift followed by early shift).

3 An Integer Programming Model

The above problem could be solved by a common approach of Generation and Allocation,
which has been used to solve many personnel scheduling problems successfully (Fores et al,
2002; Li and Aickelin, 2004). The Generation phase first generates a large number of legal
shift patterns (i.e. possible work patterns during the planning period) for each person, and the
Allocation phase then allocates one of the shift patterns to each person to create a practical
schedule. For our nurse scheduling problem, we use the following Generation steps to gener-
ate shift patterns for nurse i, Ii where I is the set of nurses.

Step 1 Let J be the set of days during the planning period, W be the set of weeks con-
tained in the planning period, and K be the set of shift types including {1(early),
2(day), 3(late)}, 4(night)};

Step 2 Set index g = 1 and A(i) = , where A(i) is the set of shift patterns of nurse i;

Step 3 Let Aig be the g-th shift pattern generated for nurse i, represented as

|)|,...,1and||,...,1for|( KkJjaA gjkig  where agjk is 1 if the g-th pattern

covers shift type k on day j and 0 otherwise. Set agjk to be 0 or 1 at random, where
0 represents a free shift and 1 a working shift;

Step 4 Satisfy HC-2: if )|1(



Kk

gjk Jja , randomly locate a Kk  having 1kgja .

Set }{|0 kKkagjk  ;

Step 5 Satisfy HC-4: if 
 


Ww Kk

kwga )3( )7( , randomly locate a Ww having

1)7( kwga . Set 0)7( kwga ;

Step 6 Satisfy HC-6: if })1||,...,2{|0( 4)1(44)1(   Jjaaa iggjjg , randomly set

either 04)1( jga or 04)1( jga ;

Step 7 Satisfy HC-8: if 





1

})||,...,1{|( 114

nr

rj
gj nJrna where n1 is the maximum num-

ber of consecutive night shifts, randomly set either 04 gra or 04)( 1
nrga ;

Step 8 Satisfy HC-5: if 



Jj

gja )3( 4 , randomly locate a Jj having 14 gja . Set

04 gja ;

Step 9 Satisfy HC-7: if })1||,...,2{|2( )2()1(4  
 

 Jjaaa
Kk Kk

kjgkjggj , set

Kka kjg  |0)1( and Kka kjg  |0)2( ;

Step 10 Satisfy HC-9: if 


 


2

})||,...,1{|( 22

nr

rj Kk
gjk nJrna where n2 is the maximum

number of consecutive working days, randomly locate a ],[ 2nrrj  . Set
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Kkagjk  |0 ;

Step 11 Satisfy HC-3: if 
 


Jj Kk

igjk ma )( where mi is the maximum number of working

days for nurse i, randomly locate a Jj having 1
Kk

gjka . Set

Kkagjk  |0 ;

Step 12 Satisfy HC-10: if (i = 16), set Jjagj  |13 ;

Step 13 Check the legality of Aig. If illegal, go to step 3;
Step 14 Add Aig to A(i). If ))(( iAAig  , set g = g +1;

Step 15 If g ≤ N(i) where N(i) is the number of shift patterns to be generated for nurse i,
go to step 3.

The Allocation phase can be modelled as the following Integer Programming (IP) problem.
Decision variable xig is 1 if nurse i works on shift pattern g and 0 otherwise. Parameters J, K,
A(i) and agjk are defined in the same way as above. Djk is the demand of nurses of shift type k
on day j and cig is the preference cost of nurse i working on shift pattern g.

Minimize 
 Ii

iA

g
igig xc

|)(|

1

(1)

Subject to:

Iix
iA

g
ig 



,1
|)(|

1

(2)

KkJjDxa
n

i

iA

g
jkiggjk 

 

,,
1

|)(|

1

(3)

|})(|,...,1{,},1,0{ iAgIixig  (4)

Objective function (1) minimizes the total cost of all nurses. Constraint (2) ensures that every
nurse works exactly on one of his/her available shift patterns. Constraint (3) ensures that the
demand for nurses of each shift type is fulfilled on every day, and constraint (4) ensures the
integrality of variable xjg.

By assigning every shift pattern the same cost value (e.g. ),|1 gicig  , we have tried to

solve the above IP problem by CPLEX 10.0, the latest version of a commercial IP solver.
However, we could not find a single integer solution even by generating several million shift
patterns for each nurse and allowing several days’ runtime. Considering that the equality con-
straint in (3) might be too tight and that over-covered shifts which remain in a solution can be
removed heuristically later, we relax (3) to be

KkJjDxa
Ii

iA

g
jkiggjk 

 

,,
|)(|

1

(5)

Again, no integer solution can be found by using this approach regardless of the number of
shift patterns generated and the maximum runtime allowed. This shows the complexity of the
problem and proves that the traditional approach of Generation and Allocation is not suffi-
cient to solve our problem alone. We are therefore looking for a more sophisticated technique
to solve the problem effectively.

4 An Adaptive Heuristic with a Coverage Repairing Procedure

In this section, we present a heuristic search method to address the problem at the Allocation
phase. It first carries out an Improved Squeaky Wheel Optimization (ISWO) search towards a
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solution with the least number of violations on coverage demands, and then applies a cover-
age repairing procedure to make the resulting solution feasible.

4.1 An Adaptive Heuristic Search Process by ISWO

The ISWO is based on the observation that the solutions of many real world problems consist
of components which are intricately woven together in a non-linear, non-additive fashion. To
deal with these components, Joslin and Clements (1999) proposed a technique called Squeaky
Wheel Optimisation (SWO), and (Aickelin et al (2006) suggested an improved version called
the ISWO which incorporates some evolutionary features, i.e. two additional steps of Selec-
tion and Mutation. In this section, we adapt the ISWO for our nurse scheduling problem.
Starting from an initial solution, created by randomly assigning a shift pattern to each nurse,
the steps of Analysis, Selection, Mutation, Prioritization and Construction are executed in a
loop until a user specified parameter is reached or no improvement has been achieved for a
certain number of iterations.

The first Analysis step evaluates the fitness of each component, i.e. a shift pattern assigned to
each nurse, by taking the current schedule into account. The evaluation function used should
be able to determine the contribution of this assignment towards the solution feasibility. Let

iS be the shift pattern assigned to nurse i. Its evaluation function can be formulated as

Ii
ffff

fff
SF

nn

in

nggngg

igngg
i 




 ,

),...,min(),...,max(

),...,max(
)(

11

1

11

1 , (6)

where
iigf denotes the contribution of nurse i working on the gi-th shift pattern towards re-

duction in nurse shortfall (as solving the problem of nurse shortfall is surely more important
than that of nurse surplus).

iigf can be calculated as the number of shifts that would become

uncovered if nurse i does not work his/her gi-th shift pattern, formulated as

Iidaf
Jj Kk

jkjkgig ii


 

, , (7)

and
















otherwise,0

)(if,1
1

n

i
jkjkgjkg

jk

Daa
d ii , (8)

where gjka uses the same definitions as in formula (3), djk is 1 if there are still nurses of shift

type k needed on day j before nurse i works on his/her assigned shift pattern and 0 otherwise.

The second Selection step determines whether a shift pattern Si should be retained or dis-
carded. The decision is made by comparing its fitness value F(Si) to a random number gener-
ated for each iteration in the range [0, 1]. If F(Si) is larger, then Si will remain in its present al-
location, otherwise Si will be removed from the current schedule and the shifts it covers are
then released with the coverage demands updated accordingly. By using the Selection, a shift
pattern with a larger fitness value has a higher probability to survive in the current schedule.

The third Mutation step alters the shift patterns of the remaining nurses, i.e. it randomly dis-
cards them from the partial schedule at a small given rate pm. The days and nights that a mu-
tated Si covers are then released and coverage demands are updated.

The fourth Prioritization step generates a new sequence for the nurses that are waiting to be
rescheduled (i.e. the ones that have been removed by the steps of Selection and Mutation),
with poorly-scheduled nurses being earlier in the sequence. Using the results of Analysis, this
step first sorts the difficult (or removed) shift patterns in ascending order of their fitness val-
ues. As each shift pattern in the sequence is associated with a nurse, we can then obtain a se-
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quence of difficult nurses.

The fifth Construction step repairs a schedule by assigning one of the shift patterns to each
unscheduled nurse, in the order the nurses appear in the priority sequence. A new schedule is
formed after each unscheduled nurse has been assigned a new shift pattern. We use the fol-
lowing constructing heuristic to schedule one nurse at a time to attempt to cover the largest
number of uncovered shifts. For each shift pattern in a nurse’s feasible set, it calculates the to-
tal number of uncovered shifts that would be covered if the nurse worked on that shift pattern.
For instance, considering a short one-week planning period, we assume that a shift pattern
covers Monday to Friday day shifts. We further assume that the current requirements for the
day shifts from Monday to Sunday are as follows: (-4, 0, +1, -3, -1, -2, 0), where a negative
number means undercover and a positive number means over-cover. Hence, the Monday to
Friday day-shift pattern has a cover value of 8 as the sum of undercover is -8. If there is more
than one shift pattern with the same highest undercover value, we choose the first one.

After each run of the above five steps, we need to calculate the fitness of the obtained solution
so that the ISWO can always search from a best-improved solution. The chosen encoding of
ISWO automatically satisfies constraints (2) and (4) of the IP formulation, and the target of
ISWO is to achieve a solution that is as close to a feasible schedule as possible. Hence, in
designing our fitness function, we can ignore the objective (1) and just evaluates the number
of violations on coverage demands, i.e. try to satisfy constraint (3) as much as possible. We
use the following function to calculate the fitness of an obtained solution:

Minimize  
   


Jj Kk

n

i

iA

g
iggjkjk xaD

1

|)(|

1

(9)

4.3 A Coverage Repairing Procedure

Due to the highly-constrained nature of the problem, solutions obtained by the ISWO are
rarely feasible (i.e. there exists at least one under-covered or over-covered shift). To make the
resulting solutions feasible, we employ a coverage repairing procedure to eliminate all the
over-covers and under-covers as follows.

Step 1 Set initial solution S ={S1, …, Sn), where Si denotes the shift pattern that nurse i
works;

Step 2 Remove a single over-covered shift: if 



n

i
jkjkg Da

i

1

)( and )1( jkgi
a , set

0jkgi
a . Shift pattern Si is thus revised. If Si is infeasible which means at least

one of the hard constraints has been violated, set 1jkgi
a ;

Step 3 Remove two consecutive over-covered shifts: if 


 
n

i
jkkjgjkg Daa

ii

1
)1( ))(( and

)1( )1(   kjgjkg ii
aa , set )0( )1(   kjgjkg ii

aa . If the revised Si is infeasible, set

)1( )1(   kjgjkg ii
aa ;

Step 4 Add a single under-covered shift: if 



n

i
jkjkg Da

i

1

)( and )0( jkgi
a , set 1jkgi

a .

If the revised
iigA is infeasible, set 0jkgi

a ;

Step 5 Add two consecutive under-covered shifts: if 


 
n

i
jkkjgjkg Daa

ii

1
)1( ))((

and )0( )1(   kjgjkg ii
aa , set )1( )1(   kjgjkg ii

aa . If the revised
iigA is infeasible,

set )0( )1(   kjgjkg ii
aa ;
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Step 6 Swap an under-covered shift with an over-covered shift: if 



n

i
jkjkg Da

i

1

)( and

)0( jkgi
a and 


 



n

i
kjkjg Da

i

1

)( and )1(  kjgi
a , set 1jkgi

a and 0 kjg i
a . If

one of the revised
iigA and

iigA

is infeasible, set 0jkgi

a and 1 kjgi
a ;

Step 7 Check the feasibility of the revised schedule S: if 



n

i
jkjkg KkJjDa

i

1

),|( , go

to step 2;
Step 8 Stop and output the final schedule S.

Providing a given schedule is infeasible but satisfies most of the coverage demands, the above
coverage repairing procedure can transform this infeasible schedule to a feasible one quickly.
However, under the rare circumstance where the procedure fails to make the repair, we should
consider another initial schedule. This can be obtained by simply rerunning the ISWO for a
different number of iterations, or from different sets of legal shift patterns.

5 A Multi-objective Simulated Annealing Approach for Nurse Scheduling

After obtaining a feasible solution which satisfies all the hard constraints by the above heuris-
tic search method, we then need to edit it for practical use by satisfying the soft constraints as
much as possible. Regarding the soft constraints, a hospital administrator normally has a gen-
eral priority ordering in mind beforehand, but in making actual schedules such an ordering
might not be implemented strictly. Hence, the constraint handling becomes a multi-objective
problem, with each soft constraint associated with an individual goal. In this section, we pre-
sent a simulated annealing approach to deal with the problem.

5.1 Objective Functions

We first define the decision variable xijk to be 1 if nurse i works on shift pattern k on day j, 0
otherwise. The definition of each parameter, if not specified separately, is the same as before.
We use the following nine objective functions to formulate the corresponding nine goals.

1) Goal 1
This goal is to achieve complete weekends during the planning period, formulated as




 
Kk

kwikwi WwIixx ,,0)( )7()17( . (10)

Thus, we can define the objective function f1(x) of goal 1 as

Minimize   
  

 
Ii Ww Kk

kwikwi xxxf )()( )7()17(1 . (11)

2) Goal 2
This goal is to avoid any stand-alone shift during the planning period, formulated as




 
Kk

kjiijkkji JjIixxx }1,...,2{,,0)( )1()1( . (12)

Thus, we can define the objective function f2(x) of goal 2 as

Minimize  




 











Ii

J

j Kk
kjiijkkji xxxxf

1||

2
)1()1(2 )(,0max)( . (13)

3) Goal 3
This goal is to allocate at least two free days after a series of shifts during the planning period,
formulated as
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


 
Kk

kjiijkkji JjIixxx }1,...,2{,,1)( )1()1( . (14)

Thus, we can define the objective function f3(x) of goal 3 as

Minimize  




 











Ii

J

j Kk
kjiijkkji xxxxf

1||

2
)1()1(3 1)(,0max)( . (15)

4) Goal 4
This goal is to allocate at most a certain number of consecutive shifts of a particular shift type
during the planning period, formulated as

}3,1{,}3,...,1{,,
3






kJrIicx
r

rj
kijk , (16)

where ck is the maximum number of consecutive shifts of type k. Thus, we can define the ob-
jective function f4(x) of goal 4 as

Minimize   




 



 












Ii

J

r k

r

rj
kijk cxxf

3||

1 }3,1{

3

4 ,0max)( . (17)

5) Goal 5
This goal is to minimize the number of consecutive assignments of a specific shift type during
the planning period, formulated as

}3,1{},1,...,2{,,0)1()1(   kJjIixxx kjiijkkji . (18)

Thus, we can define the objective function f5(x) of goal 5 as

Minimize   




 
 

Ii

J

j k
kjiijkkji xxxxf

1||

2 }3,1{
)1()1(5 ,0max)( . (19)

6) Goal 6
This goal is to allocate at most a certain number of weekly working days to each nurse with
different working contract, formulated as

WwIitgx tt

w

wj Kk
ijk  

 

,},3,2,1{,
7

67

, (20)

where It is the subset of nurses working on the t-th contract satisfying I = {I1 (full time), I2

(short part time), I3 (long part time)}, and gt is the maximum number of weekly working days
of nurses in subset It. Thus, we can define the objective function f6(x) of goal 6 as

Minimize   
     

























3

1

||

1

7

67
6 ,0max)(

t Ii

W

w

w

wj Kk
tijk

t

gxxf . (21)

7) Goal 7
This goal is to allocate at least a certain number of weekly working days to each nurse with
different working contracts, formulated as

WwIithx tt

w

wj Kk
ijk  

 

,},3,2,1{,
7

67

, (22)

where ht is the minimum number of weekly working days of nurses in subset It. Thus, we can
define the objective function f7(x) of goal 7 as

Minimize   
     

























3

1

||

1

7

67
7 ,0max)(

t Ii

W

w

w

wj Kk
ijkt

t

xhxf . (23)

8) Goal 8
This goal is to maximize the number of consecutive working days for part-time nurses during
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the planning period, formulated as




 


3

1 }3,...,1{,,3
r

rj Kk
ijk JrIix . (24)

Thus, we can define the objective function f8(x) of goal 8 as

Minimize  








  












1

3||

1

3

8 3,0max)(
Ii

J

r

r

rj Kk
ijkxxf . (25)

9) Goal 9
This goal is to avoid certain shift type successions during the planning period, formulated as

KkkJjIixx kjiijk   ),(},1,...,1{,,2 21)1( 21
, (26)

where K  is the set of undesirable shift type successions including {(2,1), (3,1), (3,2), (1,4)}.
Thus, we can define the objective function f9(x) of goal 9 as

Minimize   




 
 

Ii

J

j Kkk
kjiijk xxxf

1||

1 ,(
)1(9

)21

21
2,0max)( . (27)

5.2 Generation of Non-dominated Solutions by Simulated Annealing

With the above nine goals, the nurse scheduling problem can be regarded as a multi-objective
optimization problem expressed as
f (x) = Minimize ))(),...,(( 91 xfxf . (28)

The concept of dominance can be used to make a comparison between two solutions (Deb,
2005). A solution x is said to dominate another solution y if and only if )()( yfxf ii  for

i=1,…,9 and )()( yfxf ii  for at least one i. A solution is said to be globally non-dominated

(or Pareto-optimal) if no other solution can dominate it. The set of all Pareto-optimal solu-
tions is called the Pareto-optimal front (or the Pareto set), and solutions in the Pareto set rep-
resent the possible optimal trade-offs between conflicting objectives. A user can then select a
preferred solution from the multi-objective set once it is revealed. When using (meta-
)heuristic approaches, the non-dominated set produced will normally only be an approxima-
tion to the true Pareto front, thus in this paper we refer to the set generated by our approach as
the archive of the approximated Pareto front.

Simulated annealing (SA) is a stochastic search algorithm first introduced by Kirkpatrick et al
(1983) to a spin glass model. SA has been used to solve a wide variety of single objective op-
timization problems for more than twenty years. However, the applications of SA to multi-
objective problems are very limited (Suman and Kumar, 2006). Most SA approaches still use
the traditional weighted-sum objective functions. In this paper, we present a SA-based search
method with two options to address user preferences in different ways: one weighted-sum
evaluation function which encourages moves towards users’ predefined preferences, and an-
other domination-based evaluation function which encourages moves towards more non-
dominated solutions which are well-spread in the approximated Pareto set.

We first define the neighbourhoods in which new solutions are generated. We apply the
neighbourhoods of swapping blocks of consecutive shifts, which are inspired by the human
scheduling process of re-allocating sections of schedules. Consecutive shifts within a period
from one day to the whole planning period can be switched between any pair of two nurses in
the schedule. To avoid violating the coverage demands again, swaps will only be made verti-
cally. For a better illustration, we use Figure 1 to show the moves allowed in these neighbour-
hoods within a short 3-day planning period, with an arrow representing a possible move. Each
day, a nurse can work at most one of the four shift types: Early (E), Day (D), Late (L) and
Night (N).
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Mon Tue Wed

Nurse 1 D L E

Nurse 2 E E L

Nurse 3 L N

Neighbourhood Nt, t = 1

Mon Tue Wed

Nurse 1 D L E

Nurse 2 E E L

Nurse 3 L N

Neighbourhood Nt, t = 2

Mon Tue Wed

Nurse 1 D L E

Nurse 2 E E L

Nurse 3 L N

Neighbourhood Nt, t = 3

Figure 1. Possible moves in neighbourhoods Nt between nurse 1 and nurse 3

We then describe our proposed SA approach for multi-objective nurse scheduling as follows:
Step 1 Provide two options as the solution acceptance criteria of SA: option ‘1’ for a

weighted-sum evaluation function and option ‘2’ for a domination-based evalua-
tion function;

Step 2 Randomly generate a set of legal shift patterns for each nurse (see steps described
in Section 3);

Step 3 Apply the ISWO to create a quick solution towards the least number of coverage
violations (see Section 4.1), and then apply the coverage repairing procedure to
obtain a feasible solution x (see Section 4.2);

Step 4 Let r be the number of runs. Set 1r ;
Step 5 Let k be the number of iterations. Set 0k ;
Step 6 Let P(r) be the set of potentially non-dominated solutions. Set P(r) = {x};
Step 7 Set current temperature T(k) to an initial temperature T0;
Step 8 Construct a new solution y by a random move within a randomly selected

neighbourhood Nt of x;
Step 9 If y is infeasible, go to step 8;
Step 10 Replace x with y with acceptance probability p1 = min (1, exp(−ΔE(y, x) / T )): if

the option is ‘1’, ))()((),(
9

1

xfyfwxyE ii
i

i  


, where iw is the priority weight

of the i-th objective; if the option is ‘2’, xyxyE  ),( , where y and x

denote the number of solutions in P(r) dominating y and x respectively;
Step 11 If y is accepted and y is not dominated by x, update the set P(r) with y in the fol-

lowing way: check y for Pareto dominance among all the solutions in P(r), add y
to P(r) if it is non-dominated, and remove the solutions originally in P(r) that are
dominated by y.

Step 12 With a predefined small rate p2, replace x with a randomly selected solution from
set P(r);

Step 13 Set r = r+1 and k = k+1. Decease T(k) by using a proportional temperature cooling
schedule: T(k) = αT(k-1), where cooling rate α ]99.0,80.0[ ;

Step 14 Repeat steps 5-13 until a predefined number of iterations within SA is carried out;
Step 15 Repeat steps 2-14 until a predefined number of runs of SA is carried out.
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Step 16 Set )(...)1( rPPP  . Remove any solutions in P that are redundant or domi-

nated by the other ones. Thus, P is our final set of Pareto-dominated solutions.

6 Computational Results

The proposed approach has been tested on a real-world problem with twelve data instances
provided by ORTEC, an international consultancy company specializing in planning, optimi-
zation and decision support solutions. The hospital has a general preference ordering regard-
ing the soft constraints listed in Section 2, which is {SC-1, SC-2}  {SC-3}  {SC-4, SC-5,
SC-6, SC-7, SC-8}  {SC-9}, where ‘ ’ denotes “more preferred than”. However, due to
the “soft” nature of these constraints, the above ordering is not necessarily the one that must
be complied with strictly. While choosing a schedule for actual use, the hospital may consider
candidate schedules with different trade-offs between the soft constraints, e.g. accept a sched-
ule which just violates one or two constraints deemed as “highly preferred” in general, but
satisfies all of the rest constraints. Hence, there is still a need for us to provide such a set of
candidate schedules.

Three earlier approaches have been proposed on the same test instances. The first one is a hy-
brid genetic algorithm (Post and Veltman, 2004) which carries out a local search after each
generation of the genetic algorithm to make improvement. The second is a hybrid Variable
Neighbourhood Search (VNS) (Burke et al, 2007) which starts from an initial schedule cre-
ated by an adaptive ordering technique, and sequentially runs the steps of VNS, feasibility
correction, schedule disruption and schedule reconstruction in a loop until stopping criteria
are met. The third is an IP-based VNS (Burke et al, 2006) which uses a non-shift-pattern-
based IP to first solve a small problem including the full set of hard constraints and a subset of
the soft constraints. It then executes a basic VNS to satisfy all the remaining constraints. The
above three approaches solved the problem under a framework of single objective optimiza-
tion. They all used the same weighted-sum objective function to combine all the objectives
which can be outlined as follows:

Minimize )()(
9

1

xfwxf i
i

i


 , (29)

where weights wi were set to be (1000, 1000, 100, 10, 10, 10, 10, 10, 5) (Burke et al, 2007).

Table 1 lists the results of these three approaches after 1 hour’s runtime. In general, the IP-
based VNS has produced the best results. The hybrid genetic algorithm and the hybrid VNS
were coded in Delphi 5 and implemented on a Pentium 1.7 GHz PC under Window 2000 op-
erating system. The IP-based VNS was implemented on a 2.0 GHz PC under Windows XP, of
which the IP part was solved by CPLEX 10.0 and the VNS part was coded in Java 2.

Data Hybrid GA Hybrid VNS IP-based VNS
JAN 775 735 460
FEB 1791 1866 1526
MAR 2030 2010 1713
APR 612 457 391
MAY 2296 2161 2090
JUN 9466 9291 8826
JUL 781 481 425
AUG 4850 4880 3488
SEP 615 647 330
OCT 736 665 445
NOV 2126 2030 1613
DEC 625 520 405
AVE. 2225 2145 1809

Table 1. Results of the three earlier approaches after 1-hour runtime



12

Our SA-based approach is also coded in Java 2 and implemented on a 2.0 GHz PC under
Windows XP. For each data instance, we allow the same maximum runtime of 1 hour. In ad-
dition, we set the number of shift patterns generated for each nurse to be 1000, the initial tem-
perature of SA to be 100, replacement rate p2 of SA to be 0.02, the cooling rate of SA to be
0.99 and the number of iterations within SA to be 1,000,000. Table 2 lists the results of using
different evaluation functions on the obtained solutions. For the weighted-sum evaluation
function, we use the same set of weight values as in formula (29), and list the number of ar-
chived non-dominated solutions (see column 2) and the best solution under this evaluations
(see column 3). For comparison, we also list the relative percentage deviations of this best so-
lution over the best solutions by the hybrid genetic algorithm (i.e. Δ%1), the hybrid VNS (i.e.
Δ%2) and the IP-based VNS (i.e. Δ%3).

Weighted-sum objective function
Data Number of

solutions
Best solution Δ%1 Δ%2 Δ%3

Domination-based
evaluation function

(number of solutions)

JAN 44 640 17.4 12.9 -39.1 1431
FEB 58 1645 8.15 11.8 -7.8 1744
MAR 39 1780 12.3 11.4 -3.9 976
APR 133 465 24.1 -1.8 -18.9 2235
MAY 48 1590 30.7 26.4 23.9 1154
JUN 27 9026 4.6 2.9 -2.3 876
JUL 56 446 42.9 7.3 -4.9 1362
AUG 76 1735 64.2 64.4 50.3 1865
SEP 90 339 44.9 47.6 -2.7 2033
OCT 85 540 26.6 18.8 -21.3 2287
NOV 39 1780 16.2 12.3 -10.4 1006
DEC 37 295 52.8 43.3 27.2 1192
AVE. 61 1690 25.8% 21.5% -0.8% 1513

Table 2. Results of the our proposed multi-objective approach after 1-hour runtime

For the domination-based evaluation function, the comparison in the multi-objective test beds
is difficult due to the lack of a systematic criterion to measure the performance of our Pareto-
based approach. In multi-objective optimization, the objective value itself does not have a
significant meaning. Rather, the configuration of objective values is more important. Hence,
the commonly-used measure is only the plotting of the Pareto set. For a bi-objective problem,
it is easy to draw a 2-D graph to show this measure. When the dimension of the objectives in-
creases to three, it becomes harder to determine from a 3-D graph whether the Pareto set is a
good one. When the dimension of objectives is larger than three, it is impossible to draw such
a graph. Even if it were possible to plot the graph for more than three objectives, it would not
be a good measure as no quantitative information exists. Therefore, for our nurse scheduling
problem with nine objectives, apart from the total number of solutions in the Pareto set (see
the last column in Table 2), we can only list a small number of example vector values for il-
lustration purpose. Table 3 shows the details of such five solutions (i.e. columns #1, …, #5)
for each data instance. For each column, it first lists the number of violations in terms of indi-
vidual goals, and then lists the percentage of total number of violations in the solution with
respect to the total number of constraints under consideration.

JAN #1 #2 #3 #4 #5 FEB #1 #2 #3 #4 #5
Goal 1 4 0 2 2 0 Goal 1 10 6 2 2 4
Goal 2 0 0 2 1 0 Goal 2 0 0 1 0 0
Goal 3 5 7 4 3 3 Goal 3 0 7 0 0 0
Goal 4 3 0 0 0 0 Goal 4 0 0 4 0 0
Goal 5 0 4 0 1 1 Goal 5 2 0 0 0 0
Goal 6 6 7 6 6 4 Goal 6 70 78 70 59 69
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Goal 7 14 14 15 16 17 Goal 7 77 70 70 80 79
Goal 8 21 20 31 17 30 Goal 8 9 12 12 16 14
Goal 9 9 6 9 4 5 Goal 9 8 12 1 9 9

Sum(%) 0.7 0.6 0.8 0.5 0.7 Sum(%) 2.1 2.2 1.9 2.0 2.1

MAR #1 #2 #3 #4 #5 APR #1 #2 #3 #4 #5
Goal 1 2 2 0 0 2 Goal 1 4 6 8 10 8
Goal 2 0 1 0 0 1 Goal 2 0 0 0 0 0
Goal 3 4 2 3 2 6 Goal 3 3 2 1 3 2
Goal 4 3 0 0 5 0 Goal 4 0 0 0 5 0
Goal 5 0 10 5 0 5 Goal 5 1 6 1 0 0
Goal 6 70 73 70 68 65 Goal 6 7 2 5 5 3
Goal 7 72 70 73 74 73 Goal 7 4 4 5 4 4
Goal 8 13 23 33 19 9 Goal 8 12 17 16 10 11
Goal 9 7 0 0 1 4 Goal 9 7 2 5 8 7

Sum(%) 1.9 1.9 1.9 1.8 1.7 Sum(%) 0.4 0.4 0.5 0.5 0.4

MAY #1 #2 #3 #4 #5 JUN #1 #2 #3 #4 #5
Goal 1 8 12 12 6 4 Goal 1 19 13 11 7 7
Goal 2 0 0 0 0 0 Goal 2 0 0 0 0 0
Goal 3 6 5 2 1 0 Goal 3 6 4 2 3 3
Goal 4 0 0 3 0 2 Goal 4 0 0 2 4 0
Goal 5 3 12 4 3 0 Goal 5 6 1 0 5 1
Goal 6 46 17 44 39 36 Goal 6 130 100 100 90 90
Goal 7 24 24 30 30 24 Goal 7 55 75 74 86 87
Goal 8 20 39 12 32 34 Goal 8 13 9 27 26 18
Goal 9 17 15 9 6 8 Goal 9 2 3 3 13 12

Sum(%) 1.3 1.3 1.3 1.3 1.2 Sum(%) 2.6 2.3 2.5 2.6 2.5

JUL #1 #2 #3 #4 #5 AUG #1 #2 #3 #4 #5
Goal 1 2 8 10 4 8 Goal 1 4 4 2 0 2
Goal 2 0 0 0 0 0 Goal 2 0 0 0 0 0
Goal 3 5 3 5 3 4 Goal 3 5 9 8 9 1
Goal 4 0 0 0 1 0 Goal 4 0 3 0 3 0
Goal 5 3 0 0 0 3 Goal 5 4 3 4 5 4
Goal 6 3 2 2 2 2 Goal 6 70 60 65 64 66
Goal 7 4 4 4 5 4 Goal 7 49 44 41 40 40
Goal 8 25 21 8 21 9 Goal 8 15 20 14 11 39
Goal 9 5 4 5 3 2 Goal 9 4 9 6 7 5

Sum(%) 0.5 0.5 0.4 0.4 0.4 Sum(%) 1.6 1.6 1.5 1.5 1.7

SEP #1 #2 #3 #4 #5 OCT #1 #2 #3 #4 #5
Goal 1 2 2 6 4 10 Goal 1 8 6 0 6 4
Goal 2 1 0 0 0 0 Goal 2 0 0 0 0 0
Goal 3 3 0 5 4 2 Goal 3 5 3 6 2 2
Goal 4 0 0 1 1 1 Goal 4 0 0 1 0 1
Goal 5 3 2 1 0 0 Goal 5 4 0 2 3 0
Goal 6 0 2 0 3 4 Goal 6 8 7 8 9 7
Goal 7 2 3 3 0 3 Goal 7 14 15 14 15 20
Goal 8 11 18 8 7 8 Goal 8 17 25 16 17 12
Goal 9 1 2 6 6 0 Goal 9 5 4 3 2 10

Sum(%) 0.3 0.3 0.3 0.3 0.3 Sum(%) 0.7 0.7 0.6 0.6 0.6

NOV #1 #2 #3 #4 #5 DEC #1 #2 #3 #4 #5
Goal 1 2 0 8 2 2 Goal 1 4 0 0 4 6
Goal 2 0 0 0 0 0 Goal 2 0 0 0 0 0
Goal 3 5 4 2 5 3 Goal 3 1 5 5 2 3
Goal 4 0 0 1 2 0 Goal 4 0 4 0 0 1
Goal 5 3 0 1 2 4 Goal 5 0 4 4 1 0
Goal 6 100 90 91 88 81 Goal 6 0 3 8 6 1
Goal 7 55 48 50 51 60 Goal 7 4 4 2 0 2
Goal 8 4 14 15 17 13 Goal 8 9 7 3 6 5
Goal 9 4 10 4 4 1 Goal 9 4 0 2 4 5

Sum(%) 1.9 1.8 1.9 1.9 1.8 Sum(%) 0.2 0.3 0.3 0.3 0.3
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Table 3. Example solutions found by the domination-based evaluation function

According to the results in Tables 2 and 3, we can see that our system with dual criteria of so-
lution acceptance has provided a flexible way to well solve the nurse scheduling problem. By
the aid of a weighted-sum evaluation function which combines users’ explicit preferences on
the objectives, our system can provide users with superior single solutions. For example, us-
ing the same objective function, our results are no worse than those of the IP-based VNS, and
are significantly better than those of the hybrid genetic algorithm and the hybrid VNS (in-
creased by 25.8% and 21.5% on average, respectively). In addition, by the aid of a domina-
tion-based evaluation function, our system can provide users with up to two thousand non-
dominated solutions, some of which satisfy as high as 99.8% of the constraints. Hence, in the
case that users do not have clear preferences on some specific objectives, they still may have
plenty of choices in making the decisions. For example, to choose a schedule like the one
shown in Figure 1.

Figure 1. An example schedule for decision making

7 Conclusions

In this paper, we propose a Pareto-based search technique to solve the multi-objective nurse
scheduling problem. We first design a generating heuristic which randomly generates a set of
legal shift patterns for each nurse. We then employ an adaptive heuristic, called improved
squeaky wheel optimization, to quickly find a solution with the least violations on coverage
demands. Next, we apply a coverage repairing heuristic to make the resulting solution feasi-
ble. Finally, we propose a simulated annealing based search method with two options to ad-
dress user preferences in different ways: one weighted-sum evaluation function which en-
courages moves towards users’ predefined preferences, and another domination-based
evaluation function which encourages moves towards a more diversified Pareto set.

The proposed approach has the following advantages. The first is its search ability which is
demonstrated in a benchmark comparison by using the same weighted-sum evaluation func-
tion. The second is its adaptability as it can be applied to other hospital environments by sim-
ply altering the formulations of constraints and requirements. The third is its flexibility as it
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provides dual criteria of solution acceptance during the search, thus enabling users more de-
gree of freedom for a better decision making.
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