
1 

Title: A Compact Genetic Algorithm for the 

Network Coding Based Resource 

Minimization Problem 

Authors: Huanlai Xing (corresponding author), Rong Qu 

Affiliation: The Automated Scheduling, Optimisation and Planning (ASAP)  

Group, School of Computer Science, The University of Nottingham 

Address: School of Computer Science, University of Nottingham, Nottingham, 

NG8 1BB, United Kingdom 

Phone: +44-0115 84 66554 

Email: hxx@cs.nott.ac.uk; rxq@cs.nott.ac.uk 

 

 

Abstract: In network coding based data transmission, intermediate nodes in the network are 

allowed to perform mathematical operations to recombine (code) data packets received from 

different incoming links. Such coding operations incur additional computational overhead and 

consume public resources such as buffering and computational resource within the network. 

Therefore, the amount of coding operations is expected to be minimized so that more public 

resources are left for other network applications.  

In this paper, we investigate the newly emerged problem of minimizing the amount of coding 

operations required in network coding based multicast. To this end, we develop the first elitism-

based compact genetic algorithm (cGA) to the problem concerned, with three extensions to 

improve the algorithm performance. First, we make use of an all-one vector to guide the 

probability vector (PV) in cGA towards feasible individuals. Second, we embed a PV restart 

scheme into the cGA where the PV is reset to a previously recorded value when no improvement 

can be obtained within a given number of consecutive generations. Third, we design a problem-

specific local search operator that improves each feasible solution obtained by the cGA. 

Experimental results demonstrate that all the adopted improvement schemes contribute to an 

enhanced performance of our cGA. In addition, the proposed cGA is superior to some existing 

evolutionary algorithms in terms of both exploration and exploitation simultaneously in reduced 

computational time. 

 

Keywords: compact genetic algorithm; estimation of distribution algorithm; 

multicast; network coding 
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1. Introduction 

Network coding represents a generalized routing scheme in communications, 

and has been attracting increasing research attention in both information theory 

and computer science since its introduction in 2000 [1]. As a newly emerged 

paradigm, it brings a lot of benefits to communication networks in terms of 

increased throughput, balanced network payload, energy saving, security, 

robustness against link failures, and so on [2-7]. Instead of simply replicating and 

forwarding data packets at the network layer, network coding allows any 

intermediate node (i.e. router), if necessary, to perform arbitrary mathematical 

operations to recombine (i.e. code) data packets received from different incoming 

links. By doing so, the maximized multicast throughput bounded by the MAX-

FLOW MIN-CUT theorem can always be obtained [2].  

Fig.1 shows an example of the superiority of network coding over traditional 

routing in terms of the maximum multicast throughput achieved [8]. In the 

network of 7 nodes and 9 links in Fig.1(a), s is the single source, and y and z are 

two sinks. Each direct link has a capacity of one bit per time unit. According to 

the MAX-FLOW MIN-CUT theorem, we know that the minimum cut Cmin 

between s and y (or between s and z) is two bits per time unit, so is the maximum 

multicast throughput from s to y and z. However, only 1.5 bits per time unit can be 

achieved as the multicast throughput if traditional routing is used. This is because 

link wx could only forward one bit (a or b) at a time to node x, and thus y and z 

cannot simultaneously receive two bits, as indicated in Fig.1(b). In Fig.1(c) where 

network coding is applied, node w is allowed to recombine the two bits it receives 

from t and u into one bit a b (symbol  here represents the Exclusive-OR 

operation) and to output a b to node x. In this way, y and z are able to receive {a, 

a b} and {b, a b} respectively, and thus two bits information is available at 

each sink. Meanwhile, by calculating a (a b) and b (a b), y and z can then 

recover b and a, respectively. 

Insert Fig.1 somewhere here. 

In most of the previous research in network coding, coding is performed at 

all coding-possible nodes. However, to obtain an expected multicast throughput, 

coding may only be necessary at a subset of those nodes [9-11]. Fig.2 illustrates 
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two network-coding-based data transmission schemes that could both achieve the 

maximum multicast throughput. Source s expects to transmit two bits (a and b) to 

four sinks, t1, t2, t3 and t4. Scheme A adopts two coding-possible nodes, namely 

node m and node n, as shown in Fig.2(a). Nevertheless, the same throughput can 

also be obtained by scheme B in Fig.2(b), where coding only occurs at node m. 

Due to the mathematical operations involved, network coding not only incurs 

additional cost such as computational overhead and transmission delay, but also 

consumes public resources, e.g. buffering and computational resources [12]. It is 

therefore important that the number of coding operations is kept minimized while 

the benefits of network coding are warranted. Unfortunately, this problem is NP-

hard [9-11].  

Insert Fig.2 somewhere here. 

Although a large amount of research has been conducted on multicast routing 

problems by using advanced algorithms including evolutionary algorithms and 

local search based algorithms [13-17], a limited number of algorithms have been 

proposed in the literature of network coding based multicast. Most of these 

algorithms are based on either greedy methods or evolutionary algorithms. 

Langberg et al [12] and Fragouli et al [18] proposed different network 

decomposition methods and two greedy algorithms to minimize coding 

operations. However, the optimization of these algorithms depends on the 

traversing order of links. An inappropriate link traversal order leads to a 

deteriorated performance. Kim et al investigated evolutionary approaches to 

minimize the required network coding resources [9-11]. In [9], a genetic 

algorithm (GA) working in an algebraic framework has been put forward. 

However, it is applied to acyclic networks only. This has been extended to a 

distributed GA to significantly reduce the computational time in [10]. In [11], the 

authors compare and analyse GAs with two different genotype encoding 

approaches, i.e. the binary link state (BLS) and the binary transmission state 

(BTS). Simulations show that compared to BLS encoding, BTS encoding has 

much smaller solution space and leads to better solutions. Besides, their GA-based 

algorithms perform outstandingly better than the two greedy algorithms in [12] 

and [18] in terms of the best solutions achieved. Nevertheless, as we observed in 

our present work, GAs (e.g. [11]) have still shown to be weak in global 

exploration, even though a greedy sweep operator follows the evolution to further 
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improve the best individual. In our previous work [8], an improved quantum-

inspired evolutionary algorithm (QEA) has been developed to minimize the 

amount of coding operations. Simulation results demonstrate that the QEA 

outperforms simple GAs in many aspects including fast convergence. However, 

we observe in this paper that the improved QEA sometimes finds decent solutions 

at the cost of additional computational time. Recently, we also put forward a 

population based incremental learning (PBIL) to find the optimal amount of 

coding operations [19]. However, its main concern is how to apply network 

coding in delay sensitive applications. An extended compact genetic algorithm 

has thus been developed in this work to solve the highly constrained problems 

being concerned.  

As one of estimation of distribution algorithms (EDA) [20-22], the compact 

genetic algorithm (cGA) was first introduced in 1999 by Harik et al [23]. Whereas 

the simple genetic algorithm (sGA) maintains a population of solutions, cGA 

simply employs a probability vector (PV) while still retaining the order-one 

behavior (i.e. problem can be solved to optimality by combining only order-one 

schemata [23]) of the sGA with a uniform crossover. Contrary to sGA, cGA is 

much faster and efficient, and requires far less memory so that significant 

amounts of computational time and memory are saved. Hence, cGA has drawn an 

increasing research attention and been successfully applied to a number of 

optimization problems including evolvable hardware implementation [24-25], 

multi-FPGA partitioning [26], image recognition [27], TSK-type fuzzy model 

[28] and so on. Unfortunately, cGA is not always powerful, especially to complex 

optimization problems, due to the assumption that variables in any given problem 

are independent [29].  

In this paper, we investigate the first elitism-based cGA to the minimization 

problem of coding operations in network coding based multicast. In our cGA, 

three novel schemes have been developed to improve the optimization 

performance of cGA. The first scheme is to, by using an all-one vector, adjust the 

PV in such a way that feasible individuals appear with higher probabilities. This 

scheme not only warrantees the cGA with a feasible elite individual at the 

beginning of evolution but also allows the PV to generate feasible individuals 

with increasingly higher probabilities. The second scheme is a PV restart scheme 

to reset the PV when the solution found cannot be improved within a given 
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number of consecutive generations. This scheme stops ineffective evolution and 

helps to increase the chance to hit an optimal solution. In the third scheme, a local 

search operator is devised to exploit the neighborhood of each feasible solution so 

that the local exploitation of our cGA is, to a large extent, enhanced. Simulation 

experiments have been conducted over a number of fixed and randomly generated 

multicast scenarios. Results demonstrate that all the adopted schemes are effective 

and the proposed cGA outperforms existing evolutionary algorithms in obtaining 

optimal solutions within reduced computational time. 

2. Problem Description 

A communication network can be modeled as a directed graph G = (V, E), 

where V and E denote the set of nodes and links, respectively [2]. A single-source 

network coding based multicast scenario can be defined as a 4-tuple set (G, s, T, 

R), where the information needs to be transmitted at the data rate R from the 

source node s V to a set of sinks T = {t1,…,td} V in the graph G (V, E). The data 

rate R (a capacity of R units) is achievable if there is a transmission scheme that 

enables each sink tk, k = 1,…,d, to receive the information at the data rate R [9-

11]. We assume each link has a unit capacity, and a path from s to tk thus has a 

unit capacity. If we manage to set up R link-disjoint paths {P1(s, tk),…,PR(s, tk)} 

from s to each sink tk T, we make the data rate R achievable. In this work we 

consider the linear network coding scheme which is sufficient for multicast 

applications [2]. 

In this paper, a subgraph in G is called a network coding based multicast 

subgraph (NCM subgraph, denoted by GNCM(s, T)) if there are R link-disjoint 

paths Pi(s, tk), i = 1,…,R, from s to each sink tk, k = 1,…,d, in this subgraph. An 

intermediate node nc is called a coding node if it performs a coding operation. 

Each coding node has at least one outgoing link, called coding link, if this link 

outputs the coded information. Take data transmission scheme in Fig.1(c) as an 

example, its NCM subgraph and the paths that make up of this subgraph are 

shown in Fig.3. The NCM subgraph is composed of four paths, i.e. P1(s, y), P2(s, 

y), P1(s, z) and P2(s, z), where paths to the same sink are link-disjoint. As we 

know, no coding is necessary at any intermediate node with only one incoming 

link. We refer to each non-sink node with multiple incoming links as a merging 

node which can perform coding [10-11]. We also refer to each outgoing link of a 



6 

merging node as a potential coding link. To determine if a potential coding link of 

a merging node becomes a coding link, we just need to check if the information 

via this link is dependent on a number of incoming links of the merging node. 

Insert Fig.3 somewhere here. 

For a given multicast scenario (G, s, T, R), the number of coding links, rather 

than coding nodes, is more precise to indicate the total amount of coding 

operations [12]. We therefore investigate how to construct a NCM subgraph 

GNCM(s, T) with the minimal number of coding links while achieving the expected 

data rate. We define the following notations: 

vij: a variable associated with the j-th outgoing link of the i-th 

merging node, i = 1,…,M, j = 1,…,Zi, where M is the total 

number of merging nodes and the i-th merging node has Zi 

outgoing links. vij = 1 if the j-th outgoing link of the i-th node 

serves as a coding link; vij = 0 otherwise. 

ncl(GNCM(s,T)) : the number of coding links in a constructed NCM subgraph 

GNCM(s,T). 

R(s, tk) : the achievable rate from s to tk. 

R: the defined data rate (an integer) at which s expects to transmit 

information. 

Pi(s, tk) : the i-th established path from s to tk, i = 1,…,R in GNCM(s, T). 

Wi(s, tk) : the set of links of Pi(s, tk), i.e. Wi(s, tk) = 

{e | e Pi(s, tk)}. 

Based on the above notations, we define in this paper the problem of network 

coding based resource minimization as to minimize the number of coding links 

while achieving a desired multicast throughput, shown as follows: 

Minimize: 
M
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Objective (1) defines our problem as to minimize the number of coding links 

in the constructed NCM subgraph; Constraint (2) defines that the achievable data 

rate from s to each sink must be at least R so that we can set up R paths for each 

sink; Constraint (3) indicates that for an arbitrary tk the R constructed paths Pi(s, 
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tk), i = 1,…,R, must have no common link so that each sink can receive 

information at rate R. 

3. An Overview of Compact Genetic Algorithm 

cGA is a variant of EDA, where its population is implicitly represented by a 

real-valued probability vector (PV). At each generation, only two individuals are 

sampled from the PV and a single tournament is performed between them, i.e. a 

winner and a loser are identified [23]. The PV is then adjusted and shifted towards 

the winner. As the cGA evolves, the PV converges to an explicit solution. 

We denote the aforementioned PV at generation t by P(t) = {P1
t
,…,PL

t
}, 

where L is the length of each individual (see more details in section 4). The value 

at each locus of P(t), i.e. Pi
t
, i = 1,…,L, is initialized as 0.5 so that initially all 

solutions in the search space appear with the same probability. Let winner(i) and 

loser(i), i = 1,…,L, be the i-th bit of the winner and the loser, respectively, and 1/N 

be the increment of the probability of the winning alleles after each competition 

between the winner and the loser, where N is an integer. Note that although cGA 

produces two individuals at each generation, it can mimic the convergence 

behavior of a sGA with a population size N [23]. The procedure of the standard 

cGA is presented in Fig.4. 

Insert Fig.4 somewhere here. 

In this paper, the proposed cGA is based on the persistent elitist cGA (pe-

cGA) introduced in [29]. Compared with the standard cGA, the procedure of pe-

cGA is almost the same except the two steps, i.e. steps 6 and 7, in Fig.4. Fig.5 

illustrates steps 6 and 7 in pe-cGA [29], where two individuals are created at 

generation t = 1. In the following generations, only one new individual is created 

to compete with the winner from previous generations. The winner (the elite 

individual), on the other hand, is never changed as long as no better individual has 

been sampled from the PV. 

Insert Fig.5 somewhere here. 
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4. The Proposed Compact Genetic Algorithm 

In this section, we first describe the individual representation and the fitness 

evaluation in our proposed cGA, based on which all the aforementioned 

improvement schemes are devised. 

4.1 Individual Representation and Fitness Evaluation 

Encoding represents one of the most important key issues in designing 

efficient and effective evolutionary algorithms in many complex optimization 

problems, including the newly emerged coding resource minimization problem 

concerned in our work. To cater for the complex network structure in the problem 

studied here, we adopt the Graph Decomposition Method in [10-11] to represent 

solutions and calculate the fitness of each individual in the cGA. 

To detect the number of coding operations at each merging node in a given 

network topology G, a secondary graph GD is created by decomposing each 

merging node in G into a number of nodes connected with additional links 

introduced. For the i-th merging node with In(i) incoming links and Out(i) 

outgoing links, In(i) nodes, u1,…,uIn(i), referred to as incoming auxiliary nodes, 

and Out(i) nodes, w1,…,wOut(i), referred to as outgoing auxiliary nodes, are 

created. The original i-th merging node can thus be seen as decomposed into two 

sets of nodes. The j-th incoming link of the i-th original merging node is 

redirected to node uj; and the k-th outgoing link of the i-th merging node is 

redirected to node wk. Besides, a directed link e(uj, wk) is inserted between each 

pair of nodes (uj, wk), j = 1,…,In(i), k = 1,…,Out(i). 

In our cGA, we associate each binary bit of an individual X with one of the 

newly introduced links between those auxiliary nodes, e.g. e(uj, wk) in GD. A value 

‘1’ at a bit in X means its corresponding link exists in GD, ‘0’ otherwise. Each 

individual therefore corresponds to an explicit secondary graph GD which may or 

may not provide a valid network coding based routing solution. 

To evaluate a given individual X, we first check if X is feasible. For each sink 

tk, k = 1,…,d, we use the Goldberg algorithm [30], a classical max-flow algorithm, 

to compute the max-flow between the source s and tk in the corresponding GD of 

X. As mentioned in section 2, each link in G has a unit capacity. The max-flow 

between s and tk is thus equivalent to the number of link-disjoint paths found by 

the Goldberg algorithm between s and tk. If all d max-flows are at least R, rate R is 
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achievable and the individual X is feasible. Otherwise, the individual X is 

infeasible. 

For each infeasible individual X, we set a sufficiently large fitness value Ψ to 

its fitness f(X) (in this paper, Ψ = 50). If X is feasible, we first determine its 

corresponding NCM subgraph GNCM(s, T) and then calculate its fitness value. For 

each sink tk T, we select R paths from the obtained link-disjoint paths from s to tk 

(if the max-flow is R then we select all the link-disjoint paths), and therefore 

obtain in total R·d paths, e.g. Pi(s, tj), i = 1,…,R, j = 1,…,d. We map all the 

selected paths to GD and obtain a GNCM(s, T) in which coding operations occur at 

the outgoing auxiliary nodes with two or more incoming links. The fitness value 

f(X) can then be set to the number of coding links in the GNCM(s, T). 

Note that our fitness evaluation is slightly different from the one in [10-11] 

where authors only concern if the subgraph obtained can meet the data rate 

requirement, i.e. each constructed subgraph in [10-11] potentially offers a data 

rate larger than required because the subgraph may have more link-disjoint paths 

than expected from the source to the sink. Our NCM subgraph provides the exact 

expected data rate, and thus is more likely to occupy less link and coding 

resources. 

4.2 The Use of an All-one Vector 

The problem concerned in our work is highly constrained within complex 

network structures, and thus infeasible solutions form a large proportion of the 

solution space. The PV hence may not be able to efficiently evolve with a limited 

number of feasible individuals, i.e. the optimization of cGA could be seriously 

weakened due to the lack of feasible individuals. Kim et al [10-11] noticed this 

problem and inserted an all-one vector, i.e. ‘11…1’, into the initial population to 

warrantee that their GAs start with at least one feasible individual (the all-one 

vector ensures that all newly introduced links exist in GD and guarantees a feasible 

NCM subgraph to be found). Recently, we also use all-one vectors to guide 

population based incremental learning (PBIL) towards feasible solutions [19]. The 

above methods both show to improve the optimization performance.  

Inspired by the idea in [10-11, 19], we simply set an all-one vector as the 

elite individual in the initialization to ensure that our cGA begins with at least one 

feasible individual. It is not hard to understand that individuals containing more 1s 
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are more likely to be feasible for the problem concerned. The PV which gradually 

shifts towards the all-one vector thus gets increasingly higher chance to produce 

feasible individuals. This method shows to significantly accelerate the 

convergence speed of the cGA in the early stage of evolution (see section 5 for 

details). 

4.3 The Probability Vector Restart Scheme 

In the literature of EDA, restart schemes have been introduced in population-

based incremental learning (PBIL) approaches to avoid premature evolution and 

thus to enhance the global search capability of PBIL. The essence of these 

schemes is to restart (re-initialize) the search under certain restart conditions. For 

example, in applying PBILs to dynamic optimization problems, the PV can be 

reset as soon as the environment changes [31-32]. Similarly, Ahn et al [29] 

present an efficient nonpersistent elitist cGA (ne-cGA) where an elite individual is 

regenerated using the initialized PV, i.e. Pi
t
 = 0.5, i = 1,…,L, when the current 

elite individual dominates in a predefined number of generations. 

For the complex and difficult problem concerned in this paper, we design a 

PV restart scheme which replaces the current PV with a previously recorded PV 

when no better individual can be found within a predefined number of consecutive 

generations, i.e. gc generations, where gc is an integer. The principle to choose an 

appropriate recorded PV is that it should be able to generate feasible individuals 

with a high probability so that the cGA retains an effective evolution. On the other 

hand, the PV should have an appropriate probability distribution to maintain a 

good diversity, where the current elite individual has less chance to appear again 

in the evolution. 

Let Xe denote the elite individual. The steps of the PV restart scheme in our 

paper are shown as follows: 

1) Record the PV that generates the first feasible individual during the 

evolution of cGA. For example, if the PV produced the first feasible 

individual at generation ti, we record P(ti) for the proposed restart scheme. 

Here, we assume during the evolution of cGA, the PV can produce feasible 

individuals. 
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2) After P(ti) is recorded, the restart scheme is launched. We set counter = 0 

at generation ti. Note that the initial value of counter is −1, which implies 

the restart scheme has not started. 

3) If Xe is not changed in a new generation, set counter = counter + 1. If 

counter = gc, which means Xe stays in cGA for gc consecutive generations, 

set PV = P(ti) and counter = 0. Note that the current Xe remains 

unchanged, and is likely to be changed once the PV is reset. On the other 

hand, once Xe is changed, set counter = 0. 

This scheme shows to effectively improve the global exploration capability 

of our cGA (see section 5). 

4.4 The Local Search Operator 

As mentioned in section 4.1, each feasible individual corresponds to a 

secondary graph GD based on which a NCM subgraph GNCM(s, T) can be found in 

the fitness evaluation by using the Goldberg algorithm in [30]. However, one 

feature of GD is that the NCM subgraph found may not be unique, i.e. we could 

possibly find alternative feasible NCM subgraphs from the given GD. We call 

these feasible NCM subgraphs the neighbors of GNCM(s, T) in GD. The better the 

NCM subgraph found (i.e. the NCM subgraph requires less coding operations), 

the higher the quality of the corresponding solution to the problem, and the faster 

the convergence of the algorithm. 

In order to find a better NCM subgraph in GD, we propose a local search 

operator (L-operator), which starts from GNCM(s, T), to explore the neighbors of 

the GNCM(s, T) and find hopefully a neighbor with less coding operations. 

Assume GNCM(s, T) has h coding nodes, i.e. n1,…,nh, where the i-th coding 

node ni has In(i) incoming links. We denote by eij the j-th incoming link of ni in 

GNCM(s, T). Obviously, there is also an identical eij in GD since DNCM GTsG ),( . 

The procedure of the L-operator is shown as follows: 

1) Set 
temp

DG = GD;
temp

NCMG = GNCM(s, T); i = 1; j = 1; 

2) Remove the link eij from 
temp

DG . Use the Goldberg algorithm [30] to 

calculate the max-flow between s and each sink in
temp

DG . If the d max-

flows are at least R, go to step 3. Otherwise, reinsert the link eij to 

temp

DG and go to step 4. 
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3) For each sink tk, randomly select R paths from the obtained link-disjoint 

paths from s to tk (if there are R paths we then select all of them), and map 

all the selected paths to temp

DG to obtain a new NCM subgraph ),( TsG new

NCM . 

If the number of coding links in ),( TsG new

NCM is less than that in 
temp

NCMG , set 

temp

NCMG  = ),( TsG new

NCM ; otherwise, reinsert the link eij. 

4) If j = In(i), proceed to the next coding node, i.e. set i = i + 1 and go to step 

5; otherwise, proceed to the next incoming link of the same coding node, 

i.e. set j = j + 1, and go to step 2. 

5) If i = h + 1, stop the procedure and output 
temp

NCMG ; otherwise, proceed to 

the first incoming link of the i-th coding node, i.e. set j = 1, and go to step 

2. 

Fig.6 shows an example of the graph decomposition and the local search 

procedure. The original graph with the source s and sinks t1 and t2, as shown in 

Fig.6(a), has two merging nodes, i.e. v1 and v2. In Fig.6(b), v1 and v2 are 

decomposed into two groups of auxiliary nodes with newly introduced links, i.e. 

e1, …, e8. We assume the i-th bit of an individual is associated with link ei, i = 

1,…,8 (see section 4.1). Given an individual ‘11101011’, its corresponding 

secondary graph GD is shown in Fig.6(c). Based on GD, we can obtain a NCM 

subgraph GNCM(s, T) with only one coding node w1, as shown in Fig.6(d), where, 

obviously, links e11 and e12 are two incoming links of w1. In Fig.6(e), the L-

operator removes e11 from GD and a new GD is obtained. Based on the new GD, we 

can obtain a better NCM subgraph shown in Fig.6(f) as this subgraph is coding-

free. It can be seen that removing e12 from Fig.6(e) produces an infeasible NCM 

subgraph thus e12 is retained. Since all incoming links of coding nodes are 

checked, the L-operator stops and outputs the NCM subgraph shown in Fig.6(f). 

In this example, the fitness of ‘11101011’ is thus set to zero. 

Insert Fig.6 somewhere here. 

In our cGA, the L-operator is applied to improve the NCM subgraph GNCM(s, 

T) of each feasible individual X. The number of coding links in the resulting 

temp

NCMG is returned as the fitness of the improved individual. 

The L-operator reveals to be quite effective to improve the quality of 

solutions obtained by our cGA (see section 5). 
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4.5 The Overall Procedure of the Proposed cGA 

The pseudo-code of the proposed cGA is shown in Fig.7 with the following 

three extensions for solving the problem concerned: (1) In the initialization the 

elite individual is set to an all-one vector; (2) the PV is reset when the elite 

individual is not changed within a number of consecutive generations; (3) a local 

search operator is integrated to exploit the neighbours of each feasible NCM 

subgraph found. 

Insert Fig.7 somewhere here. 

The genotype encoding approach used in the proposed cGA is the binary link 

state (BLS) encoding. For any outgoing link of an arbitrary merging node with k 

incoming links, an alphabet of cardinality 2 in the BLS encoding is sufficient to 

represent all possible 2
k
 states of k links [10-11] to the outgoing link. 

Different from pe-cGA that creates and evaluates the elite individual at 

generation t = 1 as shown in Fig.5, we create and evaluate the elite individual in 

the initialization (where t = 0). The elite individual Xe is set to an all-one vector to 

ensure our cGA begins with a feasible individual. In each generation, an 

individual X is sampled from the PV, and its feasibility is checked by the fitness 

evaluation. If X corresponds to a GD where a feasible NCM subgraph can be 

found, we use the L-operator to search the neighbors of the NCM subgraph and 

obtain hopefully a new and better NCM subgraph. The number of coding links in 

the new NCM subgraph is set to the fitness of X, i.e. f(X). Otherwise, a sufficiently 

large fitness value Ψ (= 50) is set to f(X) for an infeasible solution; If X is the first 

feasible individual, we record the PV from which X is created, and launch the PV 

restart scheme by setting counter = 0 in step 10. The restart scheme is triggered 

when no better individual appears within gc generations, as shown in step 11. In 

step 12, we update the elite individual Xe if the new X is better than Xe. Then, the 

PV is shifted towards Xe in step 13. 

The procedure terminates subject to two conditions: (1) a feasible NCM 

subgraph without coding is obtained, or (2) the algorithm reaches a pre-defined 

number of generations. 
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5. Performance Evaluation 

We first investigate the effects of the three extensions in cGA, i.e. the use of 

an all-one vector, the PV restart scheme and the local search operator. 

Experiments have been firstly conducted on two directed networks, i.e. 3-copies 

and 20-nodes, before an overall evaluation of the algorithm on eleven more 

multicast scenarios. Similar to the structures of n-copies in [11], our n-copies 

networks are generated based on the network shown in Fig.8(a) by cascading n 

copies of it, where each sink of the upper copy is a source of the lower copy. The 

n-copies network has n + 1 sinks, to which the maximum data transmission rate 

from the source is 2. Fig.8 shows the original network and the 3-copies network 

with source s and sinks t1, t2, t3 and t4. On the other hand, the 20-node network 

(with 20 nodes, 37 links and 5 sinks) is randomly created, where the data rate is 

set to 3. The increment of each winning allele is set to 0.05 in the cGAs which 

mimics the performance of sGA with a population size of 20 (= 1/0.05). All 

experimental results are collected by running each algorithm 50 times. 

Insert Fig.8 somewhere here. 

5.1 The Effect of the All-one Vector 

As mentioned above, the all-one vector not only enables the cGA to begin 

with a feasible individual but also adjusts the PV to produce feasible individuals 

with increasingly higher probabilities. In order to evaluate the performance of the 

all-one vector, we compare the following three variants of the cGA on the 3-

copies and 20-node networks: 

− cGA: the cGA introduced in [23] (see section 3). 

− cGA-(E): cGA with persistent elitism scheme in [29]. 

− cGA-(E,A1): cGA-(E) with the use of the all-one vector (see section 4.2). 

We compare the above algorithms on the following four evaluation criteria: 

− The evolution of the average fitness. The termination condition here is a 

pre-defined number of generations, i.e. algorithms stop after 300 generations. 

− The successful ratio of finding a coding-free (i.e. with no coding) NCM 

subgraph in 50 runs. Note that the definition of the successful ratio in our 

experiments is different from that in [11]. In [11], the authors are concerned with 

the successful ratio of finding a feasible NCM subgraph in a number of runs. 
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− The average best fitness over 50 runs and the standard deviation. 

− The average termination generation over 50 runs. The termination 

condition here is a coding-free NCM subgraph has been found or the algorithms 

have reached 300 generations. 

Fig.9 shows the comparisons of the three algorithms in terms of the average 

fitness during the evolution. Compared with cGA-(E) and cGA-(E,A1), cGA has 

the worst performance on both networks. In the 3-copies network, cGA has almost 

no evolution. In the 20-node network, the convergence can hardly be observed 

before the 200-th generation. cGA-(E) performs better than cGA on both 

networks, which once again demonstrates the effectiveness of the persistent elitist 

scheme over the traditional tournament scheme [29]. With the use of the all-one 

vector, cGA-(E,A1) performs the best as shown by the significantly improved 

convergence speed. For example, cGA-(E,A1) converges to a stable state at 

around the 150-th generation for the 3-copies network and the 200-th generation 

for the 20-node network, respectively. This is because, with more feasible 

solutions quickly generated from the all-one vector, cGA-(E,A1) is able to 

converge much faster to better solutions. 

Insert Fig.9 somewhere here. 

Experimental results of different algorithm evaluation criteria for each 

algorithm are presented in Table 1. Similarly, we found that cGA-(E,A1) has the 

best performance with the highest successful ratio, and the smallest average best 

fitness, standard deviation and average termination generation. Besides, the 

performance of cGA-(E,A1) is significantly improved, i.e. 86% successful ratio 

by cGA-(E,A1) compared to 24% by cGA-(E) and only 6% by cGA. The obtained 

results clearly show that the all-one vector does improve the optimization 

performance of cGA. 

Insert Table 1 somewhere here. 

5.2 The Effect of the PV Restart Scheme 

To illustrate the effectiveness of the PV restart scheme, we compare the 

following two variants of algorithms on the 3-copies and 20-node networks: 

− cGA-(E,A1) 

− cGA-(E,A1,R): cGA-(E,A1) with the PV restart scheme. 
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We investigate the effect of the pre-defined number of consecutive 

generations in the PV restart scheme, i.e. gc, upon the performance of the cGA 

(see section 4.3). The successful ratio and average termination generation of cGA-

(E,A1,R) have been obtained with gc set to 5, 10, 15, …, 295, and 300, 

respectively (increment of 5 generations). For comparison purposes, we also 

collect the successful ratio and average termination generation of cGA-(E,A1), by 

running it 50 times. The successful ratio and average termination generation are 

84% and 82.7 for the 3-copies network, and 66% and 139.3 for the 20-node 

network, respectively. 

Fig.10 shows the successful ratios obtained by cGA-(E,A1,R) with different 

gc. With the incensement of gc, the successful ratio of cGA-(E,A1,R) firstly 

increases, and then falls down. For both networks, the successful ratios of cGA-

(E,A1,R) are better in most cases than that of cGA-(E,A1), e.g. from gc = 5 to gc = 

250 on the 3-copies network and from gc = 10 to gc = 200 on the 20-node network. 

We can conclude that gc, when properly set, contributes to a better successful ratio 

of cGA-(E,A1,R). 

Insert Fig.10 somewhere here. 

Fig.11 illustrates the average termination generations achieved on the two 

networks. We can hardly find a clear relationship between the average termination 

generations and gc. However, we can see that the average termination generations 

in the first half of the range of gc are more likely to be better than the average 

termination generations obtained by cGA-(E,A1). Once again, this shows that gc 

when properly set helps to improve the optimization performance of cGA-

(E,A1,R). 

Insert Fig.11 somewhere here. 

We can also find that with gc = 50, the successful ratios and average 

termination generations obtained by cGA-(E,A1,R) all perform better than those 

obtained by cGA-(E,A1). In the following experiments, we set gc = 50 in the PV 

restart scheme. 

5.3 The Effect of the Local Search Operator 

As analyzed before, the all-one vector and the PV restart scheme both show 

to be effective for solving the two testing problems, i.e. the 3-copies and 20-node 

networks. Besides, the PV restart scheme further improves the performance of 
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cGA-(E,A1). In this subsection, we evaluate the effect of the L-operator and 

verify whether the advantages of the three improvements can be cascaded, by 

running the following three variants of cGA in the 3-copies and 20-node 

networks: 

− cGA-(E,A1) 

− cGA-(E,A1,R) 

− cGA-(E,A1,R,L): cGA-(E,A1,R) with the L-operator. 

Table 2 shows the experimental results of the three algorithms. We find that 

cGA-(E,A1,R,L) performs the best, obtaining the highest successful ratio and the 

smallest average best fitness and average termination generation. The second best 

algorithm is cGA-(E,A1,R). Clearly, the L-operator improves the performance of 

cGA-(E,A1,R). In addition, the most significant improvement is the outstandingly 

reduced average termination generation from cGA-(E,A1,R,L). Note that the 

average termination generation of cGA-(E,A1,R,L) is zero on the 3-copies 

network, meaning a coding-free NCM subgraph can be found at the initialization 

of the algorithm with the L-operator. 

Insert Table 2 somewhere here. 

5.4 The Overall Performance Analysis 

In order to thoroughly analyze the overall performance of the proposed 

algorithms, we compare the following algorithms in terms of the above same 

evaluation criteria and the average computational time: 

− QEA: the quantum-inspired evolutionary algorithm proposed in [8] for 

coding resource optimization problem. Based on the standard QEA, this QEA is 

featured with the multi-granularity evolution mechanism, the adaptive quantum 

mutation operation and the penalty-function-based fitness function. Besides, it 

adopts the BLS genotype encoding. 

− sGA-1: the simple genetic algorithm with the block transmission state 

(BTS) encoding and operators presented in [11]. A greedy sweep operator is 

employed after the evolution to improve the quality of the best individual found. 

− sGA-2: the other simple genetic algorithm with BLS encoding and 

operators in [11]. The same greedy sweep operator is adopted. 

− cGA-1: cGA-(E,A1) 

− cGA-2: cGA-(E,A1,R) 
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− cGA-3: cGA-(E,A1,R,L) 

Note that the above cGAs are also based on BLS encoding (see section 4.5). 

The population sizes for the QEA, sGA-1 and sGA-2 are all set to 20. For 

parameter settings on the calculations of the rotation angle and mutation 

probabilities in QEA, please refer to [8] for more details. The crossover 

probability, tournament size and mutation probability are set to 0.8, 12, and 0.012 

for sGA-1, and 0.8, 4, and 0.01 for sGA-2, respectively. Experiments have been 

carried out upon three fixed and eight randomly-generated directed networks. To 

ensure a fair comparison, QEA, sGA-1 and sGA-2 have been re-implemented on 

the same machine and evaluated on the same 11 network scenarios. Table 3 shows 

the experimental networks and parameter setup. All experiments have been run on 

a Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G 

RAM. The results achieved by each algorithm are averaged over 50 runs. 

Insert Table 3 somewhere here. 

Table 4 compares the six algorithms with respect to the successful ratio. 

Obviously, cGA-3 is the best algorithm, achieving 100% successful ratio in 

almost every scenario except Random-5 and Random-6 where cGA-3 also 

achieves the highest successful ratios, i.e. 98% and 96% respectively. This 

demonstrates that the three extensions to a large extent strengthen the global 

exploration and local exploitation of cGA-3. sGA-1 performs the second best. 

Apart from the Random-5, Random-7 and Random-8 networks, the successful 

ratios obtained by sGA-1 are at least not worse and usually higher than those 

obtained by the other four algorithms. Without the local search operator, cGA-2 

shows to be weak on local exploitation, however, is still able to obtain decent 

results compared with sGA-2. 

Insert Table 4 somewhere here. 

Experimental results of the average best fitness and standard deviation for 

each algorithm are shown in Table 5. Obviously, cGA-3 outperforms all the other 

algorithms while cGA-1 and cGA-2 cannot see outstanding advantage when they 

are compared with QEA, sGA-1 and sGA2. The results also show that the three 

extensions significantly improve the optimization performance of cGA. 

Insert Table 5 somewhere here. 
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Table 6 illustrates the comparisons of the average termination generation 

obtained by each algorithm. It is easy to identify that cGA-3 performs 

outstandingly better than other algorithms, terminating in the initial generation in 

five networks and in a significantly reduced number of generations in the other 

networks. As mentioned in section 5.3, cGA-3 also terminates in the initial 

generation on the 3-copies network. Note that termination in the initial generation 

occurs only when a coding-free NCM subgraph is found in the initialization of 

cGA-3. This phenomenon shows that combining the L-operator with the all-one 

vector is particularly effective to solve n-copies networks and Random-1 and 

Random-4 network problems. 

Insert Table 6 somewhere here. 

The computational time is of vital importance in evaluating an algorithm. 

Table 7 illustrates that cGA-3 spends less time than QEA, sGA-1 and sGA-2 on 

all networks concerned and sometimes the time reduction can be substantial. For 

example, in the case of the 31-copies network, the average computational time of 

cGA-3 is around 30 sec, which is significantly shorter than 3993 sec by QEA and 

2406 sec by sGA-1. This demonstrates that, integrated with intelligent schemes, 

our proposed cGA consumes less computational time while obtaining better 

solutions compared with the existing algorithms. The reason for cGA-3 

consuming less computational time is that the number of fitness evaluations is far 

reduced in each elitism-based cGA as it only produces one individual at each 

generation. Although more time may be spent on the local search procedure, the 

high quality solutions found by the L-operator and the less number of fitness 

evaluations can well compromise and lead to less computational expenses. 

Insert Table 7 somewhere here. 

In summary, with regard to the successful ratio, the average best fitness and 

standard deviation, the average termination generation and the average 

computational time, cGA with the three improvement schemes outperforms all 

other algorithms being compared. 

6. Conclusion and Future Work 

In this paper, we investigated an elitist compact genetic algorithm (cGA) 

with three improvements for the coding resource minimization problem in 
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network coding multicast. The first improvement is to set the initial elite 

individual as an all-one vector in the initialization, which not only makes sure that 

cGA starts with a feasible individual but also gradually tunes the probability 

vector (PV) so that feasible individuals appear with increasingly higher 

probabilities. The second improvement is to reset the PV during the evolution as a 

previously recorded value so as to improve the global exploration capability of the 

cGA. The third one is a local search operator that exploits the neighbors of the 

network coding based multicast subgraph of each feasible individual to improve 

the solution quality of the cGA. The three improvements, when employed 

together, significantly improve the performance of our proposed cGA. 

Furthermore, the proposed cGA is easy to implement, consumes less 

computational expenses and memory resources compared with standard 

evolutionary algorithms. This is important as the lower average computational 

time by cGA may offer a possibility of applying the proposed algorithm to real-

time and dynamic communications networks where computational time is crucial. 

Our experiments have demonstrated the efficiency of the PV restart scheme, 

and showed that the parameter gc needs to be set properly. In this paper, we 

empirically determined the fixed values of gc. In our future work, we will 

investigate how to extend our algorithm so that it can adaptively determine gc for 

different given network problems. Besides, the experimental results also showed 

that our proposed cGA is more effective on n-copies networks and two of the 

specific random network problems concerned. This raises an interesting research 

direction to further investigate features of specific network topologies to improve 

the local search procedure in our evolutionary algorithms. 

Acknowledgment 

This work was supported in part by China Scholarship Council, China, and The University of 

Nottingham, UK. 

 

References 

[1]  Ahlswede R, Cai N, Li SYR and Yeung RW (2000) Network information flow. IEEE T 

INFORM THEORY 46(4):1204-1216. 

[2]  Li SYR, Yeung RW, and Cai N (2003) Linear network coding. IEEE T INFORM THEORY 

49(2):371-381. 

[3]  Koetter R and Médard M (2003) An algebraic approach to network coding. IEEE ACM T 

NETWORK 11(5): 782-795. 



21 

[4]  Wu Y, Chou PA, and Kung SY (2005) Minimum-energy multicast in mobile ad hoc 

networks using network coding. IEEE T COMMUN 53(11): 1906-1918. 

[5]  Chou PA and Wu Y (2007) Network coding for the internet and wireless networks. IEEE 

SIGNAL PROC MAG 24(5): 77-85. 

[6]  Cai N and Yeung RW (2002) Secure network coding. In: Proceedings of IEEE International 

Symposium on Information Theory (ISIT’02). 

[7]  Kamal AE (2006) 1+N protection in optical mesh networks using network coding on p-

cycles. In: Proceedings of IEEE Globecom, San Francisco. 

[8]  Xing H, Ji Y, Bai L, and Sun Y (2010) An improved quantum-inspired evolutionary 

algorithm for coding resource optimization based network coding multicast scheme. AEU-

INT J ELECTRON C 64(12): 1105-1113. 

[9]  Kim M, Ahn CW, Médard M, and Effros M (2006) On minimizing network coding 

resources: An evolutionary approach. In: Proceedings of Second Workshop on Network 

Coding, Theory, and Applications (NetCod2006), Boston. 

[10] Kim M, Médard M, Aggarwal V, Reilly VO, Kim W, Ahn CW, and Effros M (2007) 

Evolutionary approaches to minimizing network coding resources. In: Proceedings of 26th 

IEEE International Conference on Computer Communications (INFOCOM2007), 

Anchorage, pp 1991-1999. 

[11] Kim M, Aggarwal V, Reilly VO, Médard M, and Kim W (2007) Genetic representations for 

evolutionary optimization of network coding. In: Proceedings of EvoWorkshops 2007, LNCS 

4448, Valencia, pp 21-31. 

[12] Langberg M, Sprintson A, and Bruck J (2006) The encoding complexity of network coding. 

IEEE T INFORM THEORY 52(6): 2386-2397. 

[13] Oliveira CAS and Pardalos PM (2005) A Survey of Combinatorial Optimization Problems in 

Multicast Routing. COMPUT OPER RES 32(8): 1953-1981. 

[14] Yeo CK, Lee BS, and Er MH (2004) A survey of application level multicast techniques. 

COMPUT COMMUN 27: 1547-1568. 

[15] Xu Y and Qu R (2010) A hybrid scatter search meta-heuristic for delay-constrained multicast 

routing problems. APPL INTELL. doi: 10.1007/s10489-010-0256-x. 

[16] Araújo AFR and Garrozi C (2010) MulRoGA: a multicast routing genetic algorithm approach 

considering multiple objectives. APPL INTELL 32: 330-345. doi: 10.1007/s10489-008-

0148-5. 

[17] Kim SJ and Choi MK (2007) Evolutionary algorithms for route selection and rate allocation 

in multirate multicast networks. APPL INTELL 27: 197-215. doi. 10.1007/s10489-006-0014-

2. 

[18] Fragouli C and Soljanin E (2006) Information flow decomposition for network coding. IEEE 

T INFORM THEORY 52(3): 829-848. 

[19] Xing H and Qu R (2011) A population based incremental learning for delay constrained 

network coding resource minimization. In: Proceedings of EvoApplications 2011, Torino, 

Italy, pp 51-60. 



22 

[20] Pelikan M, Goldberg DE, and Lobo FG (2002) A survey of optimization by building and 

using probabilistic models. COMPUT OPTIM APPL 21: 5-20. 

[21] Baluja S and Simon D (1998) Evolution-based methods for selecting point data for object 

localization: applications to computer-assisted surgery. APPL INTELL 8: 7-19. 

[22] Sukthankar R, Baluja S, and Hancock J (1998) Multiple adaptive agents for tactical driving. 

APPL INTELL 9: 7-23. 

[23] Harik GR, Lobo FG, and Goldberg DE (1999) The compact genetic algorithm. IEEE T 

EVOLUT COMPUT 3(4): 287-297. 

[24] Gallagher JC, Vigraham S, and Kramer G (2004) A family of compact genetic algorithms for 

intrinsic evolvable hardware. IEEE T EVOLUT COMPUT 8(2): 111-126. 

[25] Aporntewan C and Chongstitvatana P (2001) A hardware implementation of the compact 

genetic algorithm. In: Proceedings of IEEE Congress Evolutionary Computation pp 624-629. 

[26] Hidalgo JI, Baraglia R, Perego R, Lanchares J, and Tirado F (2001) A parallel compact 

genetic algorithm for multi-FPGA partitioning. In: Proceedings of the 9
th

 Workshop on 

Parallel and Distributed Processing, Mantova, pp 113-120. 

[27] Silva RR, Lopes HS, and Erig Lima CR (2008) A compact genetic algorithm with elitism and 

mutation applied to image recognition. In: Proceedings of the 4
th

 International Conference on 

Intelligent Computing (ICIC’08) pp 1109-1116. 

[28] Lin SF, Chang JW, and Hsu YC (2010) A self-organization mining based hybrid evolution 

learning for TSK-type fuzzy model design. APPL INTELL. doi: 10.1007/s10489-010-0271-

y. 

[29] Ahn CW and Ramakrishna RS (2003) Elitism-based compact genetic algorithm. IEEE T 

EVOLUT COMPUT 7(4): 367-385. 

[30] Goldberg AV (1985) A new max-flow algorithm. MIT Technical Report MIT/LCS/TM-291, 

Laboratory for Computer Science. 

[31] Yang S and Yao X (2008) Population-based incremental learning with associative memory 

for dynamic environments. IEEE T EVOLUT COMPUT 12(5): 542-561. 

[32] Yang S and Yao X (2005) Experimental study on population-based incremental learning 

algorithms for dynamic optimization problems. SOFT COMPUT 9(11): 815-834.List of Tables 

Table 1 Experimental results of the three algorithms. 

Table 2 Experimental results of the three algorithms. 

Table 3 Experimental networks and parameter setup. 

Table 4 Comparisons of successful ratio (%). 

Table 5 Comparisons of average best fitness (standard deviation). 

Table 6 Comparisons of average termination generation. 

Table 7 Comparisons of average computational time (sec.). 

 

List of Figures 

Fig.1 Traditional routing vs. network coding [8]. (a) The example network. (b) Traditional routing 

scheme. (c) Network coding scheme. 



23 

Fig.2 Two different network-coding-based data transmission schemes. (a) Scheme A with two 

coding nodes. (b) Scheme B with only one coding node. 

Fig.3 An example of the NCM subgraph and the paths that make up of it. 

Fig.4 Procedure of the standard cGA. 

Fig.5 The different steps in pe-cGA [19] compared with the standard cGA in Fig. 4. 

Fig.6 An example of the graph decomposition and local search procedure. 

Fig.7 Procedure of the proposed cGA. 

Fig.8 An example of the n-copies network. (a) the original network (b) the 3-copies network. 

Fig.9 Average fitness vs. generations in variants of cGA. (a) the 3-copies network (b) the 20-node 

network. 

Fig.10 Successful ratio vs. gc in variants of cGA. (a) the 3-copies network (b) the 20-node 

network. 

Fig.11 Average termination generation vs. gc in variants of cGA. (a) the 3-copies network (b) the 

20-node network.  



24 

Table 1 Experimental results of the three algorithms 

Scenarios  Criteria cGA cGA-(E) cGA-(E,A1) 

3-copies s.r. (%) 6 24 86 

a.b.f(s.d.) 40.24(19.72) 28.20(24.84) 0.14(0.35) 

a.t.g. 292.16 264.66 78.78 

20-node s.r.(%) 6 38 78 

a.b.f.(s.d.) 20.82(24.08) 8.58(18.27) 0.22(0.41) 

a.t.g. 283.94 243.20 111.86 

Note: s.r.: successful ratio; a.t.g.: average termination generation; a.b.f.: average best fitness; s.d.: 

standard deviation. 

 

Table 2 Experimental results of the three algorithms 

Scenarios Criteria cGA-(E,A1) cGA-(E,A1,R) cGA-(E,A1,R,L) 

3-copies s.r.(%) 92 100 100 

a.b.f.(s.d.) 0.08(0.27) 0.00(0.00) 0.00(0.00) 

a.t.g. 64.90 53.2 0 

20-node s.r.(%) 70 92 100 

a.b.f.(s.d.) 0.30(0.46) 0.08(0.27) 0.00(0.00) 

a.t.g. 134.16 112.56 23.20 

Note: s.r.: successful ratio; a.t.g.: average termination generation; a.b.f.: average best fitness; s.d.: 

standard deviation. 

 

Table 3 Experimental networks and parameter setup 

Multicast Scenario Description Parameters 

name nodes links sinks rate LI DTG 

7-copies 57 84 8 2 80 500 

15-copies 121 180 16 2 176 500 

31-copies 249 372 32 2 368 1000 

Random-1 30 60 6 3 86 500 

Random-2 30 69 6 3 112 500 

Random-3 40 78 9 3 106 500 

Random-4 40 85 9 4 64 500 

Random-5 50 101 8 3 145 500 

Random-6 50 118 10 4 189 500 

Random-7 60 150 11 5 235 1000 

Random-8 60 156 10 4 297 1000 

Note: LI: the length of an individual; DTG: the defined termination generation. 
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Table 4 Comparisons of successful ratio (%) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 

7-copies 45 96 80 42 100 100 

15-copies 0 50 0 0 4 100 

31-copies 0 0 0 0 0 100 

Random-1 100 100 98 94 100 100 

Random-2 100 100 100 100 100 100 

Random-3 66 70 50 24 68 100 

Random-4 100 100 100 100 100 100 

Random-5 46 40 56 14 26 98 

Random-6 42 32 16 18 30 96 

Random-7 25 60 6 2 14 100 

Random-8 84 60 14 14 80 100 

 

Table 5 Comparisons of average best fitness (standard deviation) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 

7-copies 0.95(1.09) 0.04(0.19) 0.70(1.83) 0.82(0.87) 0.00(0.00) 0.00(0.00) 

15-copies 10.2(7.09) 0.60(0.68) 4.55(3.85) 5.46(1.85) 2.42(1.23) 0.00(0.00) 

31-copies 18.8(5.35) 3.85(1.13) 22.5(6.36) 17.64(2.68) 7.60(2.39) 0.00(0.00) 

Random-1 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.06(0.23) 0.00(0.00) 0.00(0.00) 

Random-2 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

Random-3 0.32(0.47) 0.30(0.47) 0.50(0.51) 1.10(0.76) 0.32(0.47) 0.00(0.00) 

Random-4 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 

Random-5 0.55(0.51) 0.64(0.48) 0.50(0.51) 1.04(0.56) 0.74(0.44) 0.02(0.14) 

Random-6 0.60(0.59) 0.94(0.84) 1.15(0.74) 1.34(0.93) 0.94(0.73) 0.04(0.19) 

Random-7 1.50(1.23) 0.35(0.48) 1.00(0.32) 2.22(0.95) 1.48(0.93) 0.00(0.00) 

Random-8 0.16(0.37) 0.35(0.48) 0.90(0.44) 1.24(0.74) 0.20(0.40) 0.00(0.00) 

 

Table 6 Comparisons of average termination generation 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 

7-copies 301.2 228.3 289.6 328.9 233.6 0.0 

15-copies 500.0 458.2 500.0 500.0 497.5 0.0 

31-copies 1000.0 1000.0 1000.0 1000.0 1000.0 0.0 

Random-1 9.7 85.3 66.7 60.5 33.7 0.0 

Random-2 6.5 44.7 51.5 34.0 46.2 19.5 

Random-3 225.0 338.6 398.1 405.4 309.8 72.2 

Random-4 7.4 36.8 32.0 29.0 32.0 0.0 

Random-5 349.4 393.3 355.6 443.3 420.6 152.34 

Random-6 338.6 436.4 457.7 435.4 425.6 136.3 

Random-7 832.2 755.0 989.9 982.5 924.1 183.2 

Random-8 300.5 753.1 891.5 875.9 507.4 114.1 
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Table 7 Comparisons of average computational time (sec.) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 

7-copies 25.15 16.82 14.14 3.06 1.38 0.11 

15-copies 195.57 158.24 112.68 23.03 16.28 2.04 

31-copies 3903.5 2406.2 436.85 399.05 269.71 28.32 

Random-1 0.51 6.22 3.40 0.35 0.10 0.06 

Random-2 0.62 3.25 2.26 0.15 0.15 0.16 

Random-3 27.97 31.74 31.55 5.17 2.56 3.60 

Random-4 0.68 3.37 2.58 0.09 0.11 0.04 

Random-5 56.73 57.69 41.72 7.39 4.64 9.33 

Random-6 75.20 78.14 63.83 10.77 8.14 16.90 

Random-7 292.28 225.32 272.79 43.05 36.61 46.00 

Random-8 120.90 229.32 224.23 37.83 14.35 22.83 
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Fig.1 Traditional routing vs. network coding [8]. (a) The example network. (b) Traditional routing 

scheme. (c) Network coding scheme. 

 

 

Fig.2 Two different network-coding-based data transmission schemes. (a) Scheme A with two 

coding nodes. (b) Scheme B with only one coding node. 

 

 

Fig.3 An example of the NCM subgraph and the paths that make up of it. 
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Standard cGA 

1) Initialization 

2)     Set t := 0; 

3)     for i = 1 to L do Pi
t := 0.5 

4) repeat 

5)     Set t := t + 1; 

6)     // Generate two individuals from the PV 

Xa := generate (P(t)); Xb := generate (P(t)); 

7) // Let Xa and Xb compete 

winner, loser := compete (Xa, Xb); 

8) // The PV learns towards the winner 

for i = 1 to L do 

if winner(i) <> loser(i) then 

if winner(i) == 1 then Pi
t := Pi

t + 1/N; 

else Pi
t := Pi

t – 1/N; 

9) until the PV has converged 

10) Output the converged PV as the final solution 

Fig.4 Procedure of the standard cGA. 

 

6) // Generate one individual from the PV 

   if t == 1 then  

 Xe := generate (P(t)); // initialize the elite individual 

        Xnew := generate (P(t)); // generate a new individual 

7) // Xe and Xnew compete and the winner inherits 

        winner, loser := compete (Xe, Xnew); 

    Xe := winner; // update the elite individual 

Fig.5 The different steps in pe-cGA [19] compared with the standard cGA in Fig. 4. 
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Fig.6 An example of the graph decomposition and local search procedure. 
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1) Initialization 

2) Set t := 0; counter := −1; // see section IV.C 

3) for i = 1 to L do Pi
t := 0.5 // initialize PV 

4) // Initialize the elite individual with an all-one vector 

Xe := 11…1; // see section IV.B 

5) // Evaluate the elite individual 

f(Xe) := evaluate (Xe); // see section IV.D 

6) repeat 

7) Set t := t + 1; 

8) // Generate one individual from the PV 

       X := generate (P(t)); // X is sampled from P(t) 

9) // Evaluate the individual 

f(X) := evaluate (X); // see section IV.D 

10) // Record the PV for the restart scheme 

if X is the first feasible individual then 

counter := 0; PVrecord := P(t); // see section IV.C 

11) // The PV restart scheme 

if f(Xe) ≤ f(X) && counter ≥ 0 then 

counter := counter + 1; 

if counter == gc then 

P(t) := PVrecord; counter = 0; // see section IV.C 

12)     // Record better individuals 

if f(Xe) > f(X) then 

Xe := X; f(Xe) := f(X); 

if counter > 0 then 

counter := 0; 

13)     // The PV learns towards the elite individual 

for i = 1 to L do 

if Xe(i) <> X(i) then 

if Xe(i) == 1 then Pi
t := Pi

t + 1/N; 

else Pi
t := Pi

t – 1/N; 

14)     until the termination condition is met 

Fig.7 Procedure of the proposed cGA. 

 

 

Fig.8 An example of the n-copies network. (a) the original network (b) the 3-copies network. 
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                                    (a) 

 

                                    (b) 

Fig.9 Average fitness vs. generations in variants of cGA. (a) the 3-copies network (b) the 20-node 

network. 
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                                    (a) 

 

                                    (b) 

Fig.10 Successful ratio vs. gc in variants of cGA. (a) the 3-copies network (b) the 20-node 

network. 



33 

 

                                    (a) 

 

                                    (b) 

Fig.11 Average termination generation vs. gc in variants of cGA. (a) the 3-copies network (b) the 

20-node network. 

 

 

 

 

 

 


