
1

Title: A Compact Genetic Algorithm for the

Network Coding Based Resource

Minimization Problem

Authors: Huanlai Xing (corresponding author), Rong Qu

Affiliation: The Automated Scheduling, Optimisation and Planning (ASAP)

Group, School of Computer Science, The University of Nottingham

Address: School of Computer Science, University of Nottingham, Nottingham,

NG8 1BB, United Kingdom

Phone: +44-0115 84 66554

Email: hxx@cs.nott.ac.uk; rxq@cs.nott.ac.uk

Abstract: In network coding based data transmission, intermediate nodes in the network are

allowed to perform mathematical operations to recombine (code) data packets received from

different incoming links. Such coding operations incur additional computational overhead and

consume public resources such as buffering and computational resource within the network.

Therefore, the amount of coding operations is expected to be minimized so that more public

resources are left for other network applications.

In this paper, we investigate the newly emerged problem of minimizing the amount of coding

operations required in network coding based multicast. To this end, we develop the first elitism-

based compact genetic algorithm (cGA) to the problem concerned, with three extensions to

improve the algorithm performance. First, we make use of an all-one vector to guide the

probability vector (PV) in cGA towards feasible individuals. Second, we embed a PV restart

scheme into the cGA where the PV is reset to a previously recorded value when no improvement

can be obtained within a given number of consecutive generations. Third, we design a problem-

specific local search operator that improves each feasible solution obtained by the cGA.

Experimental results demonstrate that all the adopted improvement schemes contribute to an

enhanced performance of our cGA. In addition, the proposed cGA is superior to some existing

evolutionary algorithms in terms of both exploration and exploitation simultaneously in reduced

computational time.

Keywords: compact genetic algorithm; estimation of distribution algorithm;

multicast; network coding

2

1. Introduction

Network coding represents a generalized routing scheme in communications,

and has been attracting increasing research attention in both information theory

and computer science since its introduction in 2000 [1]. As a newly emerged

paradigm, it brings a lot of benefits to communication networks in terms of

increased throughput, balanced network payload, energy saving, security,

robustness against link failures, and so on [2-7]. Instead of simply replicating and

forwarding data packets at the network layer, network coding allows any

intermediate node (i.e. router), if necessary, to perform arbitrary mathematical

operations to recombine (i.e. code) data packets received from different incoming

links. By doing so, the maximized multicast throughput bounded by the MAX-

FLOW MIN-CUT theorem can always be obtained [2].

Fig.1 shows an example of the superiority of network coding over traditional

routing in terms of the maximum multicast throughput achieved [8]. In the

network of 7 nodes and 9 links in Fig.1(a), s is the single source, and y and z are

two sinks. Each direct link has a capacity of one bit per time unit. According to

the MAX-FLOW MIN-CUT theorem, we know that the minimum cut Cmin

between s and y (or between s and z) is two bits per time unit, so is the maximum

multicast throughput from s to y and z. However, only 1.5 bits per time unit can be

achieved as the multicast throughput if traditional routing is used. This is because

link wx could only forward one bit (a or b) at a time to node x, and thus y and z

cannot simultaneously receive two bits, as indicated in Fig.1(b). In Fig.1(c) where

network coding is applied, node w is allowed to recombine the two bits it receives

from t and u into one bit a b (symbol here represents the Exclusive-OR

operation) and to output a b to node x. In this way, y and z are able to receive {a,

a b} and {b, a b} respectively, and thus two bits information is available at

each sink. Meanwhile, by calculating a (a b) and b (a b), y and z can then

recover b and a, respectively.

Insert Fig.1 somewhere here.

In most of the previous research in network coding, coding is performed at

all coding-possible nodes. However, to obtain an expected multicast throughput,

coding may only be necessary at a subset of those nodes [9-11]. Fig.2 illustrates

3

two network-coding-based data transmission schemes that could both achieve the

maximum multicast throughput. Source s expects to transmit two bits (a and b) to

four sinks, t1, t2, t3 and t4. Scheme A adopts two coding-possible nodes, namely

node m and node n, as shown in Fig.2(a). Nevertheless, the same throughput can

also be obtained by scheme B in Fig.2(b), where coding only occurs at node m.

Due to the mathematical operations involved, network coding not only incurs

additional cost such as computational overhead and transmission delay, but also

consumes public resources, e.g. buffering and computational resources [12]. It is

therefore important that the number of coding operations is kept minimized while

the benefits of network coding are warranted. Unfortunately, this problem is NP-

hard [9-11].

Insert Fig.2 somewhere here.

Although a large amount of research has been conducted on multicast routing

problems by using advanced algorithms including evolutionary algorithms and

local search based algorithms [13-17], a limited number of algorithms have been

proposed in the literature of network coding based multicast. Most of these

algorithms are based on either greedy methods or evolutionary algorithms.

Langberg et al [12] and Fragouli et al [18] proposed different network

decomposition methods and two greedy algorithms to minimize coding

operations. However, the optimization of these algorithms depends on the

traversing order of links. An inappropriate link traversal order leads to a

deteriorated performance. Kim et al investigated evolutionary approaches to

minimize the required network coding resources [9-11]. In [9], a genetic

algorithm (GA) working in an algebraic framework has been put forward.

However, it is applied to acyclic networks only. This has been extended to a

distributed GA to significantly reduce the computational time in [10]. In [11], the

authors compare and analyse GAs with two different genotype encoding

approaches, i.e. the binary link state (BLS) and the binary transmission state

(BTS). Simulations show that compared to BLS encoding, BTS encoding has

much smaller solution space and leads to better solutions. Besides, their GA-based

algorithms perform outstandingly better than the two greedy algorithms in [12]

and [18] in terms of the best solutions achieved. Nevertheless, as we observed in

our present work, GAs (e.g. [11]) have still shown to be weak in global

exploration, even though a greedy sweep operator follows the evolution to further

4

improve the best individual. In our previous work [8], an improved quantum-

inspired evolutionary algorithm (QEA) has been developed to minimize the

amount of coding operations. Simulation results demonstrate that the QEA

outperforms simple GAs in many aspects including fast convergence. However,

we observe in this paper that the improved QEA sometimes finds decent solutions

at the cost of additional computational time. Recently, we also put forward a

population based incremental learning (PBIL) to find the optimal amount of

coding operations [19]. However, its main concern is how to apply network

coding in delay sensitive applications. An extended compact genetic algorithm

has thus been developed in this work to solve the highly constrained problems

being concerned.

As one of estimation of distribution algorithms (EDA) [20-22], the compact

genetic algorithm (cGA) was first introduced in 1999 by Harik et al [23]. Whereas

the simple genetic algorithm (sGA) maintains a population of solutions, cGA

simply employs a probability vector (PV) while still retaining the order-one

behavior (i.e. problem can be solved to optimality by combining only order-one

schemata [23]) of the sGA with a uniform crossover. Contrary to sGA, cGA is

much faster and efficient, and requires far less memory so that significant

amounts of computational time and memory are saved. Hence, cGA has drawn an

increasing research attention and been successfully applied to a number of

optimization problems including evolvable hardware implementation [24-25],

multi-FPGA partitioning [26], image recognition [27], TSK-type fuzzy model

[28] and so on. Unfortunately, cGA is not always powerful, especially to complex

optimization problems, due to the assumption that variables in any given problem

are independent [29].

In this paper, we investigate the first elitism-based cGA to the minimization

problem of coding operations in network coding based multicast. In our cGA,

three novel schemes have been developed to improve the optimization

performance of cGA. The first scheme is to, by using an all-one vector, adjust the

PV in such a way that feasible individuals appear with higher probabilities. This

scheme not only warrantees the cGA with a feasible elite individual at the

beginning of evolution but also allows the PV to generate feasible individuals

with increasingly higher probabilities. The second scheme is a PV restart scheme

to reset the PV when the solution found cannot be improved within a given

5

number of consecutive generations. This scheme stops ineffective evolution and

helps to increase the chance to hit an optimal solution. In the third scheme, a local

search operator is devised to exploit the neighborhood of each feasible solution so

that the local exploitation of our cGA is, to a large extent, enhanced. Simulation

experiments have been conducted over a number of fixed and randomly generated

multicast scenarios. Results demonstrate that all the adopted schemes are effective

and the proposed cGA outperforms existing evolutionary algorithms in obtaining

optimal solutions within reduced computational time.

2. Problem Description

A communication network can be modeled as a directed graph G = (V, E),

where V and E denote the set of nodes and links, respectively [2]. A single-source

network coding based multicast scenario can be defined as a 4-tuple set (G, s, T,

R), where the information needs to be transmitted at the data rate R from the

source node s V to a set of sinks T = {t1,…,td} V in the graph G (V, E). The data

rate R (a capacity of R units) is achievable if there is a transmission scheme that

enables each sink tk, k = 1,…,d, to receive the information at the data rate R [9-

11]. We assume each link has a unit capacity, and a path from s to tk thus has a

unit capacity. If we manage to set up R link-disjoint paths {P1(s, tk),…,PR(s, tk)}

from s to each sink tk T, we make the data rate R achievable. In this work we

consider the linear network coding scheme which is sufficient for multicast

applications [2].

In this paper, a subgraph in G is called a network coding based multicast

subgraph (NCM subgraph, denoted by GNCM(s, T)) if there are R link-disjoint

paths Pi(s, tk), i = 1,…,R, from s to each sink tk, k = 1,…,d, in this subgraph. An

intermediate node nc is called a coding node if it performs a coding operation.

Each coding node has at least one outgoing link, called coding link, if this link

outputs the coded information. Take data transmission scheme in Fig.1(c) as an

example, its NCM subgraph and the paths that make up of this subgraph are

shown in Fig.3. The NCM subgraph is composed of four paths, i.e. P1(s, y), P2(s,

y), P1(s, z) and P2(s, z), where paths to the same sink are link-disjoint. As we

know, no coding is necessary at any intermediate node with only one incoming

link. We refer to each non-sink node with multiple incoming links as a merging

node which can perform coding [10-11]. We also refer to each outgoing link of a

6

merging node as a potential coding link. To determine if a potential coding link of

a merging node becomes a coding link, we just need to check if the information

via this link is dependent on a number of incoming links of the merging node.

Insert Fig.3 somewhere here.

For a given multicast scenario (G, s, T, R), the number of coding links, rather

than coding nodes, is more precise to indicate the total amount of coding

operations [12]. We therefore investigate how to construct a NCM subgraph

GNCM(s, T) with the minimal number of coding links while achieving the expected

data rate. We define the following notations:

vij: a variable associated with the j-th outgoing link of the i-th

merging node, i = 1,…,M, j = 1,…,Zi, where M is the total

number of merging nodes and the i-th merging node has Zi

outgoing links. vij = 1 if the j-th outgoing link of the i-th node

serves as a coding link; vij = 0 otherwise.

ncl(GNCM(s,T)) : the number of coding links in a constructed NCM subgraph

GNCM(s,T).

R(s, tk) : the achievable rate from s to tk.

R: the defined data rate (an integer) at which s expects to transmit

information.

Pi(s, tk) : the i-th established path from s to tk, i = 1,…,R in GNCM(s, T).

Wi(s, tk) : the set of links of Pi(s, tk), i.e. Wi(s, tk) =

{e | e Pi(s, tk)}.

Based on the above notations, we define in this paper the problem of network

coding based resource minimization as to minimize the number of coding links

while achieving a desired multicast throughput, shown as follows:

Minimize:
M

1

Z

1

)),((
i j

ijNCMcl

i

vTsGn (1)

Subject to: R(s, tk) R, tk T (2)

TttsW k

R

i

ki ,),(
1

 (3)

Objective (1) defines our problem as to minimize the number of coding links

in the constructed NCM subgraph; Constraint (2) defines that the achievable data

rate from s to each sink must be at least R so that we can set up R paths for each

sink; Constraint (3) indicates that for an arbitrary tk the R constructed paths Pi(s,

7

tk), i = 1,…,R, must have no common link so that each sink can receive

information at rate R.

3. An Overview of Compact Genetic Algorithm

cGA is a variant of EDA, where its population is implicitly represented by a

real-valued probability vector (PV). At each generation, only two individuals are

sampled from the PV and a single tournament is performed between them, i.e. a

winner and a loser are identified [23]. The PV is then adjusted and shifted towards

the winner. As the cGA evolves, the PV converges to an explicit solution.

We denote the aforementioned PV at generation t by P(t) = {P1
t
,…,PL

t
},

where L is the length of each individual (see more details in section 4). The value

at each locus of P(t), i.e. Pi
t
, i = 1,…,L, is initialized as 0.5 so that initially all

solutions in the search space appear with the same probability. Let winner(i) and

loser(i), i = 1,…,L, be the i-th bit of the winner and the loser, respectively, and 1/N

be the increment of the probability of the winning alleles after each competition

between the winner and the loser, where N is an integer. Note that although cGA

produces two individuals at each generation, it can mimic the convergence

behavior of a sGA with a population size N [23]. The procedure of the standard

cGA is presented in Fig.4.

Insert Fig.4 somewhere here.

In this paper, the proposed cGA is based on the persistent elitist cGA (pe-

cGA) introduced in [29]. Compared with the standard cGA, the procedure of pe-

cGA is almost the same except the two steps, i.e. steps 6 and 7, in Fig.4. Fig.5

illustrates steps 6 and 7 in pe-cGA [29], where two individuals are created at

generation t = 1. In the following generations, only one new individual is created

to compete with the winner from previous generations. The winner (the elite

individual), on the other hand, is never changed as long as no better individual has

been sampled from the PV.

Insert Fig.5 somewhere here.

8

4. The Proposed Compact Genetic Algorithm

In this section, we first describe the individual representation and the fitness

evaluation in our proposed cGA, based on which all the aforementioned

improvement schemes are devised.

4.1 Individual Representation and Fitness Evaluation

Encoding represents one of the most important key issues in designing

efficient and effective evolutionary algorithms in many complex optimization

problems, including the newly emerged coding resource minimization problem

concerned in our work. To cater for the complex network structure in the problem

studied here, we adopt the Graph Decomposition Method in [10-11] to represent

solutions and calculate the fitness of each individual in the cGA.

To detect the number of coding operations at each merging node in a given

network topology G, a secondary graph GD is created by decomposing each

merging node in G into a number of nodes connected with additional links

introduced. For the i-th merging node with In(i) incoming links and Out(i)

outgoing links, In(i) nodes, u1,…,uIn(i), referred to as incoming auxiliary nodes,

and Out(i) nodes, w1,…,wOut(i), referred to as outgoing auxiliary nodes, are

created. The original i-th merging node can thus be seen as decomposed into two

sets of nodes. The j-th incoming link of the i-th original merging node is

redirected to node uj; and the k-th outgoing link of the i-th merging node is

redirected to node wk. Besides, a directed link e(uj, wk) is inserted between each

pair of nodes (uj, wk), j = 1,…,In(i), k = 1,…,Out(i).

In our cGA, we associate each binary bit of an individual X with one of the

newly introduced links between those auxiliary nodes, e.g. e(uj, wk) in GD. A value

‘1’ at a bit in X means its corresponding link exists in GD, ‘0’ otherwise. Each

individual therefore corresponds to an explicit secondary graph GD which may or

may not provide a valid network coding based routing solution.

To evaluate a given individual X, we first check if X is feasible. For each sink

tk, k = 1,…,d, we use the Goldberg algorithm [30], a classical max-flow algorithm,

to compute the max-flow between the source s and tk in the corresponding GD of

X. As mentioned in section 2, each link in G has a unit capacity. The max-flow

between s and tk is thus equivalent to the number of link-disjoint paths found by

the Goldberg algorithm between s and tk. If all d max-flows are at least R, rate R is

9

achievable and the individual X is feasible. Otherwise, the individual X is

infeasible.

For each infeasible individual X, we set a sufficiently large fitness value Ψ to

its fitness f(X) (in this paper, Ψ = 50). If X is feasible, we first determine its

corresponding NCM subgraph GNCM(s, T) and then calculate its fitness value. For

each sink tk T, we select R paths from the obtained link-disjoint paths from s to tk

(if the max-flow is R then we select all the link-disjoint paths), and therefore

obtain in total R·d paths, e.g. Pi(s, tj), i = 1,…,R, j = 1,…,d. We map all the

selected paths to GD and obtain a GNCM(s, T) in which coding operations occur at

the outgoing auxiliary nodes with two or more incoming links. The fitness value

f(X) can then be set to the number of coding links in the GNCM(s, T).

Note that our fitness evaluation is slightly different from the one in [10-11]

where authors only concern if the subgraph obtained can meet the data rate

requirement, i.e. each constructed subgraph in [10-11] potentially offers a data

rate larger than required because the subgraph may have more link-disjoint paths

than expected from the source to the sink. Our NCM subgraph provides the exact

expected data rate, and thus is more likely to occupy less link and coding

resources.

4.2 The Use of an All-one Vector

The problem concerned in our work is highly constrained within complex

network structures, and thus infeasible solutions form a large proportion of the

solution space. The PV hence may not be able to efficiently evolve with a limited

number of feasible individuals, i.e. the optimization of cGA could be seriously

weakened due to the lack of feasible individuals. Kim et al [10-11] noticed this

problem and inserted an all-one vector, i.e. ‘11…1’, into the initial population to

warrantee that their GAs start with at least one feasible individual (the all-one

vector ensures that all newly introduced links exist in GD and guarantees a feasible

NCM subgraph to be found). Recently, we also use all-one vectors to guide

population based incremental learning (PBIL) towards feasible solutions [19]. The

above methods both show to improve the optimization performance.

Inspired by the idea in [10-11, 19], we simply set an all-one vector as the

elite individual in the initialization to ensure that our cGA begins with at least one

feasible individual. It is not hard to understand that individuals containing more 1s

10

are more likely to be feasible for the problem concerned. The PV which gradually

shifts towards the all-one vector thus gets increasingly higher chance to produce

feasible individuals. This method shows to significantly accelerate the

convergence speed of the cGA in the early stage of evolution (see section 5 for

details).

4.3 The Probability Vector Restart Scheme

In the literature of EDA, restart schemes have been introduced in population-

based incremental learning (PBIL) approaches to avoid premature evolution and

thus to enhance the global search capability of PBIL. The essence of these

schemes is to restart (re-initialize) the search under certain restart conditions. For

example, in applying PBILs to dynamic optimization problems, the PV can be

reset as soon as the environment changes [31-32]. Similarly, Ahn et al [29]

present an efficient nonpersistent elitist cGA (ne-cGA) where an elite individual is

regenerated using the initialized PV, i.e. Pi
t
 = 0.5, i = 1,…,L, when the current

elite individual dominates in a predefined number of generations.

For the complex and difficult problem concerned in this paper, we design a

PV restart scheme which replaces the current PV with a previously recorded PV

when no better individual can be found within a predefined number of consecutive

generations, i.e. gc generations, where gc is an integer. The principle to choose an

appropriate recorded PV is that it should be able to generate feasible individuals

with a high probability so that the cGA retains an effective evolution. On the other

hand, the PV should have an appropriate probability distribution to maintain a

good diversity, where the current elite individual has less chance to appear again

in the evolution.

Let Xe denote the elite individual. The steps of the PV restart scheme in our

paper are shown as follows:

1) Record the PV that generates the first feasible individual during the

evolution of cGA. For example, if the PV produced the first feasible

individual at generation ti, we record P(ti) for the proposed restart scheme.

Here, we assume during the evolution of cGA, the PV can produce feasible

individuals.

11

2) After P(ti) is recorded, the restart scheme is launched. We set counter = 0

at generation ti. Note that the initial value of counter is −1, which implies

the restart scheme has not started.

3) If Xe is not changed in a new generation, set counter = counter + 1. If

counter = gc, which means Xe stays in cGA for gc consecutive generations,

set PV = P(ti) and counter = 0. Note that the current Xe remains

unchanged, and is likely to be changed once the PV is reset. On the other

hand, once Xe is changed, set counter = 0.

This scheme shows to effectively improve the global exploration capability

of our cGA (see section 5).

4.4 The Local Search Operator

As mentioned in section 4.1, each feasible individual corresponds to a

secondary graph GD based on which a NCM subgraph GNCM(s, T) can be found in

the fitness evaluation by using the Goldberg algorithm in [30]. However, one

feature of GD is that the NCM subgraph found may not be unique, i.e. we could

possibly find alternative feasible NCM subgraphs from the given GD. We call

these feasible NCM subgraphs the neighbors of GNCM(s, T) in GD. The better the

NCM subgraph found (i.e. the NCM subgraph requires less coding operations),

the higher the quality of the corresponding solution to the problem, and the faster

the convergence of the algorithm.

In order to find a better NCM subgraph in GD, we propose a local search

operator (L-operator), which starts from GNCM(s, T), to explore the neighbors of

the GNCM(s, T) and find hopefully a neighbor with less coding operations.

Assume GNCM(s, T) has h coding nodes, i.e. n1,…,nh, where the i-th coding

node ni has In(i) incoming links. We denote by eij the j-th incoming link of ni in

GNCM(s, T). Obviously, there is also an identical eij in GD since DNCM GTsG),(.

The procedure of the L-operator is shown as follows:

1) Set
temp

DG = GD;
temp

NCMG = GNCM(s, T); i = 1; j = 1;

2) Remove the link eij from
temp

DG . Use the Goldberg algorithm [30] to

calculate the max-flow between s and each sink in
temp

DG . If the d max-

flows are at least R, go to step 3. Otherwise, reinsert the link eij to

temp

DG and go to step 4.

12

3) For each sink tk, randomly select R paths from the obtained link-disjoint

paths from s to tk (if there are R paths we then select all of them), and map

all the selected paths to temp

DG to obtain a new NCM subgraph),(TsG new

NCM .

If the number of coding links in),(TsG new

NCM is less than that in
temp

NCMG , set

temp

NCMG =),(TsG new

NCM ; otherwise, reinsert the link eij.

4) If j = In(i), proceed to the next coding node, i.e. set i = i + 1 and go to step

5; otherwise, proceed to the next incoming link of the same coding node,

i.e. set j = j + 1, and go to step 2.

5) If i = h + 1, stop the procedure and output
temp

NCMG ; otherwise, proceed to

the first incoming link of the i-th coding node, i.e. set j = 1, and go to step

2.

Fig.6 shows an example of the graph decomposition and the local search

procedure. The original graph with the source s and sinks t1 and t2, as shown in

Fig.6(a), has two merging nodes, i.e. v1 and v2. In Fig.6(b), v1 and v2 are

decomposed into two groups of auxiliary nodes with newly introduced links, i.e.

e1, …, e8. We assume the i-th bit of an individual is associated with link ei, i =

1,…,8 (see section 4.1). Given an individual ‘11101011’, its corresponding

secondary graph GD is shown in Fig.6(c). Based on GD, we can obtain a NCM

subgraph GNCM(s, T) with only one coding node w1, as shown in Fig.6(d), where,

obviously, links e11 and e12 are two incoming links of w1. In Fig.6(e), the L-

operator removes e11 from GD and a new GD is obtained. Based on the new GD, we

can obtain a better NCM subgraph shown in Fig.6(f) as this subgraph is coding-

free. It can be seen that removing e12 from Fig.6(e) produces an infeasible NCM

subgraph thus e12 is retained. Since all incoming links of coding nodes are

checked, the L-operator stops and outputs the NCM subgraph shown in Fig.6(f).

In this example, the fitness of ‘11101011’ is thus set to zero.

Insert Fig.6 somewhere here.

In our cGA, the L-operator is applied to improve the NCM subgraph GNCM(s,

T) of each feasible individual X. The number of coding links in the resulting

temp

NCMG is returned as the fitness of the improved individual.

The L-operator reveals to be quite effective to improve the quality of

solutions obtained by our cGA (see section 5).

13

4.5 The Overall Procedure of the Proposed cGA

The pseudo-code of the proposed cGA is shown in Fig.7 with the following

three extensions for solving the problem concerned: (1) In the initialization the

elite individual is set to an all-one vector; (2) the PV is reset when the elite

individual is not changed within a number of consecutive generations; (3) a local

search operator is integrated to exploit the neighbours of each feasible NCM

subgraph found.

Insert Fig.7 somewhere here.

The genotype encoding approach used in the proposed cGA is the binary link

state (BLS) encoding. For any outgoing link of an arbitrary merging node with k

incoming links, an alphabet of cardinality 2 in the BLS encoding is sufficient to

represent all possible 2
k
 states of k links [10-11] to the outgoing link.

Different from pe-cGA that creates and evaluates the elite individual at

generation t = 1 as shown in Fig.5, we create and evaluate the elite individual in

the initialization (where t = 0). The elite individual Xe is set to an all-one vector to

ensure our cGA begins with a feasible individual. In each generation, an

individual X is sampled from the PV, and its feasibility is checked by the fitness

evaluation. If X corresponds to a GD where a feasible NCM subgraph can be

found, we use the L-operator to search the neighbors of the NCM subgraph and

obtain hopefully a new and better NCM subgraph. The number of coding links in

the new NCM subgraph is set to the fitness of X, i.e. f(X). Otherwise, a sufficiently

large fitness value Ψ (= 50) is set to f(X) for an infeasible solution; If X is the first

feasible individual, we record the PV from which X is created, and launch the PV

restart scheme by setting counter = 0 in step 10. The restart scheme is triggered

when no better individual appears within gc generations, as shown in step 11. In

step 12, we update the elite individual Xe if the new X is better than Xe. Then, the

PV is shifted towards Xe in step 13.

The procedure terminates subject to two conditions: (1) a feasible NCM

subgraph without coding is obtained, or (2) the algorithm reaches a pre-defined

number of generations.

14

5. Performance Evaluation

We first investigate the effects of the three extensions in cGA, i.e. the use of

an all-one vector, the PV restart scheme and the local search operator.

Experiments have been firstly conducted on two directed networks, i.e. 3-copies

and 20-nodes, before an overall evaluation of the algorithm on eleven more

multicast scenarios. Similar to the structures of n-copies in [11], our n-copies

networks are generated based on the network shown in Fig.8(a) by cascading n

copies of it, where each sink of the upper copy is a source of the lower copy. The

n-copies network has n + 1 sinks, to which the maximum data transmission rate

from the source is 2. Fig.8 shows the original network and the 3-copies network

with source s and sinks t1, t2, t3 and t4. On the other hand, the 20-node network

(with 20 nodes, 37 links and 5 sinks) is randomly created, where the data rate is

set to 3. The increment of each winning allele is set to 0.05 in the cGAs which

mimics the performance of sGA with a population size of 20 (= 1/0.05). All

experimental results are collected by running each algorithm 50 times.

Insert Fig.8 somewhere here.

5.1 The Effect of the All-one Vector

As mentioned above, the all-one vector not only enables the cGA to begin

with a feasible individual but also adjusts the PV to produce feasible individuals

with increasingly higher probabilities. In order to evaluate the performance of the

all-one vector, we compare the following three variants of the cGA on the 3-

copies and 20-node networks:

− cGA: the cGA introduced in [23] (see section 3).

− cGA-(E): cGA with persistent elitism scheme in [29].

− cGA-(E,A1): cGA-(E) with the use of the all-one vector (see section 4.2).

We compare the above algorithms on the following four evaluation criteria:

− The evolution of the average fitness. The termination condition here is a

pre-defined number of generations, i.e. algorithms stop after 300 generations.

− The successful ratio of finding a coding-free (i.e. with no coding) NCM

subgraph in 50 runs. Note that the definition of the successful ratio in our

experiments is different from that in [11]. In [11], the authors are concerned with

the successful ratio of finding a feasible NCM subgraph in a number of runs.

15

− The average best fitness over 50 runs and the standard deviation.

− The average termination generation over 50 runs. The termination

condition here is a coding-free NCM subgraph has been found or the algorithms

have reached 300 generations.

Fig.9 shows the comparisons of the three algorithms in terms of the average

fitness during the evolution. Compared with cGA-(E) and cGA-(E,A1), cGA has

the worst performance on both networks. In the 3-copies network, cGA has almost

no evolution. In the 20-node network, the convergence can hardly be observed

before the 200-th generation. cGA-(E) performs better than cGA on both

networks, which once again demonstrates the effectiveness of the persistent elitist

scheme over the traditional tournament scheme [29]. With the use of the all-one

vector, cGA-(E,A1) performs the best as shown by the significantly improved

convergence speed. For example, cGA-(E,A1) converges to a stable state at

around the 150-th generation for the 3-copies network and the 200-th generation

for the 20-node network, respectively. This is because, with more feasible

solutions quickly generated from the all-one vector, cGA-(E,A1) is able to

converge much faster to better solutions.

Insert Fig.9 somewhere here.

Experimental results of different algorithm evaluation criteria for each

algorithm are presented in Table 1. Similarly, we found that cGA-(E,A1) has the

best performance with the highest successful ratio, and the smallest average best

fitness, standard deviation and average termination generation. Besides, the

performance of cGA-(E,A1) is significantly improved, i.e. 86% successful ratio

by cGA-(E,A1) compared to 24% by cGA-(E) and only 6% by cGA. The obtained

results clearly show that the all-one vector does improve the optimization

performance of cGA.

Insert Table 1 somewhere here.

5.2 The Effect of the PV Restart Scheme

To illustrate the effectiveness of the PV restart scheme, we compare the

following two variants of algorithms on the 3-copies and 20-node networks:

− cGA-(E,A1)

− cGA-(E,A1,R): cGA-(E,A1) with the PV restart scheme.

16

We investigate the effect of the pre-defined number of consecutive

generations in the PV restart scheme, i.e. gc, upon the performance of the cGA

(see section 4.3). The successful ratio and average termination generation of cGA-

(E,A1,R) have been obtained with gc set to 5, 10, 15, …, 295, and 300,

respectively (increment of 5 generations). For comparison purposes, we also

collect the successful ratio and average termination generation of cGA-(E,A1), by

running it 50 times. The successful ratio and average termination generation are

84% and 82.7 for the 3-copies network, and 66% and 139.3 for the 20-node

network, respectively.

Fig.10 shows the successful ratios obtained by cGA-(E,A1,R) with different

gc. With the incensement of gc, the successful ratio of cGA-(E,A1,R) firstly

increases, and then falls down. For both networks, the successful ratios of cGA-

(E,A1,R) are better in most cases than that of cGA-(E,A1), e.g. from gc = 5 to gc =

250 on the 3-copies network and from gc = 10 to gc = 200 on the 20-node network.

We can conclude that gc, when properly set, contributes to a better successful ratio

of cGA-(E,A1,R).

Insert Fig.10 somewhere here.

Fig.11 illustrates the average termination generations achieved on the two

networks. We can hardly find a clear relationship between the average termination

generations and gc. However, we can see that the average termination generations

in the first half of the range of gc are more likely to be better than the average

termination generations obtained by cGA-(E,A1). Once again, this shows that gc

when properly set helps to improve the optimization performance of cGA-

(E,A1,R).

Insert Fig.11 somewhere here.

We can also find that with gc = 50, the successful ratios and average

termination generations obtained by cGA-(E,A1,R) all perform better than those

obtained by cGA-(E,A1). In the following experiments, we set gc = 50 in the PV

restart scheme.

5.3 The Effect of the Local Search Operator

As analyzed before, the all-one vector and the PV restart scheme both show

to be effective for solving the two testing problems, i.e. the 3-copies and 20-node

networks. Besides, the PV restart scheme further improves the performance of

17

cGA-(E,A1). In this subsection, we evaluate the effect of the L-operator and

verify whether the advantages of the three improvements can be cascaded, by

running the following three variants of cGA in the 3-copies and 20-node

networks:

− cGA-(E,A1)

− cGA-(E,A1,R)

− cGA-(E,A1,R,L): cGA-(E,A1,R) with the L-operator.

Table 2 shows the experimental results of the three algorithms. We find that

cGA-(E,A1,R,L) performs the best, obtaining the highest successful ratio and the

smallest average best fitness and average termination generation. The second best

algorithm is cGA-(E,A1,R). Clearly, the L-operator improves the performance of

cGA-(E,A1,R). In addition, the most significant improvement is the outstandingly

reduced average termination generation from cGA-(E,A1,R,L). Note that the

average termination generation of cGA-(E,A1,R,L) is zero on the 3-copies

network, meaning a coding-free NCM subgraph can be found at the initialization

of the algorithm with the L-operator.

Insert Table 2 somewhere here.

5.4 The Overall Performance Analysis

In order to thoroughly analyze the overall performance of the proposed

algorithms, we compare the following algorithms in terms of the above same

evaluation criteria and the average computational time:

− QEA: the quantum-inspired evolutionary algorithm proposed in [8] for

coding resource optimization problem. Based on the standard QEA, this QEA is

featured with the multi-granularity evolution mechanism, the adaptive quantum

mutation operation and the penalty-function-based fitness function. Besides, it

adopts the BLS genotype encoding.

− sGA-1: the simple genetic algorithm with the block transmission state

(BTS) encoding and operators presented in [11]. A greedy sweep operator is

employed after the evolution to improve the quality of the best individual found.

− sGA-2: the other simple genetic algorithm with BLS encoding and

operators in [11]. The same greedy sweep operator is adopted.

− cGA-1: cGA-(E,A1)

− cGA-2: cGA-(E,A1,R)

18

− cGA-3: cGA-(E,A1,R,L)

Note that the above cGAs are also based on BLS encoding (see section 4.5).

The population sizes for the QEA, sGA-1 and sGA-2 are all set to 20. For

parameter settings on the calculations of the rotation angle and mutation

probabilities in QEA, please refer to [8] for more details. The crossover

probability, tournament size and mutation probability are set to 0.8, 12, and 0.012

for sGA-1, and 0.8, 4, and 0.01 for sGA-2, respectively. Experiments have been

carried out upon three fixed and eight randomly-generated directed networks. To

ensure a fair comparison, QEA, sGA-1 and sGA-2 have been re-implemented on

the same machine and evaluated on the same 11 network scenarios. Table 3 shows

the experimental networks and parameter setup. All experiments have been run on

a Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G

RAM. The results achieved by each algorithm are averaged over 50 runs.

Insert Table 3 somewhere here.

Table 4 compares the six algorithms with respect to the successful ratio.

Obviously, cGA-3 is the best algorithm, achieving 100% successful ratio in

almost every scenario except Random-5 and Random-6 where cGA-3 also

achieves the highest successful ratios, i.e. 98% and 96% respectively. This

demonstrates that the three extensions to a large extent strengthen the global

exploration and local exploitation of cGA-3. sGA-1 performs the second best.

Apart from the Random-5, Random-7 and Random-8 networks, the successful

ratios obtained by sGA-1 are at least not worse and usually higher than those

obtained by the other four algorithms. Without the local search operator, cGA-2

shows to be weak on local exploitation, however, is still able to obtain decent

results compared with sGA-2.

Insert Table 4 somewhere here.

Experimental results of the average best fitness and standard deviation for

each algorithm are shown in Table 5. Obviously, cGA-3 outperforms all the other

algorithms while cGA-1 and cGA-2 cannot see outstanding advantage when they

are compared with QEA, sGA-1 and sGA2. The results also show that the three

extensions significantly improve the optimization performance of cGA.

Insert Table 5 somewhere here.

19

Table 6 illustrates the comparisons of the average termination generation

obtained by each algorithm. It is easy to identify that cGA-3 performs

outstandingly better than other algorithms, terminating in the initial generation in

five networks and in a significantly reduced number of generations in the other

networks. As mentioned in section 5.3, cGA-3 also terminates in the initial

generation on the 3-copies network. Note that termination in the initial generation

occurs only when a coding-free NCM subgraph is found in the initialization of

cGA-3. This phenomenon shows that combining the L-operator with the all-one

vector is particularly effective to solve n-copies networks and Random-1 and

Random-4 network problems.

Insert Table 6 somewhere here.

The computational time is of vital importance in evaluating an algorithm.

Table 7 illustrates that cGA-3 spends less time than QEA, sGA-1 and sGA-2 on

all networks concerned and sometimes the time reduction can be substantial. For

example, in the case of the 31-copies network, the average computational time of

cGA-3 is around 30 sec, which is significantly shorter than 3993 sec by QEA and

2406 sec by sGA-1. This demonstrates that, integrated with intelligent schemes,

our proposed cGA consumes less computational time while obtaining better

solutions compared with the existing algorithms. The reason for cGA-3

consuming less computational time is that the number of fitness evaluations is far

reduced in each elitism-based cGA as it only produces one individual at each

generation. Although more time may be spent on the local search procedure, the

high quality solutions found by the L-operator and the less number of fitness

evaluations can well compromise and lead to less computational expenses.

Insert Table 7 somewhere here.

In summary, with regard to the successful ratio, the average best fitness and

standard deviation, the average termination generation and the average

computational time, cGA with the three improvement schemes outperforms all

other algorithms being compared.

6. Conclusion and Future Work

In this paper, we investigated an elitist compact genetic algorithm (cGA)

with three improvements for the coding resource minimization problem in

20

network coding multicast. The first improvement is to set the initial elite

individual as an all-one vector in the initialization, which not only makes sure that

cGA starts with a feasible individual but also gradually tunes the probability

vector (PV) so that feasible individuals appear with increasingly higher

probabilities. The second improvement is to reset the PV during the evolution as a

previously recorded value so as to improve the global exploration capability of the

cGA. The third one is a local search operator that exploits the neighbors of the

network coding based multicast subgraph of each feasible individual to improve

the solution quality of the cGA. The three improvements, when employed

together, significantly improve the performance of our proposed cGA.

Furthermore, the proposed cGA is easy to implement, consumes less

computational expenses and memory resources compared with standard

evolutionary algorithms. This is important as the lower average computational

time by cGA may offer a possibility of applying the proposed algorithm to real-

time and dynamic communications networks where computational time is crucial.

Our experiments have demonstrated the efficiency of the PV restart scheme,

and showed that the parameter gc needs to be set properly. In this paper, we

empirically determined the fixed values of gc. In our future work, we will

investigate how to extend our algorithm so that it can adaptively determine gc for

different given network problems. Besides, the experimental results also showed

that our proposed cGA is more effective on n-copies networks and two of the

specific random network problems concerned. This raises an interesting research

direction to further investigate features of specific network topologies to improve

the local search procedure in our evolutionary algorithms.

Acknowledgment

This work was supported in part by China Scholarship Council, China, and The University of

Nottingham, UK.

References

[1] Ahlswede R, Cai N, Li SYR and Yeung RW (2000) Network information flow. IEEE T

INFORM THEORY 46(4):1204-1216.

[2] Li SYR, Yeung RW, and Cai N (2003) Linear network coding. IEEE T INFORM THEORY

49(2):371-381.

[3] Koetter R and Médard M (2003) An algebraic approach to network coding. IEEE ACM T

NETWORK 11(5): 782-795.

21

[4] Wu Y, Chou PA, and Kung SY (2005) Minimum-energy multicast in mobile ad hoc

networks using network coding. IEEE T COMMUN 53(11): 1906-1918.

[5] Chou PA and Wu Y (2007) Network coding for the internet and wireless networks. IEEE

SIGNAL PROC MAG 24(5): 77-85.

[6] Cai N and Yeung RW (2002) Secure network coding. In: Proceedings of IEEE International

Symposium on Information Theory (ISIT’02).

[7] Kamal AE (2006) 1+N protection in optical mesh networks using network coding on p-

cycles. In: Proceedings of IEEE Globecom, San Francisco.

[8] Xing H, Ji Y, Bai L, and Sun Y (2010) An improved quantum-inspired evolutionary

algorithm for coding resource optimization based network coding multicast scheme. AEU-

INT J ELECTRON C 64(12): 1105-1113.

[9] Kim M, Ahn CW, Médard M, and Effros M (2006) On minimizing network coding

resources: An evolutionary approach. In: Proceedings of Second Workshop on Network

Coding, Theory, and Applications (NetCod2006), Boston.

[10] Kim M, Médard M, Aggarwal V, Reilly VO, Kim W, Ahn CW, and Effros M (2007)

Evolutionary approaches to minimizing network coding resources. In: Proceedings of 26th

IEEE International Conference on Computer Communications (INFOCOM2007),

Anchorage, pp 1991-1999.

[11] Kim M, Aggarwal V, Reilly VO, Médard M, and Kim W (2007) Genetic representations for

evolutionary optimization of network coding. In: Proceedings of EvoWorkshops 2007, LNCS

4448, Valencia, pp 21-31.

[12] Langberg M, Sprintson A, and Bruck J (2006) The encoding complexity of network coding.

IEEE T INFORM THEORY 52(6): 2386-2397.

[13] Oliveira CAS and Pardalos PM (2005) A Survey of Combinatorial Optimization Problems in

Multicast Routing. COMPUT OPER RES 32(8): 1953-1981.

[14] Yeo CK, Lee BS, and Er MH (2004) A survey of application level multicast techniques.

COMPUT COMMUN 27: 1547-1568.

[15] Xu Y and Qu R (2010) A hybrid scatter search meta-heuristic for delay-constrained multicast

routing problems. APPL INTELL. doi: 10.1007/s10489-010-0256-x.

[16] Araújo AFR and Garrozi C (2010) MulRoGA: a multicast routing genetic algorithm approach

considering multiple objectives. APPL INTELL 32: 330-345. doi: 10.1007/s10489-008-

0148-5.

[17] Kim SJ and Choi MK (2007) Evolutionary algorithms for route selection and rate allocation

in multirate multicast networks. APPL INTELL 27: 197-215. doi. 10.1007/s10489-006-0014-

2.

[18] Fragouli C and Soljanin E (2006) Information flow decomposition for network coding. IEEE

T INFORM THEORY 52(3): 829-848.

[19] Xing H and Qu R (2011) A population based incremental learning for delay constrained

network coding resource minimization. In: Proceedings of EvoApplications 2011, Torino,

Italy, pp 51-60.

22

[20] Pelikan M, Goldberg DE, and Lobo FG (2002) A survey of optimization by building and

using probabilistic models. COMPUT OPTIM APPL 21: 5-20.

[21] Baluja S and Simon D (1998) Evolution-based methods for selecting point data for object

localization: applications to computer-assisted surgery. APPL INTELL 8: 7-19.

[22] Sukthankar R, Baluja S, and Hancock J (1998) Multiple adaptive agents for tactical driving.

APPL INTELL 9: 7-23.

[23] Harik GR, Lobo FG, and Goldberg DE (1999) The compact genetic algorithm. IEEE T

EVOLUT COMPUT 3(4): 287-297.

[24] Gallagher JC, Vigraham S, and Kramer G (2004) A family of compact genetic algorithms for

intrinsic evolvable hardware. IEEE T EVOLUT COMPUT 8(2): 111-126.

[25] Aporntewan C and Chongstitvatana P (2001) A hardware implementation of the compact

genetic algorithm. In: Proceedings of IEEE Congress Evolutionary Computation pp 624-629.

[26] Hidalgo JI, Baraglia R, Perego R, Lanchares J, and Tirado F (2001) A parallel compact

genetic algorithm for multi-FPGA partitioning. In: Proceedings of the 9
th

 Workshop on

Parallel and Distributed Processing, Mantova, pp 113-120.

[27] Silva RR, Lopes HS, and Erig Lima CR (2008) A compact genetic algorithm with elitism and

mutation applied to image recognition. In: Proceedings of the 4
th

 International Conference on

Intelligent Computing (ICIC’08) pp 1109-1116.

[28] Lin SF, Chang JW, and Hsu YC (2010) A self-organization mining based hybrid evolution

learning for TSK-type fuzzy model design. APPL INTELL. doi: 10.1007/s10489-010-0271-

y.

[29] Ahn CW and Ramakrishna RS (2003) Elitism-based compact genetic algorithm. IEEE T

EVOLUT COMPUT 7(4): 367-385.

[30] Goldberg AV (1985) A new max-flow algorithm. MIT Technical Report MIT/LCS/TM-291,

Laboratory for Computer Science.

[31] Yang S and Yao X (2008) Population-based incremental learning with associative memory

for dynamic environments. IEEE T EVOLUT COMPUT 12(5): 542-561.

[32] Yang S and Yao X (2005) Experimental study on population-based incremental learning

algorithms for dynamic optimization problems. SOFT COMPUT 9(11): 815-834.List of Tables

Table 1 Experimental results of the three algorithms.

Table 2 Experimental results of the three algorithms.

Table 3 Experimental networks and parameter setup.

Table 4 Comparisons of successful ratio (%).

Table 5 Comparisons of average best fitness (standard deviation).

Table 6 Comparisons of average termination generation.

Table 7 Comparisons of average computational time (sec.).

List of Figures

Fig.1 Traditional routing vs. network coding [8]. (a) The example network. (b) Traditional routing

scheme. (c) Network coding scheme.

23

Fig.2 Two different network-coding-based data transmission schemes. (a) Scheme A with two

coding nodes. (b) Scheme B with only one coding node.

Fig.3 An example of the NCM subgraph and the paths that make up of it.

Fig.4 Procedure of the standard cGA.

Fig.5 The different steps in pe-cGA [19] compared with the standard cGA in Fig. 4.

Fig.6 An example of the graph decomposition and local search procedure.

Fig.7 Procedure of the proposed cGA.

Fig.8 An example of the n-copies network. (a) the original network (b) the 3-copies network.

Fig.9 Average fitness vs. generations in variants of cGA. (a) the 3-copies network (b) the 20-node

network.

Fig.10 Successful ratio vs. gc in variants of cGA. (a) the 3-copies network (b) the 20-node

network.

Fig.11 Average termination generation vs. gc in variants of cGA. (a) the 3-copies network (b) the

20-node network.

24

Table 1 Experimental results of the three algorithms

Scenarios Criteria cGA cGA-(E) cGA-(E,A1)

3-copies s.r. (%) 6 24 86

a.b.f(s.d.) 40.24(19.72) 28.20(24.84) 0.14(0.35)

a.t.g. 292.16 264.66 78.78

20-node s.r.(%) 6 38 78

a.b.f.(s.d.) 20.82(24.08) 8.58(18.27) 0.22(0.41)

a.t.g. 283.94 243.20 111.86

Note: s.r.: successful ratio; a.t.g.: average termination generation; a.b.f.: average best fitness; s.d.:

standard deviation.

Table 2 Experimental results of the three algorithms

Scenarios Criteria cGA-(E,A1) cGA-(E,A1,R) cGA-(E,A1,R,L)

3-copies s.r.(%) 92 100 100

a.b.f.(s.d.) 0.08(0.27) 0.00(0.00) 0.00(0.00)

a.t.g. 64.90 53.2 0

20-node s.r.(%) 70 92 100

a.b.f.(s.d.) 0.30(0.46) 0.08(0.27) 0.00(0.00)

a.t.g. 134.16 112.56 23.20

Note: s.r.: successful ratio; a.t.g.: average termination generation; a.b.f.: average best fitness; s.d.:

standard deviation.

Table 3 Experimental networks and parameter setup

Multicast Scenario Description Parameters

name nodes links sinks rate LI DTG

7-copies 57 84 8 2 80 500

15-copies 121 180 16 2 176 500

31-copies 249 372 32 2 368 1000

Random-1 30 60 6 3 86 500

Random-2 30 69 6 3 112 500

Random-3 40 78 9 3 106 500

Random-4 40 85 9 4 64 500

Random-5 50 101 8 3 145 500

Random-6 50 118 10 4 189 500

Random-7 60 150 11 5 235 1000

Random-8 60 156 10 4 297 1000

Note: LI: the length of an individual; DTG: the defined termination generation.

25

Table 4 Comparisons of successful ratio (%)

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3

7-copies 45 96 80 42 100 100

15-copies 0 50 0 0 4 100

31-copies 0 0 0 0 0 100

Random-1 100 100 98 94 100 100

Random-2 100 100 100 100 100 100

Random-3 66 70 50 24 68 100

Random-4 100 100 100 100 100 100

Random-5 46 40 56 14 26 98

Random-6 42 32 16 18 30 96

Random-7 25 60 6 2 14 100

Random-8 84 60 14 14 80 100

Table 5 Comparisons of average best fitness (standard deviation)

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3

7-copies 0.95(1.09) 0.04(0.19) 0.70(1.83) 0.82(0.87) 0.00(0.00) 0.00(0.00)

15-copies 10.2(7.09) 0.60(0.68) 4.55(3.85) 5.46(1.85) 2.42(1.23) 0.00(0.00)

31-copies 18.8(5.35) 3.85(1.13) 22.5(6.36) 17.64(2.68) 7.60(2.39) 0.00(0.00)

Random-1 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.06(0.23) 0.00(0.00) 0.00(0.00)

Random-2 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Random-3 0.32(0.47) 0.30(0.47) 0.50(0.51) 1.10(0.76) 0.32(0.47) 0.00(0.00)

Random-4 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Random-5 0.55(0.51) 0.64(0.48) 0.50(0.51) 1.04(0.56) 0.74(0.44) 0.02(0.14)

Random-6 0.60(0.59) 0.94(0.84) 1.15(0.74) 1.34(0.93) 0.94(0.73) 0.04(0.19)

Random-7 1.50(1.23) 0.35(0.48) 1.00(0.32) 2.22(0.95) 1.48(0.93) 0.00(0.00)

Random-8 0.16(0.37) 0.35(0.48) 0.90(0.44) 1.24(0.74) 0.20(0.40) 0.00(0.00)

Table 6 Comparisons of average termination generation

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3

7-copies 301.2 228.3 289.6 328.9 233.6 0.0

15-copies 500.0 458.2 500.0 500.0 497.5 0.0

31-copies 1000.0 1000.0 1000.0 1000.0 1000.0 0.0

Random-1 9.7 85.3 66.7 60.5 33.7 0.0

Random-2 6.5 44.7 51.5 34.0 46.2 19.5

Random-3 225.0 338.6 398.1 405.4 309.8 72.2

Random-4 7.4 36.8 32.0 29.0 32.0 0.0

Random-5 349.4 393.3 355.6 443.3 420.6 152.34

Random-6 338.6 436.4 457.7 435.4 425.6 136.3

Random-7 832.2 755.0 989.9 982.5 924.1 183.2

Random-8 300.5 753.1 891.5 875.9 507.4 114.1

26

Table 7 Comparisons of average computational time (sec.)

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3

7-copies 25.15 16.82 14.14 3.06 1.38 0.11

15-copies 195.57 158.24 112.68 23.03 16.28 2.04

31-copies 3903.5 2406.2 436.85 399.05 269.71 28.32

Random-1 0.51 6.22 3.40 0.35 0.10 0.06

Random-2 0.62 3.25 2.26 0.15 0.15 0.16

Random-3 27.97 31.74 31.55 5.17 2.56 3.60

Random-4 0.68 3.37 2.58 0.09 0.11 0.04

Random-5 56.73 57.69 41.72 7.39 4.64 9.33

Random-6 75.20 78.14 63.83 10.77 8.14 16.90

Random-7 292.28 225.32 272.79 43.05 36.61 46.00

Random-8 120.90 229.32 224.23 37.83 14.35 22.83

27

Fig.1 Traditional routing vs. network coding [8]. (a) The example network. (b) Traditional routing

scheme. (c) Network coding scheme.

Fig.2 Two different network-coding-based data transmission schemes. (a) Scheme A with two

coding nodes. (b) Scheme B with only one coding node.

Fig.3 An example of the NCM subgraph and the paths that make up of it.

28

Standard cGA

1) Initialization

2) Set t := 0;

3) for i = 1 to L do Pi
t := 0.5

4) repeat

5) Set t := t + 1;

6) // Generate two individuals from the PV

Xa := generate (P(t)); Xb := generate (P(t));

7) // Let Xa and Xb compete

winner, loser := compete (Xa, Xb);

8) // The PV learns towards the winner

for i = 1 to L do

if winner(i) <> loser(i) then

if winner(i) == 1 then Pi
t := Pi

t + 1/N;

else Pi
t := Pi

t – 1/N;

9) until the PV has converged

10) Output the converged PV as the final solution

Fig.4 Procedure of the standard cGA.

6) // Generate one individual from the PV

 if t == 1 then

 Xe := generate (P(t)); // initialize the elite individual

 Xnew := generate (P(t)); // generate a new individual

7) // Xe and Xnew compete and the winner inherits

 winner, loser := compete (Xe, Xnew);

 Xe := winner; // update the elite individual

Fig.5 The different steps in pe-cGA [19] compared with the standard cGA in Fig. 4.

29

Fig.6 An example of the graph decomposition and local search procedure.

30

1) Initialization

2) Set t := 0; counter := −1; // see section IV.C

3) for i = 1 to L do Pi
t := 0.5 // initialize PV

4) // Initialize the elite individual with an all-one vector

Xe := 11…1; // see section IV.B

5) // Evaluate the elite individual

f(Xe) := evaluate (Xe); // see section IV.D

6) repeat

7) Set t := t + 1;

8) // Generate one individual from the PV

 X := generate (P(t)); // X is sampled from P(t)

9) // Evaluate the individual

f(X) := evaluate (X); // see section IV.D

10) // Record the PV for the restart scheme

if X is the first feasible individual then

counter := 0; PVrecord := P(t); // see section IV.C

11) // The PV restart scheme

if f(Xe) ≤ f(X) && counter ≥ 0 then

counter := counter + 1;

if counter == gc then

P(t) := PVrecord; counter = 0; // see section IV.C

12) // Record better individuals

if f(Xe) > f(X) then

Xe := X; f(Xe) := f(X);

if counter > 0 then

counter := 0;

13) // The PV learns towards the elite individual

for i = 1 to L do

if Xe(i) <> X(i) then

if Xe(i) == 1 then Pi
t := Pi

t + 1/N;

else Pi
t := Pi

t – 1/N;

14) until the termination condition is met

Fig.7 Procedure of the proposed cGA.

Fig.8 An example of the n-copies network. (a) the original network (b) the 3-copies network.

31

 (a)

 (b)

Fig.9 Average fitness vs. generations in variants of cGA. (a) the 3-copies network (b) the 20-node

network.

32

 (a)

 (b)

Fig.10 Successful ratio vs. gc in variants of cGA. (a) the 3-copies network (b) the 20-node

network.

33

 (a)

 (b)

Fig.11 Average termination generation vs. gc in variants of cGA. (a) the 3-copies network (b) the

20-node network.

