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Abstract In this paper, a Mixed-Shift Vehicle Routing Problem is proposed
based on a real-life container transportation problem. In a long planning hori-
zon of multiple shifts, transport tasks are completed satisfying the time con-
straints. Due to the different travel distance and time of tasks, there are two
types of shifts (long shift and short shift) in this problem. The unit driver cost
for long shifts is higher than that of short shifts. A mathematical model of this
Mixed-Shift Vehicle Routing Problem with Time Windows (MS-VRPTW) is
established in this paper, with two objectives of minimizing the total driver
payment and the total travel distance.

Due to the large scale and nonlinear constraints, exact search showed not
suitable to MS-VRPTW. An initial solution construction heuristic (EBIH) and
a selective perturbation Hyper-Heuristic (GIHH) are thus developed. In GTHH,
five heuristics with different extents of perturbation at the low level are adap-
tively selected by a high level selection scheme with Hill Climbing acceptance
criterion. Two guidance indicators are devised at the high level to adaptively
adjust the selection of the low level heuristics for this multi-objective prob-
lem. The two indicators estimate the objective value improvement and the
improvement direction over the Pareto Front, respectively.
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To evaluate the generality of the proposed algorithms, a set of benchmark
instances with various features is extracted from real-life historical dataset.
The experiment results show that GIHH significantly improves the quality of
the final Pareto Solution Set, outperforming the state-of-the-art algorithms for
similar problems. Its application on VRPTW also obtains promising results.

Keywords Hyper-Heuristic - Mixed-Shift Vehicle Routing Problem with
Time Windows - Bi-Objective - Container Transportation

1 Introduction

Vehicle Routing Problem (VRP), whose early research can be traced back to
[1], is an essential issue with tremendous effect to the economy and society. In
the classical Vehicle Routing Problem with Time Windows (VRPTW) [2], at
the beginning of a planning horizon, a fleet of identical vehicles leave a center
depot to visit/service a sequence of customers with demands, composing a
number of so-called routes. Every customer is visited exactly once, satisfying
the constraints (time window) specified by customers. The sum of customer
demands on each route cannot exceed the capacity of a vehicle, and all vehicles
have to return the depot before the end of the planning horizon. The most
common objectives in VRPTW are minimization of the number of vehicles
used and minimization of the total travel distance.

1.1 Vehicle Routing Problem Variants

Based on the VRPTW model, a large number of classic VRP variants were
proposed with diverse side constraints from practical scenarios. In this section,
only the variants most relevant to our study are reviewed. In Vehicle Routing
Problem with Pickups and Deliveries (VRPPD) [3], a service demand consists
of picking up shipments from a customer and the associated delivery to another
customer. Especially, if the depot is the only one pickup point and all the
customers are delivery destinations, or in another case, all the customers are
pickup points while only the depot is the delivery location, the problem is
called a One-to-Many-to-One problem. If the customers are pickup points as
well as delivery points, the problem is Many-to-Many. Last but not least, it
is a One-to-One problem when the pickup demand of a customer is another
specific customer’s delivery demand [4].

Furthermore, if the shipments can be consolidated, the problem would be
classified as Less-than Truckload Transportation; otherwise, it is a Full Truck-
load Transportation (FTT) problem [5]. Container transportation problem is
a specific variant of FTT, where one truck can carry only one demand item
(container). Zhang et al. [6] model the container transportation problem with
a node-based network, which is commonly used in VRPTW. The model in-
tegrates all activities of completing the transportation of a container into a
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so-called load node. This method has been widely used in the VRPPD with
high loading and unloading time [7, 8].

In some cases of VRP, the scheduling horizon is very long, e.g. in soft drink
industry, grocery distribution and waste collection. Their scheduling is usually
performed over multiple periods/shifts, and the associated problems are cat-
egorized as Multi-Period Vehicle Routing Problem (MPVRP) [9]. Especially,
when there is a specific service frequency to each customer over the scheduling
horizon, the problem is called a Periodic Vehicle Routing Problem (PVRP)
[10]. In this case, each customer may be visited more than once. The solu-
tion of PVRP is a combination of service shifts of customers, instead of the
scheduled routes of one single period.

Apart from the two objectives in VRPTW mentioned above, there are var-
ious other objectives widely used in VRPs, e.g. minimizing the travel time,
the waiting time, and other operational cost, maximizing the balance of work-
load and so on [11]. With the increasing concern to the environment in recent
years, the carbon emission and petrol consumption have also been considered
in the VRP community, leading to the Pollution-Routing Problem and Green
Vehicle Routing Problem [12]. From the cost perspective, labor cost (driver
salary) usually is the dominated component in the overall cost [13]. This is
one of the reasons why minimizing the number of vehicles used is a primary
objective in VRPs, as fewer vehicles require fewer drivers being hired. In addi-
tion, making use of fewer vehicles generally implies a lower fuel consumption
and a higher utilization rate of the vehicle capacity. When there are more than
one objective are considered in a VRP, it is called a Multi-Objective Vehicle
Routing Problem (MOVRP).

1.2 Existing Methods

After decades of study in VRP, both exact and approximate methods have
been extensively investigated. Exact methods explore the solution space of
a problem extensively to find the optimal solution. However, a critical issue
of such methods is the unrealistic computational time needed searching the
enormous size of the solution space in real-world problems. On the other hand,
approximate methods (or heuristics) do not guarantee the optimality of solu-
tions produced, but generate a good approximation of the optimal solution
in an acceptable computation time [14]. Metaheuristics and Hyper-Heuristics
methods guide the search with various strategies, showing powerful perfor-
mance in solving diverse large scale and complex VRPs [15].
Population-based metaheuristics, such as Evolutionary Algorithms, Scatter
Search, Ant Colony Optimization Algorithms, evolve a population of solutions
[14]. Using population improves the diversification of search, this type of meth-
ods show powerful exploration ability while achieve high quality solutions in
multi-objective and highly constrained problems. However, larger population
is hard to operate and may greatly effect algorithm performance. For example,
in Genetic Algorithm, which is a widely used population-based metaheuristic
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in VRPs, it is hard to use crossover to partition the periods and routes in
the solution representation (e.g. genotype/chromosome) for MPVRP. Besides,
in large size problems, the long chromosome and the associated large solution
population is hard to manage as well. Population-based metaheuristics are not
suitable to large scale problems with complex structures and constraints such
as the MPVRP considered in this paper.

Differently, in each iteration of single solution-based metaheuristics, only
one solution is updated by employing neighbourhood operators at each move
during the search. In different algorithms, such as Tabu search [16], Simulated
Annealing [17], Variable Neighbourhood Search [18], different strategies are
used in the Acceptance Criterion and Neighbourhood Operator Selection.

Metaheuristic algorithms are often designed to address specific problems
by striking a balance between the diversity and intensity of the search for the
specific problems. In the literature, a large number of problem specific and
knowledge intensive metaheuristics have been developed for VRPs [19, 20].
Differently, Hyper-Heuristics is a type of high level algorithms which aim to
develop generic approaches beyond the problem specific metaheuristics [21,
22]. Hyper-Heuristics work at a higher level to generate or select a set of
Low-Level Heuristics (LLH) in a common framework, while the LLH execute
the operations on problem solutions. Hyper-Heuristics focus on designing the
high level framework, called High-Level Heuristic (HLH), instead of searching
the specific solutions for the problem confronted. In a well-designed Hyper-
Heuristics algorithm, its HLH would adaptively adjusts the LLH used, creating
proper algorithms for various searching scenarios for the given instances.

Hyper-heuristics approaches can be categorized to two classes: Heuris-
tic Selection and Heuristic Generation [23]. Heuristic Selection consists of
methodologies choosing existing heuristics from the LLH pool to tackle the
problem given, while the methodologies of Heuristic Generation generate new
heuristics using existing heuristics as the components. What’s more, each
above class can be further divided into two subcategories Construction Heuris-
tic and Perturbation Heuristic according to the constructive or perturbative
low level heuristics used. Construction Heuristics construct solutions using the
given LLH, while Perturbation Heuristics produce new solutions by perturbing
existing solutions. More details can be found in [24, 25].

As a classic combinatorial optimization problem, VRP is an essential ap-
plication of hyper-heuristics. Garrido and Riff [26] propose an evolutionary
hyper-heuristic for Dynamic Vehicle Routing Problem (DVRP). Each geno-
type in this evolutionary algorithm consists of a constructive heuristic, an
improvement heuristic and an ordering heuristic. This generative construction
hyper-heuristic adapts well to the dynamic scenario in DVRP. Both hyper-
heuristics of [27] and [28] obtain competitive results in Capacitated Vehicle
Routing Problem (CVRP). The former generates LLH by searching the space
of heuristic component (i.e. neighbourhood structure, neighbourhood combi-
nation, local search configuration and acceptance criterion), while the latter
adjusts the order of LLH to perturb the current solution, incorporating an
adaptive ordering scheme in an Iterated Local Search framework. In [29], be-
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sides the selection of LLH, a Gene Expression Programming framework is also
proposed to automatically generate the acceptance criterion for different prob-
lem instances. The proposed method shows promising results in DVRP and
CVRP.

Vidal et al. [30] propose an unified hybrid genetic search framework (UHGS),
which replaces the mutation with a unified local search (ULS). In ULS, the
route-evaluation operators vary according to the change of problem attributes,
aiming to provide a general-purpose solver for diverse VRP variants. UHGS
produces results better than or close to the state-of-the-art results on bench-
marks. However, the experiment results show that its computation time sharply
increases in MPVRPs again due to the period and route partition problem as
explained above on genetic algorithms. The long computation time impedes
its application to large scale MPVRP.

Benefiting from decades of intensive research in VRP, a large number of
excellent heuristics have been developed, providing sufficient LLH for design-
ing high performance hyper-heuristics. Potvin and Rousseau [31] and Taillard
et al. [32] propose the 2-opt* and CROSS-exchange heuristics respectively
which show excellent performance in routing problems with time windows.
However, when facing large-scale problems with complex structure, they often
converge prematurely due to their relatively small change (low perturbation)
to a solution in each iteration, thus the search is often stuck to local optimum.

Shaw [33, 34] proposes the Large Neighbourhood Search (LNS) heuristic
which removes a number of nodes (e.g. demands/customers) from the current
solution and then reinserts them to generate an updated new solution (De-
stroy & Repair). This heuristic brings greater changes (higher perturbation)
to escape from local optimum and avoid premature convergence. It obtains
the best results in several VRP variants, although a larger computation time
is required in each iteration [35]. A similar strategy called Ruin & Recreate is
proposed in [36].

Nagata and Bréysy [37] propose the Guided Ejection Search (GES) heuris-
tic combining the ideas of LNS and Ejection Pool methods [38]. In each iter-
ation of GES, one route is removed and then the nodes of the removed route
are reinserted into the destroyed solution. Any infeasible partial solutions are
accepted with penalties. GES outperforms the existing heuristics on minimiz-
ing the number of routes, but longer computation time for each iteration is
needed. For more details, see [39, 40].

Much research on MOVRP have been done as well. In some of them, a
set of non-dominated solutions based on Pareto Dominance [41] are gener-
ated, providing the decision maker a pool of candidate solutions as a reference
(Pareto Methods). In the literature, the Pareto Methods are mainly used in
Evolutionary Algorithms [42, 43, 44, 45]. Differently, in the other research, one
single optimal solution is pursued. In this case, either the problem objectives
are projected into one single objective and the problem is solved as a single-
objective problem (Scalar Techniques), or different priorities are assigned to
objectives which are considered separately (Non-Scalar and Non-Pareto Algo-
rithms). More methodologies for MOVRP can be found in [46].
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In real-life, the vehicle scheduling of different types of shifts are usually
considered separately as independent problems. In this paper, a real-world
Mixed-Shift Vehicle Routing Problem with Time windows (MS-VRPTW) is
studied. A construction heuristic and a selection perturbation hyper-heuristic,
which combine the scheduling work of two types of shifts, are proposed for the
MS-VRPTW. The proposed algorithms integrate the independent resource for
the two types of shifts, aiming to increase the utility of vehicles and reduce
the scheduling stress for logistic companies. The algorithms are tested on a set
of benchmark instances with different features.

The rest of this paper is organized as follows: Section 2 introduces the
problem background and presents the mathematical problem model. Section
3 introduces the proposed solution methods. The benchmark instances and
computation experiments are presented in Section 4. Section 5 shows the con-
clusions of this paper.

2 Problem Definition & Mathematical Model
2.1 Problem Description

The problem studied is a container transportation problem faced by a logis-
tic company at Ningbo Port, which is the second largest port in China. Every
day, the company has to transship a number of commodities, each consists of a
number of containers. Every commodity has a specific service time constraint.
These commodities are transited among 19 container terminals including har-
bors and dry ports (see Fig. 1). There is a fleet of 250 trucks, whose depot
locates at the Ningbo coast. Every day, the trucks leave the depot with a list
of transport tasks and return to the depot after completing all the tasks.
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Fig. 1 The locations of 19 container terminals of the logistic company (screenshot taken
from Google Maps [47]). The balloon icons represent dry ports and the ball stick icons
represent harbors. The nine harbors locate along the coast of Ningbo City, while the 10 dry
ports are either inland or far from the Ningbo coast.
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The management of transportation involves three levels of planning, namely:
strategic planning, tactical planning, and operational planning [5]. Strategic
level management focuses on the decisions of the locations of facilities (e.g. the
locations of depots and fleets) while the key tactical issues are terminal opera-
tion specification, service selection and other mixed decision making. Strategic
planning and Tactical planning are the preconditions to transportation prob-
lems, and they are long-term and medium-term planning. The operational
planning focuses on the Vehicle Routing and Scheduling Problem, which is
the major issue of the Ningbo Port problem.

As one truck in the Ningbo Port can carry only one container at a time,
one container represents one transport task. Completing a transport task con-
sists of loading the container to the truck at the source terminal, transporting
the container from the source to the destination terminal and then unload-
ing the container over there. The well-known Planning Domain Description
Language (PDDL) is a complex descriptive system providing a standard and
flexible formalism for various AI planning domains including the VRPs [48].
It is supported by state-of-the-art planning methodologies, producing high
quality solutions in various planning problems. However, those methods have
not shown to perform effectively or efficiently in solving large size real-life
problems [49]. To simplify the problem model and make the prevailing neigh-
bourhood search heuristics applicable, the node-based method of [7], instead
of the PDDL, is employed for formulating the problem of this paper. A task
node integrates the three activities to represent the service of a transport task.
The service time of a task is the total time of the three activities.

From Fig. 1, we can find that the tasks associated with the dry ports
are long-distance task (LDT), while those transportation between harbors are
short-distance tasks (SDT). In the Ningbo Port, the service time of a SDT is
less than seven hours, and all the harbors can be reached in less than 2 hours
from the depot. On the other hand, because the service time of LDT and the
travel time between the dry port and the depot is quite long, the average time
of completing a LDT is longer than 13 hours. In some studies, the exact path
between two points is also considered, i.e. the problem of Path Planning [50].
Since the paths among the terminals and the depot are fixed by the company
in our problem, the drivers cannot change the fixed path when completing
a task or going to the next task. Vehicle routing considering path planning
presents an interesting and different integrated problem, thus is in the scope
of our future research.

The Ningbo Port company sets up two types of working shifts: short shift
and long shift. A short shift is 12 hours, meaning a day is divided into two short
shifts (day shift and night shift). In the day shift, drivers drive trucks away
from the depot, and drivers of the night shift return the trucks to the depot
after completing their works. The two drivers using the same truck (called
one-driver truck) have a shift-change in the middle of a day at a terminal.
Shift-change cannot happen within a task node, so the shift-change terminal is
either the last destination terminal of the day shift or the first source terminal
of the night shift. Differently, a long shift is 24 hours. In this case, two drivers
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are assigned to one single truck (double-driver truck) at the same time. With
this arrangement, the two drivers can drive the truck in turn, satisfying the
associated regulations on continuous working hours in Labor Law.

The two types of shifts are associated with two different driver salary
schemes, which lead to different overall operational cost to the company. In a
working day, two drivers are required for one truck of either type. The differ-
ence between the two types of trucks is that the two drivers of a one-driver
truck route separately work within their own short shifts, while both drivers
of a double-driver truck route have to stay in the truck during the whole long
shift. Correspondingly, the unit payment to the drivers of double-driver trucks
is higher for their longer shift length. SDT can be completed in a short shift us-
ing one-driver trucks, while LDT must be completed with double-driver trucks
in long shifts for the reason of long service time. When optimizing the assign-
ment of LDT and SDT, simultaneously considering both types of trucks can
reduce the overall number of trucks used, consequently minimizing the overall
total operational cost of driver payment.

The truck scheduling for both types of shifts are combined in this study.
Currently, the company handles LDT and SDT with two separate scheduling
systems, resulting to inefficient use of trucks and lots of task lateness in busy
seasons. This low efficiency of schedule is mainly caused by the two separate
scheduling systems which do not share the limited truck resource. In our study,
the two scheduling systems are integrated to increase the efficiency of the
scheduling and the utility of trucks. Artificial task which represents the driver
shift-change between two short shifts is thus proposed. The routes of a truck in
two consecutive short shifts are thus converted to one route in a long shift. To
the best of our knowledge, this is the first time the Mixed-Shift Vehicle Routing
Problem with Time Windows (MS-VRPTW) is proposed in the literature. In
the Ningbo Port, the trucks in the fleet are identical and can be appointed to
be either one-driver or double-driver according to the commodity situation.

An example schedule of a working day (with one long shift or two short
shifts) is presented in Fig. 2 to illustrate our proposed model. There are in
total eight routes, three for one-driver trucks and five for double-driver trucks.
We can see that, LDT (represented by rectangles) only appear in double-driver
truck routes, while SDT (solid circles) exist in both one-driver truck routes
and double-driver truck routes. The hollow circles in the top three routes are
artificial tasks.

The fourth route in Fig. 2 explains why the LDT require double-driver
trucks. Considering the travel time leaving and returning to the depot, com-
pleting a LDT takes more than 12 hours (maximum length of ashort shift).
In addition, if the distance between two LDT is small, more than one LDT
might be serviced in one double-driver route. For instance, in the last route,
as the destination of the first LDT is the source of the second LDT, the travel
distance and time between the two tasks is zero. In this case, the two LDTs
can be completed by one double-driver truck, leading to a more efficient use
of vehicles.
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Another special case of LDT is the rectangle in the seventh route. It repre-
sents a type of tasks which require short service time but can only be finished
in double-driver routes. Because their time windows are narrow (i.e. 3 hours in
this example) and across the middle of a working day, the shift-change between
short shifts cannot be done when completing this type of tasks. Therefore, this
type of tasks can only be assigned to double-driver trucks.

In different real-life scenarios, the shift lengths, the number of task types
and the number of shift types might be different from that of the Ningbo
Port problem. However, the method of using artificial task is still applicable,
which integrates the scheduling and routing with different shift settings into
one model. Therefore, the model of MS-VRPTW can cover various practical
cases from real scenarios.
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2.2 Mathematical Model

To define the MS-VRPTW, a number of notations are defined, see Table 1.

Table 1 Definition of Notations

Input Parameters:

The set of time-continuous working shifts. Here one shift is 24 hours

S (long shift).
P ={0,D} The set of truck types. O represents the truck used is a one-driver
’ truck, while D means it is a double-driver truck.
The operating cost of using a one-driver truck (P,) and that of
P,, Py a double-driver truck (Pg). They are mainly determined by the
payments to the drivers.
K The fleet size, which is the number of available trucks.
Ys, Zs] Time window of shift s € S.

N =1{0,1,2,...,n}

Set of n 4+ 1 nodes. Each node represents a task except node 0,
which is the depot.

[a;, bs]

The time window for node ¢ € N. The time window for the depot
is zero at the boundary of a shift. If a truck arrives at the source
of i early, it has to wait until a;.

A

Set of arcs. Each arc(,j) represents node j being immediately ser-
viced/visited after node i.

The cost of traveling from node ¢ to node j. If both nodes are tasks,
it is the travel distance from the destination of ¢ to the source of j.
Otherwise, it is the distance from the depot to the first source or
from the last destination to the depot. These travels are empty-load
with no container carried.

The travel time from node i to node j. When both nodes are tasks,
t;; is the travel time from the destination of ¢ to the source of j.
Otherwise, it is the travel time from the depot to the first source
or from the last destination to the depot.

l;

The time for servicing node ¢, which includes the loading time,
transportation time (from pick-up source to delivery destination)
and unloading time. The service time of the depot is zero.

Variables:

Artificial task set. Artificial tasks (w € W) can only be found in
one-driver routes, representing the shift-change (e.g. the hollow cir-
cles in Fig. 2). Artificial task’s service time (l,,) and loaded travel
distance are zero (i.e. its source and destination is the same ter-
minal). The source and destination of an artificial task must be
either the last destination of the day shift or the first source of the
night shift in that route. The time window of w is the mid-line of
workday, i.e. [aw, bw]=[8pm,8pm].

T;

The time of arrival at node i.

B;

The time to begin the service of node i.

sp
T

A binary decision variable for nodes i,7 € NUW, s € S, p € P.
Its value is 1 when arc(4,j) is included in the solution in shift s by
a truck type p, otherwise is 0.

K € {0,1,...,K}

An integer variable of the number of one-driver trucks used in shift
seS.

K3 €{0,1,.., K}

An integer variable of the number of double-driver trucks in shift
s€ES.
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The MS-OPVRPTW can be formally defined as follows.
Objective:

Minimize DP = Y (P,-K}+ Py - K}) (1)
ses
Minimize TD = Y > > > Cijr iy (2)
pEP s€SieNUW jENUW
Subject to:
X Y wmp=1 vje N\{0}  (3)
pEP s€SicWUN\{0}
SN > xfjp =1, Vi e N\{0} (4)
pEP s€S jeWUN\{0}
ol = >z, Vj € WUN\{0},s € S,pe)
i€EWUN\{0} fEWUN\{0}
K+ Ky <K, VseS (6)
K¢ Vs e S,p=0
> x3?={ 0 e (7)
jeNow K3 Vse S,p=2D
B K¢ Vse S,p=0
2 wi€={K? oo ®
iENUW D $E€SP=
YooY xay =Ky YweW,seS (9)
peEP jEN
> > e =K§ Ywe W,seS (10)
peEPiEN
> oaig =K VweW,seS (11)
JEN
> 20 = K§ YweW,seS (12)
iEN
5P =0, Yw,v e W,se€ S,;pe P (13)
Tj= > > ((Bi+li+tiy) aif + (Ys +tog) - 2g5), Vi€ N\{0} (14)
peEP s€S
B; =T + maz{a; — T},0}, V4 € N\{0} (15)
JCZO(Bz—Fl?,—Ft,Lo)Sx:gZé, Vie NUW,se S,pe P (16)
a; < B; <b; —1;, Vi € N\{O} (17)
z;7 € {0,1} Vi,je NUW,s€ S,pe P (18)
K§ €{0,1,...,K} Vs e S (19)
K$ €{0,1,..,K} Vs e S (20)

MS-VRPTW is a bi-objective problem. The first objective is minimizing
the total driver payment (DP), see equation (1), which is relevant to the
number and types of the trucks used. It is notable that, the cost of a driver
for double-driver truck is 1.5 times of a driver of one-driver truck in our study
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(i.e. P, = 1,P; = 1.5). Minimizing the total travel distance (TD) (eq. (2))
is the other objective. Actually, the target of TD is to minimize the empty-
load travel distance as the total loaded travel distance in an instance is fixed.
DP focuses on the operational cost, and TD concentrates on the utility of
trucks which actually pursues a higher heavy-loaded travel distance rate in
total travel distance.

Constraints (3) and (4) denote that every task node can be visited exactly
once and all the tasks must be visited. Constraint (5) specifies that a task may
only be serviced after the previous task is completed. Constraints (3) - (5)
together make sure arcs over more than one shift are unacceptable. Constraint
(6) guarantees the number of trucks used is not larger than the fleet size.

Constraints (7) and (8) place the limits on one-driver truck (p = O) and
double-driver truck (p = D). Constraints (9) - (12) guarantee that there must
be K¢ artificial tasks completed on the routes of one-driver trucks, while there
is no artificial task on the routes of double-driver trucks. In addition, constraint
(13) guarantees each route of one-driver truck has only one artificial task.

Equation (14) defines the arrival time at a task node. Equation (15) defines
the beginning time of servicing a task node. This time is calculated by the
arrival time plus the waiting time at the source of a task. Equations (14) and
(15) enforce the correct successive relationship between consecutive nodes.
Constraints (14) - (16) together define the time windows of shifts. Constraint
(17) represents the time constraint on each task. The domains of the decision
variables are presented in equations (18) - (20).

From this mixed integer programming (MIP) model, we can find that the
MS-VRPTW is a large-scale and tightly constrained non-linear problem. In
MS-VRPTW, the size of solution space is decided by the number of tasks
(n), the number of shifts (|S]) and the size of the fleet (K). Since there are
|S|- K possible routes in a solution, which are either one-drive or double-driver,
and each route has n! permutations of tasks, the size of the search space is
251K . pl. In real-life, a logistic company may face hundreds to thousands of
containers to be transmitted, leading to a highly complex problem with huge
solution space.

3 Solution Methodologies for Bi-Objective Mixed-Shift Vehicle
Routing Problem with Time Windows

3.1 Exact Search

In our study, exact search method is first implemented to address MS-VRPTW
using a successful and widely used optimization solver, CPLEX. To address
this bi-objective MIP problem with CPLEX, the objectives of the mathemat-
ical model has to be slightly modified since CPLEX is not a tool for multi-
objective models. To this end, three different configurations are employed to
linearly combine the two objectives into one, see formula (21). The configura-
tions represent three scenarios in the modified objective: 1) DP has the same
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weight as TD, 2) DP dominates T'D and 3) TD dominates DP. Considering the
different ranges of DP and TD, the three configurations are {a = 200,b = 1},
{a = 10000,b = 1} and {a = 4,b = 1}, respectively. In some research, this
procedure is called decomposition, where the objective space is decomposed by
sampling with diverse weighted sum of objective components [41].

Minimize a-DP+b-TD (21)

The CPLEX script of exact search was run on a high performance computer
system. Considering the scale of this problem, a large number of computation
resources were assigned, which were 16 cores (2.6 GHz), 100 GB memory and
24 hours runtime limit for each experiment instance. However, the output of
CPLEX shows that even with this large amounts of computation resources,
it is still very hard to obtain satisfying solutions for MS-VRPTW with exact
search methods. CPLEX was out of memory within 10 minutes in all the three
configurations. This observation indicates that exact search is not realistic for
solving this large-scale tightly constrained nonlinear problem due to massive
computation resources required for computation time, memory. It is no doubt
that there may exist exact methods which can work better than CPLEX in
this problem, however, the requirement of extensive computation resource still
remains. Therefore our studies focus on developing efficient approximate ap-
proaches for MS-VRPTW.

3.2 Initial Solution Construction Heuristic

Solomon [2] develops four classic construction heuristics for VRPTW, the In-
sertion Heuristic generally shows the best performance. Given a set of candi-
dates to be assigned (e.g. customers, demands), in each iteration, a candidate
is inserted to an insertion position in the existing routes using Insertion Se-
lection Schemes. During the construction, if all existing routes are full, a new
empty route will be created. The Insertion Selection Schemes used in existing
routes and the newly created empty routes can be different. These steps are
repeated until all candidates are assigned, obtaining a complete solution.

Insertion Heuristic is widely applied to diverse VRP variants using vari-
ous Insertion Selection Schemes. Chen et al. [51] propose an emergency-based
construction heuristic for the Open Periodic Vehicle Routing Problem with
Time Windows. In that heuristic, tasks with higher emergency are dealt with
with higher priority. Based on the emergency-based construction heuristic, we
propose an Emergency Level-Based Insertion Construction Heuristic (EBIH)
for MS-VRPTW.

In EBIH, all the tasks are classified into LDT or SDT following the defini-
tions given in Section 2.1. Then they are further categorized according to their
emergency levels. When a task i can be completed in shift s according to its
time window, the task is either optional or mandatory. To be precise, if i can
be completed in s and later shift(s), 7 is an optional task in shift s; otherwise,
i is a mandatory task to s. So, to each shift, four sets of available tasks would
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be assigned, which are mandatory LDT, optional LDT, mandatory SDT, and
optional SDT.

The four sets of tasks are considered in order in EBIH. It is easy to un-
derstand that we should assign mandatory tasks first. Because the delay of
tasks may cause the containers missing the vessel appointed and greatly in-
crease the operational cost of the company. Besides, SDT can be completed
with both one-driver truck and double-driver truck while LDT can only use
double-driver truck, which means SDT have more insertion options than LDT
when constructing a solution. Therefore, LDT is relatively harder to assign
than SDT and should be assigned earlier.

In practice, logistic companies usually complete tasks as early as possible to
avoid leaving many tasks to the following shifts and increasing later scheduling
pressure. In real-life, extra commodities might be added in real time. Reducing
the remainder tasks and leaving more available trucks for later shifts can
also enhance the stability of scheduling system. In EBIH, after arranging all
mandatory tasks, if there still are available trucks in the fleet, optional tasks
will be inserted to the current shift until all trucks are ran out. The order of
task sets being assigned shift by shift is: mandatory LDT — mandatory SDT
— optional LDT — optional SDT.

Faced with a set of tasks to be inserted and a large number of poten-
tial insertion positions, the Insertion Selection Scheme used determines the
performance of an Insertion Heuristic. The scheme of Greedy Strategy always
executes the insertion bringing the least cost increase among all candidate in-
sertions. The routes constructed with this scheme are relatively tighter. Less
trucks would be employed with this strategy, but requiring more computation
time to evaluate all possible candidates. Differently, First Feasible Strategy
adopts the first feasible insertion to a task given. It takes less evaluation time
but more trucks would be used in the solution generated.

When choosing the Insertion Selection Schemes used, a trade-off between
efficiency and effectiveness should be made. The key issue in the scheduling is
all tasks must be completed with the limited trucks. Thus, in EBIH, Greedy
Strategy is adopted for mandatory tasks. This setting aims to guarantee the
urgent tasks’ assignment first. On the other hand, to avoid long computation
time, First Feasible Strategy is applied to the insertion of optional tasks. In
addition, because the tasks with long service time are often too big to be
inserted into the routes with existing tasks, the task with the longest service
time will be selected as the first task in the newly created new route.

The performance of EBIH is tested on instances with diverse sizes and
features. The test results are presented in Section 4.2.1.

3.3 A Selective Perturbation Hyper-Heuristic with Two Guidance Indicators

To further reduce the operational cost of the company, based on the initial solu-
tion generated by EBIH, an improvement Hyper-Heuristic with Two Guidance
Indicators (GIHH) is developed. GIHH is a Selection Perturbation Hyper-
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Heuristic, which selects perturbative low level heuristics (LLH) adaptively
based on the change of problem scenario. Two guidance indicators are pro-
posed to guide the selection of LLH. Considering the large scale and complex
multi-level solution structure in MS-VRPTW, only one solution is updated in
each algorithm iteration (single solution-based).

3.3.1 High-Level Heuristic

Algorithm 1 The GIHH framework

Input: An initial feasible solution (S) produced by EBIH, a set of LLH (H), Stopping
Criterion (NONIMP).
Step 1. Set up the initial parameters and ARCH.
Weight < {1, ..., 1}
ScoreA + {0, ...,0}
ScoreB + {0, ...,0}
ARCH + S
Step 2.
while Stopping Criterion is not met do
Step 2.1: Solution Selection
Randomly select a solution from ARCH as the current solution Se.
Step 2.2: Low Level Heuristic Selection and Execution.
Select a LLH (h;) from H according to weight; with Roulette Wheel Rule, see
Eq. (22); Execute h; on the current solution, obtaining a new solution: S’ < h;(Sc)
Step 2.3: Accept or Reject (Hill Climbing).
if S’ is non-dominated in ARCH then
Add S’ into ARCH and remove all dominated solutions.
else
Reject S’.
end if
Update ScoreA; and ScoreB;, recording the contribution of h; to solution
improvement. More details presented in Section 3.3.2.
Step 2.4: Weight Adjustment.
After a predefined number (SEQG) of iterations, Weight of H is updated according
to ScoreA and ScoreB, see Section 3.3.2.
end while
Output: A solution set ARCH.

_ weight;
Y weight;
jEH
Algorithm 1 introduces the high level framework of GIHH. The framework
involves the LLH selection rule, the solution acceptance criterion and the up-
date scheme of weight for LLH. The input contains an initial feasible solution,
a set of given LLH (H, introduced in Section 3.3.3) and the stopping crite-
rion. To this bi-objective problem, GIHH is a Pareto Method whose output is
a solution archive (ARCH) consisting of non-dominated solutions. The small
range of DP reduces the diversity of DP, leading to a relatively small num-
ber of non-dominated solutions. Thus, no limit is set to the size of ARCH,
which means all non-dominated solutions found will be stored. In addition,

Pr; Vie H (22)



GIHH for the MS-VRPTW 17

to increase the diversification of the search, different solutions with the same
objective values are stored in ARCH.

In each iteration, one LLH is chosen and applied to a chosen solution (S.),
generating an updated solution. During the loop, to diversify the search, S,
is randomly selected from ARCH in Step 2.1. The stopping criterion is set
as when ARCH is not being updated in a predefined number (NONIMP) of
iterations.

In GIHH, three scalars (Weight, ScoreA and ScoreB) are defined to guide
the selection of LLH, generating better problem solutions. The LLH executed
in an iteration is chosen with the Roulette Wheel Rule (Step 2.2). To avoid the
probabilities of LLH converge to zero and the corresponding LLH never being
called at all, a minimal probability limit of 5% is applied to every LLH. ScoreA
and ScoreB are two guidance indicators, which record the performance of LLH
in previous search history from two different aspects respectively. Weight is
updated based on ScoreA and ScoreB. All these three scalars are adjusted
adaptively during search (in Steps 2.3 and 2.4), details in Section 3.3.2.

Because the ranges of the two objectives in MS-VRPTW are significantly
different, that is, the range of DP is markedly smaller than that of TD, a
small change on DP is usually accompanied by great fluctuation on TD in
a solution. To further investigate this issue, in addition to the Hill Climbing
acceptance criteria, a Record-to-Record Travel (RRT) [52] acceptance criterion
is also implemented in our study. RRT accepts the worse solutions (S’) of
deteriorated quality from the current solution (S.) in a predefined range. The
comparison of experiment results are presented in Section 4.2.3.

3.8.2 Guidance Indicators and Weight Adjustment Scheme

ScoreA; stores the accumulated rewards to h; according to the change of
objective values from S, to S/, recording the performance of h; on improving
solution quality. In each iteration, if S’ is acceptable, a reward 1 is added to
ScoreA;, otherwise no reward is added. Therefore, a larger ScoreA; represents
a greater contribution of h; to generating new non-dominated solutions. This
indicator emphasizes LLH’s contribution on solution quality improvement.

ScoreB; is a specially designed indicator for this bi-objective problem,
indicates which objective h; inclines to improve (improvement direction). In
MS-VRPTW, a Pareto Solution Set with uniform distribution and good con-
vergence on the Pareto Front is expected, instead of the solutions within local
regions. During the search, the improvement on both of the two objectives
is pursued. When updating ScoreB;, the objective values of S. and S’ are
compared. If S’ is better than S, on DP, ScoreB; is increased by one; If S’ is
better than S, on TD, ScoreB; is decreased by one. A positive ScoreB;, thus,
means the inclination of improving DP (generated more improved solutions
on DP) to h;, while a negative one indicates that of improving TD.

Weight; is updated once in every SEG iterations (called a Segment) to
avoid over-fitting. It is adjusted according to the feedback from the search
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history (Scored; and ScoreB;). The update is a two-phase procedure. The
first phase is guided by ScoreA;, see equation (23).

ScoreA;
Applied Times of h;

In the second update phase, to find the improvement DEVIATION (eq.
(24)) between the two objectives, the newly generated non-dominated solutions
are compared with the first S, in the last Segment, obtaining the number
of the non-dominated solutions with improved DP (DP_IMP) and that of
improved TD (TD_IMP). If DP was improved more times in the last Segment
(DEVIATION > 0), then the weight; of those LLH with TD inclination should
be increased (eq. (25)), obtaining a higher probability being selected in the
current Segment. The similar operations are made when DEVIATION < 0.
This procedure aims to balance the improvement direction.

weight! = o - weight'™ + 3 (23)

DP_IMP — TD_IMP
DEVIATION = 24
(DP_IMP + TD_IMP) - 0.5 (24)

ScoreB;
= Applied Times of h;
when (DEVIATION <0 And ScoreB; <0)
Or (DEVIATION >0 And ScoreB; >0)

weight! - DEVIATION

(25)

The three coefficients (a, 8, v) in egs. (23) and (25) determine the response
speed to the search feedback and the influence of each guidance component on
updating weight;, subject to a + 8 + v = 1.

3.8.3 Low-Level Heuristics

Five LLH are adopted in GIHH. Each LLH changes the current solution to a
certain extent, obtaining updated solutions. Heuristics with large changes per-
turb the operated solution dramatically. They increase the search diversity and
avoid trapping to search valley, but longer computation time is needed usually
to produce a new feasible solution. Heuristics with small changes use rela-
tively less computation time in each iteration, however, their common deficits
are easy to stuck to local optimum and premature search. Previous research
shows that properly combining heuristics with different perturbations can im-
prove the performance of search [53].

— Inter-Route 2-opt*. Lin [54] proposes A-opt route improvement heuris-
tic which removes and reconnects A edges in a route. This classic heuristic
brings relatively small changes to a solution, obtaining good results in var-
ious VRPs. Potvin and Rousseau [31] develop an improved 2-opt heuristic
(2-Opt*) which keeps the direction of each route segment during recon-
nection. This heuristic is devised for Traveling Salesman Problem at first,
but shows excellent performance in various routing problems with time
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windows. In GIHH, Inter-Route 2-Opt* removes two edges from different
routes and reconnects them while keeping the directions of associated route
segments. Notice that the edges modified can be the starting or ending
points of routes, which means two routes being connected into one route
is possible.

— Inter-Route CROSS-exchange. Taillard et al. [32] propose CROSS-
exchange which swaps two route segments from two different routes while
keeping their directions. This heuristic brings relatively small perturbation
as well. The length of route segment can be zero, e.g. when one of the two
operated route segments is empty, the execution of Inter-Route CROSS-
exchange actually relocates a route segment from one route to another
route.

— Intra-Route CROSS-exchange. In this heuristic, the swapping principle
of CROSS-exchange is applied to one single route.

— Large Neighbourhood Search (LNS). In GIHH, Random Selection is
used in the Destroy heuristic of LNS to remove ¢ randomly chosen tasks.
Then the removed tasks are reinserted into the destroyed solution using a
greedy Repair heuristic. This heuristic always executes the insertion caus-
ing the least increase on the travel distance. Obviously, comparing all pos-
sible insertion positions for all the ¢ tasks is time-consuming. To balance
the solution quality and the computation time, the value of ¢ is defined as
min{5% - n, 10}, where n is the total number of tasks.

— Guided Ejection Search (GES). To further reduce the number of trucks
used and optimize DP, GES is employed in GIHH. The main ideas of GES
have been summarized in Section 1.2. Using LNS and GES obtains larger
change to solutions and greater perturbation in search, at the cost of longer
execution time.

4 Experiments & Analysis
4.1 Benchmark Dateset

To evaluate the proposed algorithms in different scenarios, a benchmark of 24
instances with various features are generated (available at http://www.cs.nott.
ac.uk/ pszrq/benchmarks.htm). The instances are extracted from the com-
pany’s historical dataset. In these instances, each item represents a commod-
ity, which consists of its commodity ID, source terminal, destination terminal,
available time to transport, deadline of completing the tasks, and the number
of containers in this commodity. Notice that the number of containers in a
commodity can be larger than one, meaning finishing one commodity trans-
portation may need to complete multiple transport tasks.

A categorization scheme similar to [55] is adopted to define the features of
the instances. Firstly, to a LDT, if its time window is smaller than 20 hours it
will be classified as an emergent task. The time window for SDT is smaller than
10 hours. These two values are suggested by the port company’s coordinator.
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In addition, an index B (eq. (26)) is used to measure the total throughput
balance at terminals in each instance.

B= 7 -0 (26)
icV
Here, V' is the set of terminals composed of the harbors and dry ports.
I; and O; respectively represent the number of incoming and outgoing tasks
at terminal i. A smaller B represents a more balanced throughput in the in-
stance. Based on these, four types of features are used to create the benchmark
instances.

— Tight instance: 70%-80% tasks in the instance are emergent.

— Loose instance: less than 30% tasks in the instance are emergent.

— Balanced instance: the value of B in the instance is smaller than 30.

— Unbalanced instance: the value of B in the instance is larger than or equal
to 30.

According to the time of receiving transshipment requests before their
deadlines in practice, two types of scheduling horizons (two and four days)
are set for the instances. Based on this setting, we created in total eight com-
binations of features. They represent a comprehensive dataset of instances with
various commodity emergency and workload balance. For each combination,
three instances are generated in sizes of small, medium and large, respectively.
The details of instances are presented in Table 2. The last column provides
the total loaded travel distances which are fixed in instances. These instances
are generated based on the problem characteristics at Ningbo Port, e.g. the
geographical distribution of the terminals and the lengths of shifts, and can
be used as a set of benchmark instances with diverse features for testing the
solution methods of other MS-VRPTWs.

4.2 Comparison Experiments
4.2.1 Initial Solutions

Table 3 presents the initial solutions produced by EBIH, obtained on a PC
with 17-3820 3.60GHz CPU and 16.0 GB memory. Feasible solutions can be
obtained within an acceptable time for all instances. The computation time
of generating a solution grows rapidly along with the number of tasks in the
instance. The highest requirement of truck happens on instance TU2-3, where
71 one-driver trucks and 171 double-driver trucks are used.

4.2.2 Parameter Setting and Complezity Discussion

GIHH adaptively employs LLH according to the search, with relatively few
parameters to set. The parameters are tuned one by one, while the others are
fixed.
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Table 2 Features of the benchmark instances. The shifts adopted are long shifts.

Instance Configuration No. of Shifts No. of Commodities No. of Tasks Loaded TD
LB2-1 Loose Balanced 2 50 145 27474
LB2-2 Loose Balanced 2 100 566 122878
LB2-3 Loose Balanced 2 200 697 179802
LU2-1 Loose Unbalanced 2 50 390 78891
LU2-2 Loose Unbalanced 2 100 551 132220.5
LU2-3 Loose Unbalanced 2 200 768 196460
TB2-1 Tight Balanced 2 50 245 44674
TB2-2 Tight Balanced 2 100 446 98062.5
TB2-3 Tight Balanced 2 200 779 163255
TU2-1 Tight Unbalanced 2 50 364 55854
TU2-2 Tight Unbalanced 2 100 529 97656.5
TU2-3 Tight Unbalanced 2 200 895 190897.5
LB4-1 Loose Balanced 4 50 156 39471
LB4-2 Loose Balanced 4 100 578 121575.5
LB4-3 Loose Balanced 4 200 976 175464
LU4-1 Loose Unbalanced 4 50 395 97047
LU4-2 Loose Unbalanced 4 100 670 150680.5
LU4-3 Loose Unbalanced 4 200 1077 283463
TB4-1 Tight Balanced 4 50 321 69536
TB4-2 Tight Balanced 4 100 536 118923
TB4-3 Tight Balanced 4 200 914 185164.5
TU4-1 Tight Unbalanced 4 50 389 92008
TU4-2 Tight Unbalanced 4 100 606 127203
TU4-3 Tight Unbalanced 4 200 886 185556.5

Table 3 Initial solutions produced by EBIH.

LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3

DP 83.5 393 456.5 221 341.5 520.5
TD 22955.5 144926 140842.5 69096 93044 174560.5

time (s) 6 369 869 125 464 1176
TB2-1 TB2-2 TB2-3 TU2-1 TU2-2 TU2-3

DP 147.5 315.5 484.5 252.5 374.5 554.5
TD 46032 98749 153719.5 71517.5 109143.5 145165

time (s) 29 215 1017 87 284 1407
LB4-1 LB4-2 LB4-3 LU4-1 LU4-2 LU4-3

DP 131.5 382 547.5 294.5 475.5 671.5
TD 47028 113011 169075.5 101569 149.47 234230.5

time (s) 5 220 841 130 374 1711
TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3

DP 289 411 579 349.5 533 569
TD 76690 125146.5 150932 105797.5 144385 188010.5

time (s) 52 229 1063 92 198 799

In egs. (23) and (25), a large o means a low response speed to the change
in the search space, often leading to slow convergence. However, high-quality
solutions may be skipped over when the response speed is too high. On the
other hand, high response speed usually leads to premature convergence. Our
preliminary experiments show that, the setting of a = 0.5 makes a good trade-
off between convergence speed and solution quality. The values of 5 and -~
determine the influence of the two guidance indicators to update weight;.
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The setting of 8 = 0.4,y = 0.1 is adopted based on preliminary experiments,
indicating that ScoreA has a greater influence than ScoreB in GIHH.

When updating weight;, a smaller SEG would change weight; more fre-
quently, while when SEG is too large the feedbacks cannot effect in time. SEG
is set to 80 in GIHH empirically. In addition, NONIMP = 150 is used as the
stopping criterion to strike a balance between the computation time and the
quality of results.

When assessing the computational complexity of metaheuristics and hyper-
heuristics, then time complexity can not be determined since these approxi-
mate algorithms do not guarantee the finding of the global optimal solution
within a given time limit. When the algorithm procedure would terminate
depends on the applied problem and specific definition of its stopping crite-
rion (e.g. the definition of NONIMP in GIHH). Therefore, the CPU time and
objective function evaluations on benchmark are often used to compare the
computational complexity of approximate methods in research. In this study,
the algorithms with the above parameter setting are compared from the as-
pects of computational time and iterations at high level, while the results and
associated analysis are presented in the next subsection. As only one solution
is updated in each iteration, with the task node-based solution representation,
the space complexity of GIHH is O(K -|S|-n), where K is the fleet size, |S| is
the length of the planning horizon and n is the number of tasks to be assigned.

4.2.3 Comparison Experiment Results and Analysis
Impacts of the Guidance Indicators

To evaluate the influence of the two proposed guidance indicators in GIHH,
two variants (GIHH-A and RHH) of GIHH with different guidance indicator
settings are developed for comparison. In GIHH-A, only ScoreA is adopted,
while in RHH, LLH are randomly chosen without any guidance. Our prelimi-
nary experiments show that increasing the computation time does not improve
the results significantly, so all the three algorithms use the same stopping cri-
terion.

Table 4 presents the comparison of GIHH, GIHH-A and RHH. All the re-
sults are obtained in 20 runs. In the literature, to compare the performance of
Pareto Methods, various quality indicators are proposed. Most of them focus
on the comparison on the Pareto Set approximation [56]. One of the most
widely used indicators is Hyper- Volume, which considers the convergence, uni-
formity and spread over the Pareto Front produced. Previous studies have
shown that a Pareto Set with a larger hyper-volume is likely to have a better
trade-off among multiple objectives [57]. To compare the three algorithm vari-
ants, the hyper-volumes of the ARCH's obtained are calculated and presented
in Table 4. In our study, the reference points used in calculating hyper-volume
are the initial feasible solutions generated by EBIH. It can be found that, com-
paring the three algorithms from multiple aspects, most of the best results are
produced by GIHH.
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Table 4 Results comparison among algorithms with different indicator configurations. Ave
HYV and Best HV are the average and best hyper-volumes, respectively. Best DP and
Best TD are the best found objective values, while S.D. is standard deviations. Iteration
is the average iterations in the 20 runs. Best results in bold.

LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3 TB2-1 TB2-2

Iteration 1479 4831 5557 4096 5782 9012 2459 4919
Ave HV 0.8176 1.0964 0.6745 0.6652 0.4826 0.8086 0.2598 0.4856
RHH Best HV 0.8966 1.1303 0.6936 0.6924 0.5472 0.8504 0.2941 0.5132

Best DP 53 247 336 166 256.5 369.5 131 224.5

Best TD 11685 53531.5 73506 34004 57693 76342.5 30498 68167.5
S.D. 4.32% 2.63% 1.08% 2.14% 2.90% 2.20% 1.65% 1.98%

Iteration 1322 4911 3701 3121 5441 9320 2973 4945

Ave HV 0.8456 1.1277 0.6943 0.6842 0.5299 0.8632 0.2754 0.4950
GIHH-A Best HV 0.8933 1.1424 0.7201 0.7093 0.5575 0.8837 0.3044 0.5259

Best DP 53.5 250 339 166.5 259 371 130.5 226

Best TD 11491.5 50565 68909 32365 54509 71227 29811 66195
S.D. 3.08% 1.21% 1.70% 2.80% 1.73% 1.39% 1.66% 2.11%

Iteration 1538 4586 5125 3486 4732 7958 2837 6516

Ave HV 0.8578 1.1321 0.6967 0.6914 0.5134 0.8539 0.2792 0.5036
GIHH Best HV 0.9203 1.1624 0.7182 0.7234 0.5516 0.8771 0.3000 0.5275

Best DP 53 248.5 339 166 261 372 131 227.5
Best TD 11332 50382.5 67728 32409 55549 71609.5 29961 66208.5
S.D. 3.00% 0.85% 1.51% 1.30% 1.86% 1.34% 1.31% 1.42%

TB2-3 TU2-1 TU2-2 TU2-3 LB4-1 LB4-2 LB4-3 LU4-1

Iteration 6763 2821 5170 7334 1648 4827 8474 2880
Ave HV 0.5908 0.4493 0.6217 0.4574 0.6443 0.7181 0.8271 0.3262
RHH Best HV 0.6146 0.4710 0.6385 0.4888 0.6823 0.7507 0.8560 0.3574

Best DP 357.5 183 268 430.5 91 268 374.5 237.5

Best TD 88763.5 51263.5 64919 92812 27610.5 58122 80004.5 74178
S.D. 2.02% 1.42% 1.60% 2.09% 2.08% 1.66% 2.20% 1.34%

Iteration 6228 2800 4933 9713 1389 4199 6691 2257

Ave HV 0.6005 0.4649 0.6463 0.5357 0.6429 0.7429 0.8360 0.3407
GIHH-A Best HV 0.6305 0.4824 0.6531 0.5396 0.6665 0.7629 0.8784 0.3625

Best DP 364.5 181 268 432.5 93 269 374 236

Best TD 84585 50878 62694 85413.5 27465 57612 75555 73566
S.D. 1.66% 1.29% 0.52% 0.40% 1.57% 1.87% 3.01% 1.70%

Iteration 5360 2592 4975 8695 1371 3883 6009 3071

Ave HV 0.5972 0.4622 0.6480 0.5176 0.6517 0.7495 0.8362 0.3423
GIHH Best HV 0.6203 0.4863 0.6700 0.5333 0.6728 0.7747 0.8692 0.3838

Best DP 364 181 267 431 92 268 380 233.5
Best TD 85127 50544 62691 85813.5 27409 57437 75285 73073
S.D. 1.67% 1.21%  1.10% 1.16% 1.72%  2.16%  2.25% 2.05%

LU4-2 LU4-3 TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3

Iteration 5032 8915 1180 3807 7649 2349 3508 7349
Ave HV 0.7547 0.9387 0.3778 0.3634 0.6021 0.2371 0.3648 0.6134
RHH Best HV 0.7824 0.9765 0.3885 0.3831 0.6357 0.2454 0.3800 0.6334

Best DP 321.5 476.5 226 323.5 409 287 397 405.5

Best TD 80535.5 75804 55991 90690.5 92126 88214 111090 112465
S.D. 1.52% 2.57% 0.78% 1.06% 1.95% 0.50% 1.22% 1.71%

Iteration 3029 6789 921 2817 5487 2229 2386 4919

Ave HV 0.7659 0.9759 0.3770 0.3761 0.6247 0.2577 0.3743 0.6239
GIHH-A Best HV 0.7962 0.9891 0.3909 0.3871 0.6643 0.2620 0.3888 0.6470

Best DP 327.5 484.5 225 325.5 409 284.5 398 412

Best TD 76664 71859 55920 89808.5 88744 86548 110743 106921
S.D. 2.18% 1.00% 0.78% 0.54% 1.97% 0.32% 0.85% 1.80%

Iteration 3701 5341 1131 3098 5745 2122 2871 5055

Ave HV 0.7774 0.9768 0.3865 0.3795 0.6343 0.2554 0.3756 0.6246
GIHH Best HV 0.8050 0.9997 0.3974 0.3981 0.6674 0.2613 0.3938 0.6480

Best DP 322.5 480 224.5 323.5 412 285.5 393.5 407
Best TD 75138 70811.5 55606 89397 86690 86482 110926 107892
S.D. 1.50% 1.38% 0.73% 0.57% 1.82% 0.37% 0.74% 1.34%

Among the three variants, RHH produced the worst hyper-volumes with
the most iterations, while its standard deviation obtained is the largest. This
shows that, when the High-Level Heuristic is random selection with no guid-
ance, the algorithm would take more iterations to converge with a lower sta-
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bility. However, it may have a higher probability of finding better solutions
against objective (2), i.e. with the best DP.

It can be found that from Table 4, GIHH-A and GIHH obtained markedly
better solutions (higher HV) than RHH. Using ScoreA significantly improves
the quality of the produced solution set. Generally, GIHH-A and GIHH used
less iterations but longer computation time to obtain the output. This can be
observed in Fig. 3. GIHH-A and GIHH may have less average iterations than
RHH (blue columns), but their computation time (red crosses) are longer on
all the eight sample instances. Because the unit computation time of LNS and
GES are significantly longer than the other LLH, this observation indicates
that, compared to RHH, GIHH-A and GIHH employed these two LLH with
greater perturbation more frequently during the search.

Between GIHH-A and GIHH, the latter obtained a higher average and the
best hyper-volume on most instances with the guidance of ScoreB, while no
obvious increase on iteration time and computation time is found. This can
also be observed from Fig. 3. GIHH promotes the overall search performance
and stability with the help of the two proposed guidance indicators.

With regard to the features of instances, Loose instances have broader
time windows than Tight instances, which means more scheduling options
and larger solution space. Thus, when the sizes of instances are similar, the
Loose instances require more iterations and computation time to converge in
all the three algorithms. In addition, comparing the iteration time, GIHH-A
and GIHH work better on Loose instances, see Fig. 4. It can be found that,
compared to RHH, the reduction of iterations is higher on Loose instances than
on Tight instances, except GIHH on the LB4 instances. When the feature of
throughput imbalance at terminals changes, no obvious difference is found.

Note that, in the ARCH generated by GIHH, each non-dominated point on
the Pareto Front may have 20-40 different solutions on average. The number
of different solutions with the same objectives stored does not effect the value
of hyper-volume. Experiment results show that storing different solutions with
the same objective values does not significantly increase the hyper-volume of
a solution archive, but it boosts the diversification of the solution set. Those
solutions provide the logistic company coordinator more reference solutions.

Impacts of Solution Selection and Acceptance Criterion

In each iteration of GIHH, the solution to be operated (S.) is randomly
selected from ARCH, aiming to increase the diversity in search. To justify
the function of the random selection scheme, an algorithm with deterministic
selection of S, (named GIHH-D) is also implemented in our research. With
this deterministic scheme, in ARCH, the solution farthest from the reference
point will be selected as the S.. Because all solutions derive from the initial
solution (reference point), this deterministic scheme means that the solution
with the highest improvement on both objectives will be selected. T-test is
conducted on the output of GIHH and GIHH-D. The results are presented in
Table 5.



GIHH for the MS-VRPTW 25

LB2-1 LU2-1
1600 2500 4500 80000
1550 4000 = 70000
2000
1500 = 3500 60000
e 3000 T
i 1500 £ © 50000 £
5 E § 2500 <
= 1400 i) = 40000 2
£ g £ 2000 £
= 1350 1000 g = 30000 £
E 1500 5
1300 w0 600 20000
1250 500 10000
1200 0 0 0
GIHH-A GIHH GIHH-A GIHH
TB2-1 TU2-1
3500 16000 2850 40000
3000 14000 2800 35000
12000 2750 30000 _
2500 i iy
" 10000 £ ., 2700 25000 &
§ 2000 < H H
] 8000 2 3 2650 20000 £
£ 1500 8 g 8
= 6000 E = 2600 15000 gx
s s
1000 a000 © 2550 10000
500 2000 2500 5000
0 0 2450 0
GIHH-A GIHH GIHH-A GIHH
LB4-1 LU4-1
1800 3500 3500 45000
1600 3000 3000 40000
1400 35000
2500 & 2500 =,
1200 3 30000 3
“ £ @ £
£ 1000 2000 = < 2000 25000 ¢
. S S s
I = ] E-l
g 80 1500 & £ 1500 20000 £
2 El = g
600 £ 15000 £
1000 § 1000 8
400 10000
556 500 500 5000
o 0 0 0
GIHH-A GIHH GIHH-A GIHH
TB4-1 TU4-1
1400 12000 2400 50000
45000
1200 10000 2350 x
40000
- 2300
1000 o -
SO00S 0 2250 >y
@ £ - £
£ a0 : g -
',E 6000 S £ 2200 25000 -2
g 600 g ] g
= e 20000 3
2
2000 £ 20 g
400 8 500 15000 §
200 2000 o 10000
5000
o o 2000 0
GIHH-A GIHH GIHH-A GIHH

W lterations % Computation Time

Fig. 3 The iteration times and computation time of the three algorithms on eight sample
instances.

In addition, as mentioned in Section 3.3.1, another variant adopting the
Record-to-Record Travel acceptance criterion (GIHH-RRT) is also compared
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Fig. 4 Comparison of the iteration time reduction. The bars indicate the number of reduc-
tion of iterations. Longer bars represent greater reduction, while the negative values indicate
more iterations than RHH.

with GIHH. In GIHH-RRT, comparing to S., a worse solution would be ac-
cepted as long as the deterioration of objective value is less than 0.01-T'D(S..)
on TD and less than 1.5 on DP. Acceptance Criterion in a perturbative al-
gorithm should balance the diversification and intensification of search, while
RRT can increase the diversification of search greatly. Its output is compared
with that of Hill Climbing criterion presented in Table 5.

From Table 5, it can be found that GIHH outperforms the other two algo-
rithms. On the one hand, using the deterministic scheme to select the solution
to be updated (GIHH-D) decreases the diversity of search, leading to signifi-
cantly worse output than GIHH on most instances (19/24). On the other hand,
accepting worse solutions (GIHH-RRT) does not improve the final search re-
sult on all instances. As the two objectives have remarkably different ranges,
accepting worse solution would bring great fluctuation and deterioration to S,
in the search. This observation indicates that, in MOVRP, when the difference
in the ranges of objectives is big, accepting solutions of lower quality does not
improve the search. Besides, our experiments also show that GIHH is more
stable than the other two algorithms with smaller standard deviations.

Comparison with the state-of-the-art algorithms
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Table 5 T-test results with GIHH. Y means GIHH generates significantly better solutions,
while N represents it does not.

LB2-1 LB2-2 LB2-3 LU2-1 LU2-2 LU2-3 TB2-1 TB2-2 TB2-3 TU2-1 TU2-2 TU2-3

GIHH-D
vs Y Y Y Y Y N N Y Y Y Y Y
GIHH
GIHH-RRT
vs Y Y Y Y Y Y Y Y Y Y Y Y
GIHH
LB4-1 LB4-2 LB4-3 LU4-1 LU4-2 LU4-3 TB4-1 TB4-2 TB4-3 TU4-1 TU4-2 TU4-3
GIHH-D
vs N Y Y N Y Y N Y Y Y Y Y
GIHH
GIHH-RRT
vs Y Y Y Y Y Y Y Y Y Y Y Y

GIHH

MS-VRPTW is a newly introduced model in the literature, there is thus no
existing algorithm applied to it yet. Three state-of-the-art algorithms (RVNS
[58], FVNS [59] and ALNS [60, 61]) are adopted and applied to MS-VRPTW
in our study. Both RVNS and FVNS use the Variable Neighbourhood Search
framework and produce the best solutions in PVRP. Apart from the neigh-
bourhood structures used are different, a main difference between them is that
the order of shaking operators employed is fixed in FVNS, while they are ran-
domly selected in RVNS. ALNS produces the best results for VRPPD with
Adaptive Large Neighbourhood Search. The experiments show that GIHH out-
performs the three algorithms on both solution quality and computation time
in MS-VPRTW, especially on larger instances. Their result deterioration is
presented in Table 6.

Possible causes for these results include the following. Firstly, the neigh-
bourhood structure employed in GIHH are highly effective. FVNS and RVNS
only use the small perturbation neighbourhood operators (e.g. A-opt, CROSS,
relocation). With these smaller neighborhood structures, it is hard or needs
long time to escape from the local optimum in this nonlinear constrained prob-
lem. On average, 65% more computation time is required by FVNS and RVNS
comparing to GIHH. Large perturbation operators are used in ALNS but are
lacking of intensive exploitation. Secondly, the guidance indicator. Without
the guidance of specific indicators, e.g. ScoreB, the solutions generated are
more likely to cluster, leading to a low hyper-volume. In addition, the three al-
gorithms compared are problem specific metaheuristics. Different from hyper-
heuristics, their performance may decline drastically for different instances
even in the same problem. For example, both FVNS and ALNS obtain better
results than GIHH on LU2 instances.

An observation from the results of FVNS and RVNS is that, they both
produce many more solutions with the same objective values than GIHH. The
small perturbation operators tend to generate a large number of solutions
with small differences but of the same objective values in the solution archive.
Comparing VNS and RVNS, the former performs better in MS-VRPTW with
a fixed order of the neighbourhood operators of low perturbation to high per-
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Table 6 Solution deterioration comparing with the results of GIHH. The values in table
are the objective differences divided by the GIHH objective values.

Average HV Best HV Best DP Best TD S.D.

LB2 -4.86% -4.76% -3.19% -0.88% -0.54%
LU2 2.44% 1.80% -0.27% 1.13% 0.34%
TB2 -15.13% -15.90% -3.39% -0.40% 0.31%
FVNS TU2 -9.25% -9.75% -2.76% -2.01% 0.04%
LB4 -5.70% -5.82% -2.29% -1.04% 0.16%
LU4 -1.30% -2.59% -1.19% -1.22% -0.67%
TB4 -9.85% -7.51% -1.14% -2.42% -0.63%
TU4 -13.85% -12.14% -3.50% -0.72% -0.30%
LB2 -13.14% -16.50% -5.76% -12.41% -4.17%
LU2 -10.27% -12.93% -2.31% -8.50% -9.05%
TB2 -19.36% -24.08% -4.90% -5.67% -1.03%
RVNS TU2 -14.92% -18.46% -5.63% -6.04% -2.52%
LB4 -22.80% -15.06% -5.09% -8.64% -3.73%
LU4 -29.90% -23.98% -4.49% -11.38% -4.40%
TB4 -30.88% -19.17% -2.67% -7.42%  -2.29%
TU4 -27.02% -21.87% -3.99% -4.61% -1.04%
LB2 -5.48% -5.33% -0.07% -7.97% 0.22%
LU2 -8.82% -6.97% 1.17% -9.59% -0.48%
TB2 -6.72% -7.31% 0.57% -3.77% 0.33%
ALNS TU2 -8.47% -7.69% -1.03% -4.68% -0.19%
LB4 -5.70% -5.03% -1.28% -3.38% 0.59%
LU4 -7.09% -10.43% -1.05% -5.22% 0.39%
TB4 -4.64% -4.59% -0.11% -2.29% 0.08%
TU4 -18.55% -17.37% -2.28% -4.20%  -0.23%

turbation. ALNS outperforms VNS and RVNS on the objective DP with the
help of large perturbation, while has a higher stability than GIHH.

Results on VRPTW Benchmarks

To evaluate the performance of GIHH in other problems, it is applied to
classic VRPTW on the Solomon Benchmarks [2]. The VRPTW is the basis
of many other complex VRPs, while the Solomon Benchmarks have been ex-
tended and adopted in the research of many other VRP variants as well. An
equal priority is given to the two objectives the number of vehicles used (NV)
and the total travel distance (TD) in the VPRTW model of our study. The
results obtained are compared with the best known solutions to date, see Ta-
ble 7 in Appendix. It can be found that, GIHH obtains solutions the same
as or close to the best known solutions (which are optimal actually) on the
instances with clustered customers (C1 and C2). On the randomly and mixed
distributed instances (R1, R2 and RC1, RC2), GIHH produces solutions close
to the best known ones, and nine new non-dominated solutions are found.
Considering that most of those best known solutions are generated by cus-
tomized problem-specific algorithms with sufficient computation resource, the
results of GIHH are satisfying.
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5 Conclusions

This study defines a new bi-objective Mixed-Shift Vehicle Routing Problem
with Time Windows (MS-VRPTW), which arises from a real-life container
transportation problem between short-distance and long-distance terminals.
Due to the big difference between the completion time of the transportation
tasks, two types of shifts (long-shift and short-shift) with different operational
costs are defined in this problem. The two objectives of this problem are min-
imizing the total driver payment and minimizing the total travel distance. A
mathematical model of MS-VRPTW is proposed in this paper.

Using the proposed artificial node, the scheduling of two types of shifts
is combined into one model. To the best of our knowledge, this is the first
mixed-shift VRP model in the literature. Our investigation shows that it is
unrealistic to tackle MS-VRPTW with exact search approaches even if a huge
amount of computation resources is given. A hyper-heuristic is thus developed
for MS-VRPTW. The proposed method showed to increase the utilization rate
of trucks and reduce the operational cost of the logistic company.

In the proposed method, firstly, an initial feasible solution is generated
using an Emergency Level-Based Insertion Construction Heuristic (EBIH).
Then, a Hyper-Heuristic with two Guidance Indicators (GIHH) is proposed
to improve the solutions. GIHH is a selection perturbation hyper-heuristic,
adapting a set of Low-Level Heuristics (LLH) with different extents of per-
turbation to the problem solution. Two indicators are proposed to guide the
LLH selection adaptively along with changes during the search, which evaluate
LLH’s contribution to the solution quality improvement and the improvement
direction, respectively.

To test the generality and performance of the proposed algorithms, a set
of diverse benchmark problem instances is created based on a dataset derived
from the real-world problem, considering the features of commodity emergency
and workload balance. On all the benchmark instances, EBIH produced fea-
sible solutions within an acceptable time. The experiment results show that,
in different environments, the two proposed guidance indicators significantly
improve the performance and stability of search for this bi-objective problem,
producing solutions with higher hyper-volumes. In terms of the acceptance cri-
terion and the selection scheme of solution,it is shown that, when the ranges of
objectives are vastly different in the Multi-Objective Vehicle Routing Problem,
the Hill Climbing acceptance criterion outperforms the acceptance criterion
of accepting worse solutions (Record-to-Record Travel). Research also finds
that randomly selecting the next current solution can increase the diversity
of search, bringing better results than deterministic selection in MS-VRPTW.
GIHH outperforms three state-of-the-art algorithms for PVRP and VRPPD
on both the computation time and the quality of solutions generated. Com-
paring to the best known solutions to date, GIHH also produces promising
results in the classic VRPTW.

In our future work, the MS-VRPTW model could be extended to other
mixed-shift problems. The proposed algorithms can be applied to more prac-
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tical complicated multi-objective optimization problems. Hybrid methodolo-
gies combining GIHH and exact methods can be another promising research
direction.
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Appendix

Table 7: Results of GIHH on the Solomon’s instances. The solutions
equal to best known results and the newly found non-dominated
solutions are shown in bold.

Best Known GIHH
Instance NV D Ref. Best Found
NV TD
C101 10 828.94 [62] 10 828.94
C102 10 828.94 [62] 10 828.94
C103 10 828.06 [62] 10 828.94
C104 10 824.78 [62] 10 825.65
C105 10 828.94 [62] 10 828.94
C106 10 828.94 [62] 10 828.94
c107 10 828.94 [62] 10 828.94
C108 10 828.94 [62] 10 828.94
C109 10 828.94 [62] 10 828.94
C201 3 591.56 [62] 3 591.56
C202 3 591.56 [62] 3 591.56
C203 3 591.17 [62] 3 591.17
C204 3 590.6 [62] 3 590.6
C205 3 588.88 [62] 3 588.88
C206 3 588.49 [62] 3 588.49
C207 3 588.29 [62] 3 588.29
C208 3 588.32 [62] 3 588.32
Ri01 19 1650.80 [62] 19 1650.80
20 1642.87 [63] 20 1643.34
R102 17 1486.12 [62] 17 1489.33
18 1476.06 [53] 18 1490.72
R103 13 1292.67 [62] 13 1367.27
14 1219.89
9 1007.31 [62]
R104 10 974.24 [64] 10 1007.27
11 971.5 [65] 11 994.85
R105 14 1377.11 [62] 14 1381.88
15 1346.12 [66] 15 1360.78
R106 12 1252.03 [62] 12 1270.45
13 1234.6 [67] 13 1243.72
10 1104.66 [62]
R107 11 1051.84 [66] 11 1077.24
12 1050.06
R108 9 960.88 [62]
10 932.1 [68] 10 956.22
11 1194.73 [62]
R109 12 1013.2 [69] 12 1168.18
13 1151.84 [63] 13 1157.61
10 1118.84 [62]
R110 11 1112.21 [68] 11 1153.83
12 1068 [67] 12 1081.88
Ri11 10 1096.72 [62] 11 1087.5
12 1048.7 [67] 12 1062.58
Ri12 9 982.14 [62]
10 953.63 [70] 10 958.7
R201 4 1252.37 [62] 4 1282.75
5 1190.52 [53]
R202 3 1191.7 [62] 3 1239.82
4 1091.21 [64] 4 1098.06
R203 3 939.503 [62] 3 968.67
4 905.72 [53] 4 935.55
R204 2 825.52 [62]
3 766.91 [53] 3 767.52
R205 3 994.42 [62] 3 1059.91
5 954.16 [63] 4 964.02
R206 3 906.142 [62] 3 930.80

(continued on next page)
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(continued)
Best Known GIHH
Instance
NV D Ref Best Found
NV TD
R207 2 890.61 [62]
3 814.78 [70] 3 843.88
R208 2 726.82 [62] 2 741.75
4 698.88 [71] 3 708.9
R209 3 909.16 [62] 3 962.08
5 860.11 [63] 4 871.63
R210 3 939.37 [62] 3 978.11
4 935.01 [53] 4 948.95
2 885.71 [62]
R211 3 794.04 [53] 3 804.16
4 761.1 [68]
RC101 14 1696.94 [62]
15 1619.8 [71] 15 1633.10
12 1554.75 [62]
RC102 13 1470.26 [64] 13 1497.43
14 1466.84 [63] 14 1467.25
RC103 11 1261.67 [62] 11 1265.86
RC104 10 1135.48 [62] 10 1136.49
13 1629.44 [62]
RC105 14 1589.91 [64] 14 1623.54
15 1513.7 [63] 15 1524.14
RC106 11 1424.73 [62] 12 1396.59
13 1371.69 [64] 13 1376.99
RC107 11 1230.48 [62] 11 1254.68
12 1212.83 [63] 12 1233.58
RC108 10 1139.82 [62] 10 1200.69
11 1117.53 [63] 11 1131.23
RC201 4 1406.94 [62] 4 1457.87
6 1134.91 [64] 5 1310.44
RC202 3 1365.64 [62] 3 1546.3
4 1181.99 [68] 4 1192.54
RC203 3 1049.62 [62] 3 1097.32
4 957.10 [53]
RC204 3 798.46 [62] 3 829.13
RC205 4 1297.65 [62] 4 1298.90
5 1233.46 [53] 5 1240.45
RC206 3 1146.32 [62] 3 1156.06
4 1107.40 [53] 4 1107.19
RC207 3 1061.14 [62] 3 1135.61
4 1032.78 [53] 4 1033.78
RC208 3 828.14 [62] 3 830.06




