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Abstract

Network coding enables higher network throughput, more balanced traffic,

and securer data transmission, etc. However, complicated mathematical opera-

tions incurs when recombining packets at intermediate nodes, which if not oper-

ated properly, leads to very high network resource consumption for the network

and unacceptable delay. Therefore, it is of vital importance to minimize various

network resources and end-to-end delays while exploiting promising benefits of

network coding.

Since multicasting has been used in increasingly more applications, such

as video conferencing and remote education, we study the multicast routing

problem with network coding. The problem is formulated as a multi-objective

optimization problem (MOP), where the coding cost, the link cost and the end-

to-end delay are the three objectives to be optimized simultaneously. We adapt

multi-objective evolutionary algorithm based on decomposition (MOEA/D) for

this MOP by hybridizing it with the population-based incremental learning

techniques, which makes use of the global and historical information collected

to provide additional guidance to the evolutionary search. Three new schemes
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are devised to facilitate the performance improvement, including a probability-

based initialization scheme, a problem-specific population updating rule, and

a hybridized reproduction operator. Experimental results clearly demonstrate

that the proposed algorithm outperforms a number of state-of-the-art MOEAs

regarding the solution quality and computational time.

Keywords: Network coding, Multicast, Multi-objective evoluionary algorithm

1. Introduction

Multicast is a one-to-many data delivery method in telecommunications,

where information sent from the source is copied and routed to a number of

destinations simultaneously. Compared with multiple unicasts, multicast is of

high bandwidth-efficiency, especially when there are a large number of receivers5

[1]. The Internet has witnessed a significant growth in multimedia applications

(e.g. video conferencing, IPTV, and remote education), where multicast is a

key supporting technique [2]. However, the traditional multicast scheme adopts

the store-and-forward data forwarding, where the throughput may not reach to

the theoretical maximum [3].10

Network coding is a newly emerged communications paradigm, where instead

of simply copying and forwarding the incoming data, any intermediate node in

the network is allowed to perform mathematical operations (e.g. operations

over some finite fields) to recombine different incoming data if necessary [3].

This technique has been reported to be quite effective and helpful in traffic15

balancing, data security, energy saving, network tomography, and robustness

against failures [4, 5, 6, 7]. In particular, with network coding, multicast can

always achieve the theoretical maximum multicast data rate [4].

Figure 1 shows a multicast scenario with respect to the multicast data rate,

where traditional routing and network coding are employed separately. Figure20

1 (a) is the topology of the scenario, where each link is directional and with a

capacity of one bit per time unit. Source s wants to multicast two bits, a and

b, to two receivers, t1 and t2. According to the Max-Flow Min-Cut theorem,
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Figure 1: An example multicast scenario. (a) Network topology. (b) Traditional routing. (c)

Network coding

the minimum cut between s and t1 (or t2) is two bits per time unit, so is the

maximum data rate from s to t1 and from s to t2. Nevertheless, if traditional25

routing is adopted, as can be seen in Figure 1 (b), bottleneck link K → V would

only allow a single bit to be delivered, causing a reduction in the data rate. This

is because traditional routing is based on the store-and-forward forwarding. On

the contrary, if node K can perform mathematical operation to recombine a and

b into a single bit, a⊕b, the theoretical maximum data rate to each receiver can30

be obtained at the same time, where in the example of Figure 1 (c) symbol ⊕

is exclusive-OR operation. Nodes t1 and t2 can receive {a, a⊕ b} and {b, a⊕ b}

and recover the original information a and b after calculating a ⊕ (a ⊕ b) and

b ⊕ (a ⊕ b). So, the maximum multicast data rate is equal to the theoretical

data rate.35

As aforementioned, network coding brings benefits to multicast. However, in

network coding based multicast (NCM), data recombination has to be executed

at the network layer by performing complicated mathematical operations (called

coding operations) to combine different incoming information at corresponding

intermediate nodes. Hence, the computational overhead could be extremely high40

and complex coding operations may cause large end-to-end delays. In addition,

instead of maintaining a single path, NCM employs multiple paths to deliver

data to any receiver, which enables super-fast data rate, however, at the expense

of higher link resource consumption. Therefore, research has been conducted
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to optimize NCM routing from different aspects while utilizing the benefits of45

network coding.

Main research streams on the NCM routing optimization include coding cost

minimization [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], link cost minimization

[20, 21, 22, 23, 24], delay related optimization [25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35] and multi-objective optimization [36, 37, 38, 39, 40]. Details are50

given in Subsection 2.2. Towards practical deploying of NCM, it is important

to study the trade-off between coding and link costs, as well as satisfying end

users with high quality-of-experience (especially delay). However, such issue

has received little consideration. Many existing problem models do not take the

user experience into account [36]. Some problem models which only concern55

the minimization of the total cost and end-to-end delay cannot distinguish the

trade-off between the coding and link costs [40]. This paper extends the problem

models in [36, 40], and establishes a new multi-objective NCM routing model,

where all the key factors in NCM data transmission, namely, the coding cost,

link cost and the average end-to-end delay, are formulated as three objectives.60

Multi-objective evolutionary algorithms (MOEAs) can easily obtain a set

of promising solutions in a single run due to their population-based frame-

works. They have thus received increasingly more research attention from

fields of multi-objective optimization and evolutionary computation. Multi-

objective evolutionary algorithm based on decomposition (MOEA/D) is among65

the highlighted MOEAs [41]. MOEA/D decomposes a multi-objective optimiza-

tion problem (MOP) into a number of scalar optimization subproblems, each

with an aggregated objective. MOEA/D showed to have a better optimization

performance with lower computational cost than a number of state-of-the-art

MOEAs, e.g. NSGA-II [42] and SPEA2 [43]. In the literature, a number of70

sophisticated techniques have been incorporated into the MOEA/D framework

to further exploit its potential, e.g. estimation of distribution algorithm (EDA)

[44, 45, 46, 47, 48, 49, 50], differential evolution (DE) [51, 52, 53, 54, 55, 56],

memetic algorithm (MA) [57, 58, 59, 60, 61, 62, 63, 64], ant colony optimization

(ACO) [65, 66, 67], particle swarm optimization [68, 69, 70], simulated anneal-75
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ing [71], and so on. With different techniques integrated, hybrid MOEA/Ds are

usually reported to gain decent optimization performance when solving MOPs.

Details are reviewed in Subsection 2.2.

As one of the EDAs, population based incremental learning (PBIL) com-

bines GA and machine learning. It manipulates a real-valued probability vector80

(PV) and extracts statistical information from promising samples to evolve the

PV [72]. Unlike other EAs, the evolutionary process of PBIL involves neither

explicit population nor complicated operators, such as crossover and mutation,

thus incurs much less computational and memory costs while gaining similar

or even better optimization performance, compared with traditional EAs [72].85

Moreover, PBIL has been reported as an excellent optimizer for solving the

NCM-based single-objective optimization problem [14]. We thus explore the

potential of integrating PBIL components into MOEA/D to strengthen MOEAs

when addressing the three-objective NCM routing problem in this paper.

The contribution of the work includes the formulation of a new multi-objective90

optimization problem and a hybrid MOEA to address it, as listed below.

• A NCM routing optimization problem with three objectives. The

computing resource, bandwidth resource and delay are all important fac-

tors when considering the practical deployment of NCM. All of them need

to be kept as low as possible. In this work we formulate a three-objective95

optimization problem, simultaneously minimizing three objectives, i.e. the

coding cost, the link cost and the average end-to-end delay of NCM.

• To tackle the MOP above, we propose a hybrid MOEA incorporating PBIL

into the original MOEA/D framework, with three novel features listed as

below.100

– A probability-based initialization scheme. The problem con-

cerned in the paper is highly constrained and infeasible solution-

s dominate the search space. To start with an initial population

of feasible individuals, we propose a probability-based initialization
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scheme, where each individual is created according to the estimated105

distribution of feasible solutions. This scheme helps to obtain a set

of promising individuals with high diversity.

– A problem-specific population updating rule. Due to the

special features of the proposed problem, when adopted, the orig-

inal MOEA/D may reproduce similar individuals in the population,110

leading to serious prematurity and thus a deteriorated optimization

performance. To overcome this problem, the paper introduces a

problem-specific population updating rule. Once a promising indi-

vidual is generated, it updates a single individual in the population,

if the improvement of the individual quality is the most significan-115

t among this current population. This helps reserve high level of

diversity.

– A hybridized reproduction operator. Global exploration and

local exploitation are two important research issues in designing ef-

ficient and effective MOEAs. However, they usually contradict with120

each other. To address this, we devise a reproduction operator which

combines reproduction techniques in GA and PBIL. A control func-

tion is devised to decide the percentage of individuals generated from

each reproduction technique. Analysis indicates that with this oper-

ator, the evolution is able to maintain a relatively high level of global125

exploration thus contribute to a balanced optimization performance.

The rest of the paper is organized as follows. Section 2 describes the problem

formulation and related works. Section 3 briefly reviews the original MOEA/D

and PBIL. The proposed algorithm is introduced in Section 4. Simulation results

are demonstrated in Section 5. In Section 6, conclusions are provided.130
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2. Problem formulation and related work

2.1. Problem formulation

The network is represented by a directed graph G = (V,E), where V is the

node set, E is the link set and each link e ∈ E has a unit capacity. In NCM

on network G, there are a source node s ∈ V , a set of receivers T = {t1, ..., td},135

tk ∈ V , and an expected data rate R. The source delivers the same data to each

node tk ∈ T at R [4, 6].

Given a NCM request, the task is to find a connected subgraph in G to

support the multicast with network coding [15]. This subgraph is referred to

as a NCM subgraph (denoted by GNCM ). A NCM subgraph includes R link-140

disjoint paths connecting s and each receiver. A coding node is a node which

performs coding operations; a coding link is an outgoing link of a coding node

via which the outgoing data are a combination of the data received by the

coding node. In network G, a merging node is a non-receiver intermediate node

with multiple incoming links [10, 11]. Only merging nodes can become coding145

nodes and perform packet recombination. The number of coding links is used

to estimate the amount of coding operations performed in the NCM [9]. More

descriptions can be found in [15].

Figure 2 illustrates an example NCM scenario, where source s delivers two

bits, a and b, to two receivers, t1 and t2, respectively. The data transmission150

scheme is shown in Figure 2 (a), where coding node K performs packet recom-

bination a ⊕ b. Figure 2 (b) shows the four paths originating from source s

to one of the receivers. Note that, paths to the same receiver are link-disjoint

paths. For example, paths P1(s → t1) and P2(s → t1) are link-disjoint. All

paths transmitting the NCM data form the NCM subgraph, as illustrated in155

Figure 2 (b).

The following lists notations used in the paper:

• s: the source node in network G(V,E);

• T = t1, t2, ..., td: the set of receivers, where d = |T | is the number of

receivers;160
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Figure 2: An example NCM scenario. (a) Data delivery. (b) The NCM subgraph.

• R: the data rate (an integer) at which s delivers data to T ;

• Pi(s, tk): the i-th path from s to tk, where tk ∈ T and i = 1, ..., R;

• r(s, tk): the achievable data rate from s to receiver tk ∈ T ;

• Ccode: the number of coding links in GNCM (s, T );

• clink(e): the cost incurred on link e if e ∈ GNCM (s, T );165

• delay(Pi(s, tk)): the end-to-end delay of path Pi(s, tk).

The task is to find an appropriate NCM subgraph in G(V,E), which satisfies

the NCM data rate requirement, with three objectives minimized, as shown

below in Eq. 1.

Minimize: 
f1 =

∑
∀e∈GNCM (s,T ) clink(e)

f2 = Ccode

f3 = 1
d

∑d
k=1 max{delay(Pi(s, tk))|i = 1, ..., R}

(1)

Subject to:

r(s, tk) = R,∀tk ∈ T (2)

In Eq. 1, objective f1 is to minimize the bandwidth resource, i.e. total170

link cost involved during the NCM; objective f2 is to minimize the computing

resource consumption, i.e. coding cost, in the NCM; objective f3 is to minimize
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the average end-to-end delay along all paths in the NCM subgraph. Constraint

2 restricts that R link-disjoint paths are to be constructed from s to each of the

receivers so that the expected data rate R is achievable.175

The above three-objective minimization problem belongs to MOPs. Sup-

pose there are two solutions (f∗1 , f
∗
2 , f

∗
3 ) and (f ′1, f

′
2, f
′
3). (f∗1 , f

∗
2 , f

∗
3 ) dominates

(f ′1, f
′
2, f
′
3) or (f ′1, f

′
2, f
′
3) is dominated by (f∗1 , f

∗
2 , f

∗
3 ) only if any of the following

three conditions is satisfied: {f∗1 < f ′1, f
∗
2 ≤ f ′2, f

∗
3 ≤ f ′3} or {f∗1 ≤ f ′1, f

∗
2 <

f ′2, f
∗
3 ≤ f ′3} or {f∗1 ≤ f ′1, f

∗
2 ≤ f ′2, f

∗
3 < f ′3}. Optimal solutions to the problem180

above constitute the Pareto-optimal Set (PS).

2.2. Related work-an overview

This subsection first reviews the main streams of NCM routing optimization

problems in the literature.

(1) Optimization in NCM Routing185

• Coding cost minimization. Performing coding operations consumes ex-

tra computing resources, compared with the traditional store-and-forward

based routing. Hence, one research stream focuses on minimizing the

amount of coding operations necessarily performed. Early research stud-

ied greedy-based optimization approaches [8, 9]. Later on, several genetic190

algorithms (GAs) were proposed for minimizing coding cost [10, 11, 12].

Recent research adapted estimation of distribution algorithms (EDAs), in-

cluding quantum-inspired evolutionary algorithms (EAs) [13], population

based incremental learning (PBIL) [14] and compact GA [15]. Moreover,

EAs hybridized with other techniques, e.g. entropy-based evaluation re-195

laxation and path-oriented encoding, were investigated [16, 17, 18, 19].

• Link cost minimization. NCM data are delivered through multiple

paths which are made up of links [8]. In real networks, different links,

when employed for data transmission, incur different costs, known as link

costs. NCM routing plans with less total link costs are thus preferred. Lun200

et al. formulated a minimum-cost NCM multicast over packet networks,
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where wireline and wireless networks were both considered [20, 21, 22]. Cui

and Ho studied the least-cost integral network coding problem, where the

packet injection rate on each link was constrained to be integral [23]. Re-

searchers also investigated minimum cost subgraph construction in static205

and dynamic environments [24].

• Delay related optimization. Delay is one of the most important met-

rics evaluating network performance. A considerable amount of applica-

tions require guarantees on stringent delay, especially for real-time broad-

band multimedia applications [25]. However, network coding gains high210

bandwidth utilization at the expense of consuming extra computational

resources at corresponding nodes [4]. Packet recombination (i.e. cod-

ing operation) incurs additional processing delay in individual nodes, and

cause severely large end-to-end delays if data are not routed appropriate-

ly. Delay-related issues, when deploying practical NCM, have thus drawn215

a great amount of attention. Delay analysis and its minimization have

been studied in the context of wireless networks [26, 27], overlay networks

[28], broadcast erasure channels with feedback [29, 30], instantly decodable

network coding [31, 32, 33], and multicasting [34, 35].

• Multi-objective optimization. All the above research concerned single-220

objective optimization problems. However, both coding and link costs

incur in real-world NCM data delivery thus should be both minimized.

This problem can be formulated as a bi-objective optimization problem,

for which a number of multi-objective evolutionary algorithms (MOEAs)

have been proposed [36, 37, 38, 39]. When launching NCM, Network225

Service Providers (NSP) pay for computing and bandwidth resources they

consume. Optimization on the two objectives helps NSPs to find a trade-

off between the cost of paying the limited computing resource (coding)

and bandwidth resource (link), to gain high profits. In addition, end users

usually expect to have decent quality of experience (QoE), especially small230

end-to-end delay. This is in nature conflicted interests to those NSPs who
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prefer less network resource consumption. In [40], the trade-offs between

the total cost (i.e. weighted sum of the coding and link costs) and the

maximum end-to-end delay of multiple paths were studied.

(2) MOEA/Ds integrated with other techniques235

Incorporating sophisticated techniques into MOEA/D has become an im-

portant direction in the MOEA/D family, including estimation of distribution

algorithms, differential evolution, memetic algorithm, ant colony optimization

and so on, as the following reviews.

• Estimation of distribution algorithm (EDA). Recently, EDAs gain240

good attentions in solving various single-optimization problems (SOPs)

[44]. In principle, they are a family of EAs that incorporate machine

learning techniques, where statistical information of promising solutions is

extracted to build probabilistic models, from which samples are generated.

Compared with traditional EAs, EDAs usually obtain better optimization245

results, with relatively less space and time complexity. A decomposition-

based EDA, namely MEDA/D, is proposed to handle the multiobjective

knapsack problems [45]. Shim et al. incorporated the restricted Boltz-

mann machine and the evolutionary gradient search into the MOEA/D

framework [46]. This algorithm performs well in addressing the multiob-250

jective multiple traveling salesman problem (TSP). Gao et al. investigat-

ed a similar problem, i.e. multiobjective TSP, using multiobjective EDA

based on decomposition (MEDA/D) [47], where the probabilistic model

is built based on priori and learnt information. To gain a balanced per-

formance on global exploration and local exploitation, a hybrid adaptive255

MOEA that synthesizes GA, EDA and DE was presented [48]. Promising

solutions generated at an early stage of evolutions by these algorithms are

used to produce corresponding proportion of solutions in the next genera-

tion. Giagkiozis et al. developed a combination of MOEA/D and EDA for

the many-objective optimization problems [49], where a novel generalized260
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decomposition method unifies different performance objectives. Ray et

al. designed a hybridized architecture combining MOEA/D and quantum

genetic algorithm for tackling many objective optimization problems [50],

where systematic sampling is adopted to establish the reference directions

and the evolution of quantum individuals is driven by a simple variation265

operator.

• Differential evolution (DE). DE was integrated into the framework of

MOEA/D in [51] to effectively handle complicated Pareto fronts for MOP-

s, and it is reported to perform much better than NSGA-II. A variant

of MOEA/D-DE was presented for the multi-objective analog cell sizing270

problem [52]. Two performance enhancing mechanisms are incorporated

to balance between the diversity and guiding information from neighbors,

and to improve the local search ability of DE using a scaling factor. Tan

et al. proposed a modified MOEA/D-DE with a uniform design method

to generate uniformly distributed scalar optimization subproblems and a275

simplified quadratic approximation to enhance the local exploitation and

the accuracy of aggregation function values [53]. Combined with Gaus-

sian mutation operators, MOEA/D-DE also has a decent performance in

devising Yagi-Uda antennas [54]. Another variant of MOEA/D-DE, name-

ly the adaptive DE for multiobjective problem (ADEMO/D), integrated280

with a number of adaptive strategies, gains evenly distributed solutions

well approximating the Pareto front for continuous MOPs [55, 56].

• Memetic algorithm (MA). Local search operators (assisted with do-

main knowledge) have recently been incorporated into MOEA/D. With

improved local exploitation, the proposed algorithms (usually called multi-285

objective memetic algorithms) provide better solutions than pure MOEA/D.

Chen et al. enhanced the performance of MOEA/D by integrating guided

mutation and priority update [57]. Mei et al. proposed an MA/D with

extended neighborhood search, namely D-MAENS, for solving the capac-

itated arc routing problem [58]. Later on, Shang et al. improved the290
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performance of D-MAENS by two novel schemes, one for solution replace-

ment and the other for elitism maintenance [59]. MOEA/D is hybridized

with a mathematical programming technique (called Nelder and Mead’s

algorithm), where Nelder and Mead’s algorithm serves as the local search

mechanism [60]. Alhindi and Zhang investigated how guided local search295

is used to strengthen MOEA/D in terms of escaping local optima [61].

Mashwani and Salhi presented a hybrid MOEA/D, where particle swarm

optimization (PSO) and DE are incorporated. In the algorithm, DE acts

as the main evolutionary framework and PSO is in charge of local search

[62]. By combining ideas from MOEA/D and Pareto local search, Ke et al.300

proposed a memetic algorithm based on decomposition (MOMAD) [63],

where three populations are initialized by a problem-specific single objec-

tive heuristic and evolved by the Pareto local search and single objective

local search procedures. Ma et al. developed a MOEA/D with Baldwinian

learning for continuous MOPs, where evolving information from the dis-305

tribution model of the population is extracted by a Baldwinian learning

operator [64].

• Ant colony optimization (ACO). Inspired by ACO, Li et al. in-

troduced a probabilistic representation based on pheromone trails into

MOEA/D and demonstrated its good potential in handling hard MOPs310

with many local optima [65]. Ke et al. introduced the ACO into MOEA/D

for solving multi-objective 0-1 knapsack problem and bi-objective TSP

[66]. Instead of using sub-colonies, each ant solves one of the scalar opti-

mization problems obtained. Cheng et al. proposed a hybrid multiobjec-

tive optimization framework integrating the ACO into MOEA/D, called315

MoACO/D [67], where an ant colony is divided into many sub-colonies

in an overlapped manner, and each sub-colony addresses a certain SOP

decomposed from the original MOP.

• Other techniques. A considerable amount of research efforts have al-

so been made to incorporating various optimization techniques into the320
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MOEA/D framework. These include PSO [68, 69, 70], simulated anneal-

ing [71], artificial bee colony optimization [73], fuzzy system [74], Gaussian

process model [75], opposition-learning [76], teaching-learning algorithm

[73, 77], and so on.

3. Overview of MOEA/D and PBIL325

3.1. MOEA/D

In MOEA/D, the fundamental idea is to decompose a MOP into N scalar

optimization subproblems (SOSPs) [41]. MOEA/D aims to optimize all SOSPs

simultaneously in a collaborative and time-efficient manner. Three decompo-

sition methods are introduced in [41]. This paper considers the Tchebycheff

approach, one of the most commonly used. A SOSP achieved by the decompo-

sition of a MOP can be expressed as follows:

Minimize : g(x|λ, z∗) = max
1≤j≤m

{λj |fj(x)− z∗j |} (3)

Subject to : x ∈ Ω (4)

where m is the number of objectives, λ = (λ1, ..., λm) is a weight vector, i.e.

λj ≥ 0, j = 1, ...,m, and
∑m

j=1 λj = 1. z∗ = {z∗1 , ..., z∗m} is the reference point,

i.e. z∗ = min{fj(x)|x ∈ Ω}, where Ω is the decision space.

It is assumed that a set of N weight vectors λ1, ..., λN should be select-330

ed properly so the optimal solutions of those SOSPs will well approximate the

Pareto-optimal front (PF). In addition, the neighborhood relationship of SOSPs

can be measured by Euclidean distances between the weight vectors. Neighbor-

ing SOSPs have similar fitness landscapes and their optimal solutions should

be close in the decision space. Information sharing between neighborhoods thus335

can be exploited to accomplish the optimization task.

The evolutionary procedure of MOEA/D can be described below.

Global structure:
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• A population of N points x1, ..., xN ∈ Ω, where xi is the current individual

to SOSP(i), the i-th SOSP.340

• z = (z1, ..., zm), where zj , j = 1, ...,m, is the best-so-far value for objective

fj .

• An external population (EP), which stores nondominated solutions found

during the search.

Input: a given MOP; stopping criteria; N : the number of SOSPs; W : the345

number of the neighbors for each SOSP; λ1, ..., λN : uniformly distributed weight

vectors; pc: the crossover rate; pm: the mutation rate.

MOEA/D Procedure:

Initialization:

1: Set EP = ∅.350

2: For arbitrary weight vector λi, calculate the W closest weight vectors,

λi(1), ..., λi(W ), via Euclidean distance and set ϕ(i) = {i(1), ..., i(W )}.

3: Generate an initial population x1, ..., xN and evaluate fu(xj) for each indi-

vidual.

4: Initialize z = {z1, ..., zm}.355

Repeat:

5: for i = 1 to N do

6: Reproduction: Generate a new solution y by two individuals xu and

xl using crossover and mutation operators, where u, l ∈ ϕ(i).

7: Improvement: Improve y by using a problem-specific improvement360

repair operator, which is optional.

8: Update of z : For j = 1, ...,m, if fj(y) < zj , set zj = fj(y).

9: Update of neighboring solutions: For each k ∈ ϕ(i), if g(y|λk, z) ≤

g(xk|λk, z), then set xk = y and fj(xk) = fj(y), j = 1, ...,m.

10: Update of EP: Remove those solutions dominated by y from EP and365

add y to EP if it is not dominated by any member in EP.

11: end for
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Termination:

12: Until stopping criteria are satisfied, output EP.

3.2. PBIL370

PBIL has been reported to gain promising performance when solving the

single-objective network coding resource minimization problem [14]. Instead of

using an explicit population, PBIL manipulates a real-valued probability vector

(PV). When sampled, PV generates a number of binary solutions and the best

one is used to update the PV. By making use of global information, promising375

solutions are generated with increasingly higher probabilities stored in PV.

Let P(k) = {P k
1 , ..., P

k
L} be a PV at generation k, where L is the dimension

of the solution encoding and P k
l is the probability of obtaining ‘1’ at the l-th

position. Denote B(k) = {Bk
1 , ..., B

k
L} and α the best so far solution during the

search and the learning rate, respectively. Figure 3 shows the procedure of the380

original PBIL. The PV at generation k, P(k), is updated by Eq. 5.

P(k) = (1.0− α) ·P(k−1) + α ·B(k) (5)

After PV is updated, mutation operation may be used to avoid local optima

[72]. Let α be the probability shifting at each position, and P k
l is to be mutated,

Eq. 6 is typically adopted in mutation.

P
(k)
l = (1.0− σ) · P (k−1)

l + frnd · σ (6)

where frnd is either 0.0 or 1.0, randomly generated with probability 0.5.385

4. The proposed MOEA/D-PBIL

As known, the individual representation is one of the most important issues

in EAs. This section starts with the individual representation used for the

problem concerned in this paper. Then, three novel features, i.e. a probability-

based initialization scheme, a problem-specific population updating rule and a390

hybridized reproduction operator, are introduced. At last, the overall procedure

of the proposed algorithm is given in detail.
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Initialization:

1: Set k = 0.

2: Set P k
l = 0.5, l = 1, ..., L. So P(k) is initialized as {0.5, ..., 0.5}.

3: Sampling a set S(k) of N individuals from P(k) and find the best sample

and B(k).

Repeat:

4: Set k = k + 1.

5: Find the best sample B(k) from B(k−1) ∪ S(k−1).

6: Update P(k) by Eq. 5.

7: Mutate P(k) by Eq. 6.

8: Sampling a set S(k) of N individuals from P(k).

Termination:

9: Until stopping criteria are satisfied, output B(k).

Figure 3: Procedure of the original PBIL [72]

4.1. Individual representation and evaluation

Binary link state individual representation (BLS-IR) has been widely used

in network coding related optimization problems, including a number of single-395

objective optimization problems and MOPs [10, 11, 12, 13, 14, 15, 19, 40].

In particular, BLS-IR is able to facilitate an easy process of estimating the

consumption of the coding resource during the NCM data transmission. As

mentioned before, coding operations can be performed at merging nodes only.

BLS-IR is based on the graph decomposition method (GDM) which helps to400

clearly show how information flows are forwarded within each merging node [11].

The MOP concerned in this paper also involves the estimation of coding resource

consumption, so it is rationale to utilize BLS-IR to represent individuals. The

following introduces GDM, BLS-IR and the raw fitness evaluation.

In GDM, each merging node M with IM incoming links and OM outgoing405

links is decomposed into IM incoming auxiliary nodes and OM outgoing aux-

iliary nodes, connected by all possible routes passing the merging node. Each
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link flows into node M is redirected to one of the IM incoming auxiliary nodes,

and each node has only one link flows into it. Similarly, each outgoing link from

node M is redirected to one of the OM outgoing auxiliary nodes and each node410

has only one outgoing link. Besides, within each decomposed merging node, an

auxiliary link connects each incoming auxiliary node with each outgoing aux-

iliary node. Given an original graph G, every merging node is decomposed by

GDM and then a decomposed graph G′ is created.

In BLS-IR, each individual x is represented by a string of binary variables,415

each associated with an auxiliary link between auxiliary nodes. Value 1 for a

binary variable means the corresponding link in G′ is active and information can

pass by; otherwise, the corresponding link in G′ is inactive and no information

is allowed to pass. An individual x thus corresponds to an explicit and unique

decomposed graph GD(x). Based on GD(x), we determine if a valid NCM420

subgraph (see Section 2 for details) can be found.

The feasibility is firstly checked when evaluating an individual x. If a NCM

subgraph from the corresponding decomposed graph GD(x) with the expected

data rate satisfied can be found, x is feasible; otherwise, it is regarded infeasible.

One of the max-flow algorithms, the Goldberg algorithm, is used to calculate425

the max flow between the source and each receiver within the obtained NCM

subgraph [78]. For each feasible individual, three objective values are calculated

according to Eq. 1. For infeasible individuals, three sufficiently large objective

values are set, ensuring that infeasible individuals are less competitive than

feasible ones during the evolutionary search procedure.430

4.2. The probability-based initialization scheme

In MOEAs, the initial population generally has a great impact on the op-

timization performance. Unfortunately, the problem concerned in the paper is

highly constrained, and with BLS-IR, infeasible solutions dominate the search

space. A random initial population very likely leads to a deteriorated opti-435

mization performance. Thus, a probability-based initialization (PBI) scheme is

devised in this paper to guarantee that the proposed MOEA begins with a set
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1: Set initial population setinit = ∅ and probability vector P(init) =

{Pinit, Pinit, ..., Pinit}.

2: while |setinit| < N do

3: Gerenate a new individual x by sampling P(init) once.

4: if x is feasible then

5: Place x in setinit.

6: end if

7: end while

Figure 4: Pseudo code of the PBI scheme

of feasible individuals with high level of diversity.

In the literature, to deal with such problem, Kim et al. inserted an all-one

individual into the initial population to ensure that the search starts with at least440

one feasible solution [11, 12]. However, such method is not effective for MOPs,

as MOEAs require higher level of population diversity than single-objective EAs.

Therefore, our previous work investigated the estimated distribution of feasible

solutions over the entire search space [40]. It was found that the majority of

feasible solutions are closer to the all-one individual. Based on this finding, a445

smart initialization scheme is proposed to generate an individual pool of multiple

feasible individuals based on the all-one individual. However, such scheme leads

to an initial population of highly similar individuals, which seriously harms the

population diversity.

We use the concept of PV in PBIL to generate the initial population. The450

distribution of feasible individuals in the search space is estimated to extract

statistical information. Instead of setting each value in the PV to 0.5, we set a

larger probability at each position of PV, to generate feasible individuals with

a higher probability. Figure 4 shows the pseudo code of the PBI scheme. This

is in compliance with the finding above, i.e. an individual similar to the all-one455

individual is more likely to be feasible.

The PBI scheme generates the initial population with feasible individuals
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while considering its diversification. As long as Pinit is not set too close to 1, the

initial population could maintain a certain degree of diversity. A smaller Pinit is

more likely to gain a more diversified initial population, which is of course at the460

expense of longer computational time. Since diversity is extremely important

for MOEAs, it is worth compromising the computational cost.

4.3. A problem-specific population updating rule

In the original MOEA/D, a better individual replaces not only the best-so-

far individual of the corresponding SOSP, but also those of neighboring SOSPs.465

However, the problem concerned in the paper is highly complicated and con-

strained, and feasible individuals only account for a very small proportion of

the population [40]. In addition, the majority of feasible individuals are close to

the all-one individual. If we adapt the original population updating rule, where

better individual updates every SOSP within the same neighborhood, similar470

individuals will rapidly dominate the population, cause serious prematurity and

deteriorate the optimization performance.

To overcome the above problem, this paper proposes a problem-specific pop-

ulation updating (PSPU) rule, where, instead of multiple SOSPs, only a single

SOSP is updated with the newly generated promising individual. Let the i-th475

SOSP be denoted by SOSP(i), where i = 1, ..., N . Let SOSPs(i) be the set of

the neighbors of SOSP(i) including itself, where SOSPs(i) = {SOSP(i(1)), ...,

SOSP(i(W ))}, i(1), ..., i(W ) ∈ ϕ(i) (see Subsection 3.1 for details). For an arbi-

trary SOSP(i), an individual y is generated after reproduction, and replaces the

individual of a neighboring SOSP with the most significant fitness improvement.480

Note that it is possible the newly generated individual is worse than all of the

current individuals of SOSPs(i). In this case, the new one is discarded.

The fitness improvement of SOSP(i), ∆SOSP (i), and the most significant

improvement regarding the fitness among SOSPs(i), ∆max, are defined in Eq.

7 and Eq. 8, respectively.485

∆SOSP (i) = g(xi|λi, z)− g(y|λi, z) (7)
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∆max = max ∆SOSP (j), j ∈ ϕ(i) (8)

where, ϕ(i) contains the indexes of all SOSPs in SOSPs(i).

Compared with the original population updating rule in MOEA/D, the pro-

posed PSPU rule defines that a newly generated individual updates the most

appropriate SOSP only. Thus, the search is guided to explore promising areas in

the search space while maintaining a diversified population. With the proposed490

rule, MOEA/D-PBIL gains better performance as observed in Subsection 5.4.

4.4. A hybridized reproduction scheme

When designing MOEAs, the issue of exploration and exploitation at differ-

ent stages of the search should be carefully considered to support effective search

over the vast solution landscape. Traditional EA recombination operators, e.g.495

crossover, recombine at least two individuals selected from the population, mak-

ing use of the local information only. They perform well at the beginning of the

evolution, but get worse due to gradual loss of population diversity, leading to a

deteriorated global search performance. PBIL manipulates a PV and generates

new individuals by sampling from it. By making use of the global and histori-500

cal information, promising regions can be explored in parallel and new regions

also have chance to be discovered. An effective global exploration is obtained

by the intrinsic memory of PV. The recombination of PBIL can thus act as a

complement to the traditional EA recombination.

To achieve a balanced global exploration and local exploitation, MOEA/D-505

PBIL utilizes a hybridized reproduction (HR) scheme which uses the genetic

operators of MOEA/D and the probabilistic sampling operators of PBIL at

different stages of the evolution. By controlling the proportion of the offspring

produced by MOEA/D and those by PBIL, the proposed algorithm aims at

striking a balanced global exploration and local exploitation. To be specific,510

at the early stage of the evolution, MOEA/D reproduction is selected with a

higher probability, which helps to explore the search space; at the middle stage

of the evolution, both reproductions incur; at the late stage, PBIL-reproduction
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is more likely to be selected for concentrating on promising areas in the search

space.515

According to the HR scheme, we need a controlling parameter CP(k) for gen-

eration k to determine how many individuals are generated by PBIL-reproduction.

We find that the cumulative distribution function (CDF) of the Cauchy distri-

bution can be adapted for controlling the PBIL offspring proportion, since the

CDF curve grows gradually and smoothly from a value close to 0 to a value520

close to 1 [79]. We thus define CP(k) in Eq. 9. This parameter determines

which reproduction method is used to generate a new individual. For the i-th

SOSP, if an uniformly distributed random number rand ≤ CP (k), then PBIL-

reproduction is chosen to produce offspring; otherwise, MOEA/D-reproduction

is chosen. If PBIL-reproduction cannot produce a feasible individual after a525

predefined number of attempts, especially in the early stage of the evolution

when building up the probabilistic blocks for the PV, MOEA/D-reproduction

is used instead.

CP(k) =
1

π
arctan(

k −K/2

γ
) +

1

2
(9)

where, parameter γ is a predefined value governing the steepness of the CP

curve and parameter K is a predefined number of generations.530

Figure 5 illustrates an example curve of CP, where K is set to 200 and γ is

set to 4, 11, and 18, respectively. A smaller γ leads to a deeper slope (in the

paper, γ is fixed at 11). It is clear that at the early stage (k = 1−50), MOEA/D-

reproduction is more likely to be chosen; during the middle stage (k = 51−150),

the probability of selecting PBIL-reproduction gradually increases and becomes535

higher than that of MOEA/D-reproduction after k = 100; at the last stage,

individuals generated by PBIL-reproduction dominate the population. Using

this controlling parameter, a balanced global exploration and local exploitation

is obtained, leading to a decent performance as seen in Subsection 5.5.

Figure 6 illustrates the procedure of the proposed HR scheme at generation540

k. With the calculated CP(k) according to Eq. 9, the HR scheme decides the
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Figure 5: Example CP with K = 200 and different values of γ

percentage of individuals each reproduction method generates at a certain gen-

eration. Let the PV associated with the i-th SOSP at generation k denoted by

P(i,k). Variable attempts is a counter, which records how many times P(i,k) has

been sampled before a feasible individual appears. Variable ‘isSuccess’ records545

the state whether PBIL-reproduction successfully produces a feasible individual.

In the early stage of the search, P(i,k) focuses on learning probabilistic features

from promising samples. During this period, it is very likely that sampling

P(i,k) only results into infeasible individuals. The initial state of ‘isSuccess’

is set to false. Constant Θ stands for the maximum number of attempts tried550

when sampling P(i,k). When PBIL-reproduction is chosen, P(i,k) is repeatedly

sampled. This procedure stops when either a feasible individual appears or Θ

attempts have been tried. If no feasible individual can be generated, we use

MOEA/D-reproduction to produce a new individual.

The HR scheme has one significant advantage, i.e. helping to balance the555

global exploration and the local exploitation during the evolution. By incor-

porating PBIL reproduction method, the HR scheme is able to enhance the

global exploitation ability of the proposed MOEA. This helps to provide a bal-
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1: Calculate the value of the controlling parameter CP(k). . (Eq. 9)

2: for i = 1 to N do . (For the i-th SOSP)

3: Generate a random number rand. . (uniformly distributed in [0, 1])

4: if rand ≤ CP(k) then . (PBIL-reproduction is used)

5: Set attempts = 0&&isSuccess = false.

6: while attempts < Θ do . (Attempts a number of times)

7: Set attempts = attempts+ 1.

8: Sample an individual y from PV P(i,k). . (Subsection 3.2)

9: if y is feasible then

10: isSuccess = true.

11: Break.

12: end if

13: end while

14: if isSuccess == false then . (MOEA/D-reproduction is used)

15: Generate an individual y by using crossover and mutation. .

(Subsection 3.1)

16: end if

17: else . (MOEA/D-reproduction is used)

18: Generate an individual y by using crossover and mutation. .

(Subsection 3.1)

19: end if

20: end for

Output: the offspring population.

Figure 6: Procedure of the HR scheme at generation k
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anced performance between global exploration and local exploitation during all

stages of the evolution, which is in favor of gaining an excellent optimization560

performance.

4.5. The overall procedure of MOEA/D-PBIL

The proposed MOEA/D-PBIL is based on the basic evolutionary frame-

work of MOEA/D (already reviewed in Subsection 3.1). Let k be the current

generation of evolution. The following gives the whole evolutionary procedure.565

Input:

• the MOP with m objectives and individual length L; the stopping criteria;

the population size N ; the number of neighbors W ; the N weight vectors

λ1, ..., λN ; the crossover rate pc; the mutation rate pm (Subsection 3.1)

• the learning rate α, the probability shifting σ (Subsection 3.2)570

• the probability for the PBI scheme Pinit (Subsection 4.2)

• the predefined number of generations K; the predefined value for smooth-

ness γ in CP(k); the predefined number of attempts Θ (Subsection 4.4)

MOEA/D-PBIL Procedure:

Initialization:575

1: Set EP = ∅ and k = 0.

2: Calculate ϕ(i) neighbors for SOSP(i), i = 1, ..., N . . (Subsection 3.1)

3: Generate a population x1, ..., xn by the PBI scheme. . (Subsection 4.2)

4: Initialize z = {z1, ..., zm}.

5: Initialize P(i,k) = {P k
1 , ..., P

k
L}, i = 1, ..., N . . (Subsection 3.2)580

Repeat:

6: for i = 1 to N do

7: Reproduction: Produce an individual y by the HR scheme. .

(Subsection 4.4)

8: Update of z : For each j ∈ {1, ...,m}, if fj(y) < zj , set zj = fj(y).585
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9: Update of population: the PSPU rule is used to update the popula-

tion. . (Subsection

4.3)

10: Update of PV: Update P(i,k) by Eq. 5 and Eq. 6. . (Subsection 3.2)

11: Update of EP: Remove those solutions dominated by y from EP and590

add y to EP if it is not dominated by anyone in EP. . (Subsection 3.1)

12: end for

Termination:

13: If stopping criteria are satisfied, stop and output EP.

In Step 3, the PBI scheme is used to generate an initial population, where595

PV P(init) is repeatedly sampled in order to guarantee that every individual

in the population is feasible. This provides the proposed algorithm a set of

promising and diversified individuals to begin with. PBIL reproduction method

is integrated into the MOEA/D framework (see Section 4.4). So, in the proposed

algorithm, each SOSP is associated with a PV, e.g. P(i,k) = {P k
1 , ..., P

k
L}.600

In Step 5, each PV is initialized as {0.5, 0.5, ..., 0.5}, where value ‘0.5’ is the

probability of generating ‘1’ at that position. In Step 7, a new individual is

produced by the MOEA/D- or PBIL- reproduction. In Step 9, the PSPU rule

first calculates ∆max according to Eq. 7 and Eq. 8. For j ∈ ϕ(i), if ∆SOSP (j) =

∆max > 0, then set xj = y and fu(xj) = fu(y), u = 1, ...,m, where fu(x) is the605

u-th objective value of individual x. No matter whether the PBIL reproduction

method is chosen, P(i,k) is consistently updated at each generation, where i =

1, ..., N . Step 10 defines the above procedure. In Step 13, the termination

condition is that the algorithm evolves a predefined number of generations.

The learning rate α defines how quickly PV learns from the best individual,610

and has a great impact on the convergence of PV [72]. In MOEA/D-PBIL,

α is adaptively set during the evolutionary process. At the beginning of the

evolution, as the quality of individuals is generally low, a small α is set so that

PVs could learn from promising individuals; during the evolution, the value of α

is increased gradually until reaching to a maximal threshold (0.1 in this paper),615
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Table 1: Test Benchmark Networks and Their Parameters [40]

Networks
Parameters

nodes links receivers rate

7-copy 57 84 8 2

15-copy 121 180 16 2

Rnd-1 20 37 5 3

Rnd-2 20 39 5 3

Rnd-3 30 60 6 3

Rnd-4 30 69 6 3

Rnd-5 40 78 9 3

Rnd-6 40 85 9 4

Rnd-7 50 101 8 3

Rnd-8 50 118 10 4

which to some extent helps to provide a fine local exploitation.

5. Performance evaluation

This section studies the effectiveness of the three performance-enhancing

schemes, i.e. the PBI scheme, the PSPU rule and the HR scheme, respectively,

on benchmark test instances using certain performance metrics. The overall620

performance of MOEA/D-PBIL is then evaluated, comparing against a number

of state-of-the-art MOEAs, including NSGA-II [42] and SPEA2 [43].

5.1. Test instances

Ten widely used benchmark instances are considered in this paper, including

two fixed networks (7-copy and 15-copy, see details in [18]) and eight randomly625

generated networks (Rnd-1 to Rnd-8, with network size from 20 to 50, see details

in [40]). The associated parameters of the ten instances are given in Table 1.

In the paper, for an arbitrary e ∈ E, its link cost clink(e) and propagation

delay is uniformly distributed in the range of [5, 15] and [2ms, 10ms], respec-

tively. The coding cost Ccode is the number of coding links in the obtained630

network coding based multicast subgraph GNCM (s, T ). We assume any cod-

ing operation consumes the same amount of processing time, i.e. 1ms. To
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encourage scientific comparisons, the details of all instances can be found at

http://www.cs.nott.ac.uk/ rxq/benchmarks.htm. The predefined number of

generations for all algorithms for comparison is set to 200. All experiments635

were run on a Windows 8 OS computer with Intel(R) Core(TM) i7-3740QM

CPU 2.7 GHz and 8 GB RAM. The results are obtained by running each algo-

rithm 20 times (unless stated otherwise), from which the statistics are collected

and analyzed.

5.2. Performance measures640

To thoroughly evaluate the performance of the proposed algorithm, we em-

ploy five widely recognized performance measuring metrics throughout the ex-

periments.

Let PFref be a reference set of solutions well approximating the true PF,

and PFknown be the set of nondominated solutions obtained by an algorithm.645

Note that we may not know the true PF for highly complex multi-objective

optimization problems, including the problem concerned in this work, so we

combine the best-so-far solutions obtained by all algorithms after all runs and

select the nondominated solutions as the reference set. This method has been

widely adopted when evaluating multi-objective algorithms in the literature.650

• Inverted generational distance (IGD) [41]: IGD is defined as the

average distance from each point v in PFref to its nearest counterpart in

PFknown, as follows:

IGD =

∑
v∈PFref

d(v, PFknown)

|PFref |
(10)

where d(v, PFknown) is the Euclidean distance (in the objective domain)

between solution v in PFref and its nearest solution in PFknown and

|PFref | is the number of solutions in PFref . IGD measures the conver-

gence and diversity of an obtained nondominated solution set. This metric

is commonly used to evaluate the overall performance of an algorithm. A655

lower IGD indicates a better overall performance of an algorithm.
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• Generational distance (GD) [80]: GD measures the average distance

from each point v in PFknown to its nearest counterpart in PFref , as

defined below:

GD =

√√√√ ∑
v∈PFknown

d(v, PFref )

|PFknown|
(11)

where d(v, PFref ) is the Euclidean distance between v in PFknown and

its nearest point in PFref . This metric is used to measure how closely

PFknown converges to PFref . A smaller GD indicates the obtained PF is

closer to the true PF.660

• Maximum spread (MS) [80]: MS reflects how well the true PF is cov-

ered by the points in PFknown through the hyperboxes formed by the

extreme function values observed in PFref and PFknown, as shown in Eq.

12.

MS =

√√√√ 1

m

m∑
i=1

(
min(fmax

i , Fmax
i )−max(fmin

i , Fmin
i )

Fmax
i − Fmin

i

)
2

(12)

where m is the number of objectives; fmax
i and fmin

i are the maximum and

minimum values of the i-th objective in PFknown, respectively; and Fmax
i

and Fmin
i are the maximum and minimum values of the i-th objective

in PFref , respectively. A larger MS shows the obtained PF has a better

spread.665

• Average Computational Time (ACT): ACT is the average running

time consumed by an algorithm over 20 runs. This metric is a direct

indicator of the computational complexity of an algorithm being tested.

• Student’s t-test [79]: This test is to compare two algorithms in terms

of the IGD values obtained in 20 runs. In this paper, two-tailed t-test670

with 38 degrees of freedom at a 0.05 level of significance is used. The

t-test results indicate if the performance of one algorithm is significantly

better than, significantly worse than, or statistically equivalent to that of

another algorithm, respectively.
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5.3. The effectiveness of the PBI scheme675

In general, an initial population should contain a considerable amount of di-

verse and feasible individuals. A PBI scheme is proposed (see Subsection 4.2) to

generate a set of feasible initial individuals, by repeatedly sampling an initial PV

P(init) = {Pinit, Pinit, , Pinit} until a predefined number of feasible individuals

are created. The value of Pinit is of vital importance to the performance of the680

PBI scheme. Three different settings are compared in the proposed scheme. Be-

sides, the PBI scheme is also compared with two existing initialization schemes,

i.e. Kim’s method [11] and Xing’s method [40], as listed below.

• Kim’s method [11]: the initial population is randomly generated. An

all-one individual is included into the population to ensure the search685

start with a feasible search point. It is widely used in the network coding

resource minimization problem.

• Xing’s method [40]: one-bit mutation is performed on the all-one in-

dividual and its variants to produce a set of feasible individuals that are

very closely distributed around the all-one individual. This method has690

been adopted in MOP with network coding.

• PBI: the proposed initialization scheme. Three settings, i.e. Pinit = 0.7,

0.8 and 0.9, are tested. For simplicity purpose, we represent them as

PBI(0.7), PBI(0.8) and PBI(0.9), respectively. A larger Pinit leads to a

higher probability of generating ‘1’ at the corresponding position. This is695

in compliance with the research findings in [40], that individuals closer to

the all-one individual are more likely to be feasible.

As aforementioned, IGD reflects the overall performance of an algorithm re-

garding the quality of the obtained PFknown. Hence, IGD is also used to evalu-

ate the initial population. We compare the three initialization methods using six700

test instances, including 2 small instances (Rnd-1 and Rnd-2), 2 medium-sized

instances (Rnd-5 and Rnd-7), and 2 large instances (7copy and Rnd-8). Figure
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7 illustrates the comparisons among different initialization methods, where hor-

izontal axis represents the IGD of each population and the vertical axis is the

computational time consumed by each method.705

Figure 7: Comparisons among different initialization schemes w.r.t. IGD

It is clearly seen that the PBI scheme performs significantly better than the

other two methods in terms of IGD. Kim’s method provides an initial population

with at least a feasible individual. However, infeasible individuals still account

for the majority of the population [40], thus the individuals in the objective

domain are far away from PFref . Xing’s method produces a feasible population,710

however without a good diversification, i.e. all individuals are too close to the

all-one individual. The proposed PBI scheme considers not only the feasibility

but also the diversity of the population and thus obtains the best performance.
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Table 2: Student’s t-test results of A1, A2 and A3

Network A3↔A1 A3↔A2

Rnd-1 + ∼
Rnd-2 + ∼
Rnd-5 + +

Rnd-7 + +

Rnd-8 + +

7copy + +

Kim’s and Xing’s methods are simple, thus both consume a smaller amount

of time in all instances. On the other hand, the computational cost of the PBI715

scheme has a wide spread in different instances. The smallest time cost of PBI

is comparable to that of Kim’s and Xing’s methods.

With regard to different settings of Pinit of the PBI scheme, it is easily seen

that PBI(0.7) and PBI(0.8) are better than PBI(0.9) in all instances. Sampling

a P(init) with larger Pinit, tends to produce more feasible individuals. There-720

fore, to produce the same number of individuals, smaller Pinit takes more time.

On the contrary, however, it is more likely to form a diversified population (ac-

cording to the studies in [72]), thus PBI(0.7) and PBI(0.8) have better IGD

values than PBI(0.9). Considering not only the quality of the population, but

more realistically, also the time efficiency, we hereafter set Pinit = 0.9 in the725

experiments.

To further evaluate the superiority of the PBI scheme, we run the MOEA/D-

PBIL with the three different initialization schemes, namely A1 with Kim’s

method, A2 with Xing’s method and A3 with PBI(0.9), on the above six selected

instances, results of Student’s t-test shown in Table 2.730

In Table 2, symbols ‘+’, ‘−’, and ‘∼’ in column A↔B indicate that algo-

rithm A is significantly better than, significantly worse than, and statistically

equivalent to algorithm B, respectively, in terms of the IGD. It is clear that A3

performs better than A2 and A1 in all instances. This also demonstrates that

by providing the algorithm with a diversified and feasible population, the PBI735

scheme helps to guide the search towards the true PF.
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Table 3: Results of mean(SD) w.r.t. IGD, GD and MS (the best results are in bold) from A3

and A4.

Network
IGD GD MS

A3 A4 A3 A4 A3 A4

Rnd-1 2.66(1.65) 1.85(1.39) 0.67(0.84) 0.47(0.74) 0.86(0.11) 0.83(0.02)

Rnd-2 3.51(1.91) 1.96(1.36) 0.16(0.49) 0.08(0.35) 0.76(0.26) 0.89(0.10)

Rnd-3 0.06(0.11) 0.02(0.03) 0.04(0.10) 0.00(0.00) 0.98(0.41) 0.99(0.02)

Rnd-4 2.95(1.01) 2.79(0.69) 1.76(1.23) 1.58(0.66) 0.69(0.14) 0.78(0.06)

Rnd-5 1.21(0.23) 0.90(0.23) 0.73(0.20) 0.72(0.25) 0.79(0.07) 0.87(0.08)

Rnd-6 0.12(0.06) 0.11(0.07) 0.15(0.25) 0.10(0.21) 1.00(0.00) 1.00(0.00)

Rnd-7 1.43(0.30) 1.37(0.13) 1.12(0.85) 0.62(0.38) 0.90(0.03) 0.99(0.01)

Rnd-8 0.89(0.57) 0.69(0.45) 1.10(0.62) 0.79(0.63) 0.88(0.05) 0.90(0.05)

7copy 0.05(0.03) 0.03(0.02) 0.17(0.07) 0.13(0.02) 0.99(0.01) 0.99(0.01)

15copy 0.16(0.08) 0.12(0.05) 0.34(0.17) 0.22(0.04) 0.97(0.01) 0.97(0.01)

5.4. The effectiveness of the population updating rule

To evaluate the effectiveness of the PSPU rule (Subsection 4.3), we compare

two MOEAs regarding the optimization results obtained, as listed below.

• A3: MOEA/D [41] with the PBI method, where the original population740

updating rule is utilized

• A4: A3 with the PSPU rule

The optimization results in terms of the IGD, GD and MS are reported in

Table 3. Not surprisingly, A4 clearly outperforms A3 regarding all measures in

almost all instances, indicating the effectiveness of the PSPU rule. The design745

of the proposed rule is in compliance with nature of the MOP being tackled,

and to deal with the issue that the search space is dominated by infeasible

individuals. Feasible individuals are difficult to generate during the evolution.

So, when promising individuals appear, if no limitation is defined to update the

population, their genes could be rapidly spread over the population within a few750

generations. The population diversity then would be lost quickly. The PSPU

rule limits the number of SOSPs to be updated, to maintain a certain level of

diversity while optimizing.
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Table 4: Student’s t-test results of A3 and A4

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 7copy 15copy

A4 ↔ A3 + + + ∼ ∼ + ∼ + ∼ +

Student’s t-test is conducted to compare A3 and A4, regarding IGD, GD

and MS, and the results are shown in Table 4. A4 performs at least no worse,755

often better than A3 (in more than half of the instances). This confirms the

contribution of the PSPU rule to the proposed algorithm.

5.5. The effectiveness of the HR scheme

The HR scheme described in Subsection 4.4 adaptively uses one of the two

reproduction methods, from MOEA/D and PBIL, to strike a balance between760

global exploration and local exploitation during different stages of the evolution.

The effectiveness of the HR scheme is evaluated by comparing the following two

MOEAs.

• A4: Original MOEA/D with the PBI method and the PSPU rule

• A5: A4 with the HR scheme, i.e. the proposed MOEA/D-PBIL in this765

paper

The results of IGD, GD, MS in Table 5, indicate that A5 outperforms A4 in

9 instances regarding IGD and GD and 6 instances in terms of MS, respectively.

This demonstrates that the HR scheme in A5 helps to provide a decent global

exploration and local exploitation during the evolution. On the other hand, the770

global exploration ability gradually decreases in the original MOEA/D which

only utilizes genetic operators for offspring reproduction, thus results into local

optima solutions.

Results of t-test are in Table 6. A5 performs outstandingly better than A4,

indicating the HR scheme greatly improves the performance of the proposed775

MOEA/D-PBIL.
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Table 5: Results of mean(SD) (the best are in bold) from A4 and A5

Network
IGD GD MS

A4 A5 A4 A5 A4 A5

Rnd-1 1.85(1.39) 0.00(0.00) 0.47(0.74) 0.00(0.00) 0.83(0.02) 1.00(0.00)

Rnd-2 1.96(1.36) 0.00(0.00) 0.08(0.35) 0.00(0.00) 0.89(0.10) 1.00(0.00)

Rnd-3 0.02(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.99(0.02) 1.00(0.00)

Rnd-4 2.79(0.69) 0.85(0.26) 1.58(0.66) 1.17(0.48) 0.78(0.06) 0.81(0.08)

Rnd-5 0.90(0.23) 1.05(0.55) 0.72(0.25) 0.54(0.22) 0.87(0.08) 0.82(0.01)

Rnd-6 0.11(0.07) 0.00(0.00) 0.10(0.21) 0.00(0.00) 1.00(0.00) 1.00(0.00)

Rnd-7 1.37(0.13) 1.14(0.40) 0.62(0.38) 0.42(0.37) 0.99(0.01) 0.99(0.01)

Rnd-8 0.69(0.45) 0.60(0.43) 0.79(0.63) 0.63(0.52) 0.90(0.05) 0.91(0.04)

7copy 0.03(0.02) 0.02(0.01) 0.13(0.02) 0.11(0.01) 0.99(0.01) 0.99(0.01)

15copy 0.12(0.05) 0.09(0.02) 0.22(0.04) 0.22(0.04) 0.97(0.01) 0.98(0.01)

Table 6: Student’s t-test results of A4 and A5

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 7copy 15copy

A5 ↔ A4 + + + + ∼ + ∼ ∼ + ∼

5.6. The overall performance evaluation

The proposed MOEA/D-PBIL algorithm is finally thoroughly investigated

through performance comparisons against the following seven state-of-the-art

MOEAs in the literature.780

• NSGA-II: As one of the classical MOEAs originally proposed by Deb et

al [42], NSGA-II is featured with three significant features, a fast non-

dominated sorting approach, an elitism approach and a parameter-free

diversity preservation scheme. We set the population size N = 100, the

crossover rate pc = 0.9 and the mutation rate pm = 1/L, where L is the785

individual length.

• NSGA-II-Xing: With two improvements, i.e. Xing’s initialization method

(in Subsection 5.3) and an individual delegation scheme in favor of diversi-

fication, NSGA-II-Xing is able to gain promising optimization performance

for the bi-objective MOP with network coding in our previous work [40].790
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• SPEA2: The strength Pareto evolutionary algorithm 2 [43] is another

widely recognized MOEA. We denote the archive size by Narc and set

Narc = N = 100, pc = 0.9 and pm = 1/L, respectively.

• MOPSO: The multiobjective algorithm based on particle swarm intel-

ligence [81] is well-known and widely used for performance comparison.795

A population of 100 particles is maintained. We set pm = 1/L and 30

divisions for the adaptive grid.

• MOPBIL1: the multiobejctive PBIL proposed by Kim et al. has been re-

ported to outperform a number of GA-based MOEAs when solving MOPs

in the context of the robot soccer system [82]. When updating the i-th800

PV, a solution randomly selected from the archive is used. Let the num-

ber of PVs, the learning rate, and the amount of shift in the mutation

be denoted by nPV , α, and σ, respectively. We set N = 100, Narc = 50,

nPV = 100, α = 0.15, pm = 0.02, and σ = 0.2.

• MOPBIL2: the first multiobejctive PBIL presented by Bureerat and805

Sriworamas [83]. The i-th PV is updated by 5 solutions randomly selected

from the archive. We set N = 100, Narc = 50, nPV = 100, α = 0.15,

pm = 0.02, and σ = 0.2.

• MOEA/D: The original MOEA/D proposed by Zhang and Li (see Sub-

section 3.1 for details) [41]. We set N = 100, pc = 0.9 and pm = 1/L,810

respectively.

• MOEA/D-PBIL: The improved MOEA/D proposed in this paper. We

set N = 100, Pinit = 0.9, r = 11, pc = 0.9 and pm = 1/L, respectively.

Results of IGD, GD, MS are collected in Tables 7, 8, and 9, respectively.

In terms of IGD and GD, MOEA/D-PBIL performs the best, obtaining the815

minimum IGD values in 8 instances (except Rnd-4 and Rnd-7 in Table 7) and

the minimum GD values in 9 instances (except Rnd-4 in Table 8). This indi-

cates that the nondominated solutions of MOEA/D-PBIL are well diversified
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Table 7: Results of IGD (Best results are in bold) from the eight algorithms under comparison

Network Rnd-1Rnd-2Rnd-3Rnd-4Rnd-5Rnd-6Rnd-7Rnd-87copy15copy

NSGA-II
0.00 0.00 0.00 2.10 1.19 0.01 1.27 1.07 0.03 2.70

(0.00) (0.00) (0.00) (1.06) (0.30) (0.01) (0.29) (0.18) (0.01) (0.60)

NSGA-II-Xing
0.00 0.00 0.00 0.85 1.14 0.00 1.21 1.09 0.03 2.56

(0.00) (0.00) (0.00) (0.26) (0.22) (0.00) (0.39) (0.20) (0.01) (0.53)

SPEA2
5.27 5.68 0.92 3.97 1.73 2.07 3.57 1.46 0.08 2.20

(0.54) (0.86) (0.24) (3.39) (0.49) (1.13) (1.49) (0.36) (0.03) (0.61)

MOPSO
3.08 3.51 0.82 2.20 1.97 1.77 2.65 3.78 0.54 7.30

(0.54) (1.87) (0.36) (0.39) (0.21) (0.34) (0.44) (0.33) (0.08) (1.39)

MOPBIL1
0.00 0.44 0.00 0.69 1.15 1.08 1.11 1.07 0.05 3.15

(0.00) (0.17) (0.00) (0.59) (0.71) (0.48) (0.63) (0.58) (0.02) (2.63)

MOPBIL2
0.42 0.63 0.00 0.78 1.24 0.82 1.54 1.07 0.06 3.02

(0.31) (0.23) (0.00) (0.65) (0.67) (0.26) (0.81) (0.59) (0.01) (1.87)

MOEA/D
3.26 6.94 0.24 4.64 3.71 2.52 3.78 5.23 0.50 2.86

(0.34) (0.78) (0.09) (0.44) (0.43) (0.59) (0.76) (0.23) (0.41) (2.53)

MOEA/D-PBIL
0.00 0.00 0.00 0.83 1.05 0.00 1.14 0.60 0.02 0.09

(0.00) (0.00) (0.00) (0.41) (0.55) (0.00) (0.40) (0.43) (0.01) (0.02)

and converged closer to the true PF, compared with those of other algorithms.

MOEA/D-PBIL also achieves the best coverage of the true PF, and obtains the820

highest MS in 8 instances (except Rnd-4 and Rnd-5 in Table 9). According to

these three performance indicators, MOEA/D-PBIL gains the best performance

in all instances due to the PBI scheme, PSPU rule, and HR scheme, which leads

to a balanced trade-off between the global exploration and local exploitation,

achieving better diversity and convergence at the same time.825

Student’s t-test between the 8 algorithms in Table 10 indicates that MOEA/D-

PBIL is the best algorithm among all algorithms, performing no worse, and

usually better than the others in most of the instances.

The results of ACT in Table 11 show that compared with the others, the orig-

inal MOEA/D and MOEA/D-PBIL achieve the smallest ACTs in all instances.830

This is because the computational complexity of addressing multiple SOSPs

simultaneously is usually much lower than solving a MOP directly [41]. The

original MOEA/D is faster than MOEA/D-PBIL in most of the instances, since

the latter with a number of complicated mechanisms requires relatively longer
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Table 8: Results of GD (Best results are in bold) from the eight algorithms under comparison

Network Rnd-1Rnd-2Rnd-3Rnd-4Rnd-5Rnd-6Rnd-7Rnd-87copy15copy

NSGA-II
0.00 0.00 0.00 0.87 0.81 0.01 1.59 1.49 0.27 2.02

(0.00) (0.00) (0.00) (0.98) (0.16) (0.01) (0.82) (0.19) (0.07) (0.35)

NSGA-II-Xing
0.00 0.00 0.00 0.81 0.88 0.00 1.36 1.29 0.21 1.82

(0.00) (0.00) (0.00) (0.79) (0.19) (0.00) (0.89) (0.25) (0.07) (0.27)

SPEA2
0.31 0.40 0.10 2.75 0.94 1.53 0.80 0.41 0.37 2.02

(0.53) (0.68) (0.14) (2.54) (0.23) (1.04) (0.99) (0.27) (0.14) (0.37)

MOPSO
0.56 0.71 0.19 2.93 1.54 1.72 1.96 2.56 1.24 3.26

(0.62) (0.79) (0.13) (1.00) (0.35) (0.22) (0.63) (0.53) (0.16) (0.22)

MOPBIL1
0.00 0.02 0.00 0.35 0.82 0.84 2.20 1.05 0.30 1.92

(0.00) (0.02) (0.00) (0.33) (0.39) (0.57) (1.52) (0.75) (0.24) (1.02)

MOPBIL2
0.30 0.05 0.00 0.60 0.87 0.75 2.05 1.03 0.27 1.88

(0.37) (0.02) (0.00) (0.53) (0.41) (0.32) (1.79) (0.86) (0.19) (1.15)

MOEA/D
2.33 2.13 1.62 3.85 1.30 1.84 3.07 2.30 2.22 3.01

(0.42) (1.11) (0.37) (0.22) (0.18) (0.71) (0.34) (0.18) (0.20) (0.14)

MOEA/D-PBIL
0.00 0.00 0.00 1.17 0.54 0.00 0.42 0.63 0.11 0.22

(0.00) (0.00) (0.00) (0.48) (0.22) (0.00) (0.37) (0.52) (0.01) (0.04)

Table 9: Result of MS (Best results are in bold) from the eight algorithms under comparison

Network Rnd-1Rnd-2Rnd-3Rnd-4Rnd-5Rnd-6Rnd-7Rnd-87copy15copy

NSGA-II
1.00 1.00 1.00 0.81 0.85 0.98 0.90 0.63 0.99 0.54

(0.00) (0.00) (0.00) (0.08) (0.07) (0.01) (0.04) (0.02) (0.01) (0.04)

NSGA-II-Xing
1.00 1.00 1.00 0.92 0.90 1.00 0.91 0.86 0.99 0.55

(0.00) (0.00) (0.00) (0.04) (0.04) (0.00) (0.03) (0.02) (0.01) (0.03)

SPEA2
0.99 0.99 0.99 0.86 0.87 0.77 0.90 0.84 0.99 0.57

(0.04) (0.04) (0.01) (0.06) (0.07) (0.09) (0.02) (0.03) (0.01) (0.06)

MOPSO
0.69 0.74 0.82 0.63 0.53 0.71 0.68 0.63 0.47 0.71

(0.13) (0.03) (0.08) (0.01) (0.06) (0.03) (0.03) (0.02) (0.04) (0.03)

MOPBIL1
1.00 0.97 1.00 0.98 0.89 0.81 0.94 0.85 0.98 0.50

(0.00) (0.01) (0.00) (0.02) (0.06) (0.09) (0.03) (0.08) (0.02) (0.13)

MOPBIL2
1.00 0.95 1.00 0.96 0.87 0.84 0.93 0.85 0.98 0.51

(0.00) (0.02) (0.00) (0.03) (0.08) (0.12) (0.03) (0.09) (0.01) (0.11)

MOEA/D
0.67 0.72 0.80 0.63 0.52 0.71 0.51 0.63 0.47 0.69

(0.11) (0.03) (0.07) (0.01) (0.05) (0.04) (0.01) (0.02) (0.04) (0.04)

MOEA/D-PBIL
1.00 1.00 1.00 0.96 0.82 1.00 0.99 0.91 0.99 0.98

(0.00) (0.00) (0.00) (0.03) (0.10) (0.00) (0.01) (0.04) (0.01) (0.01)
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Table 10: Student’s t-test results of the eight algorithms under comparison

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5

MOEA/D-PBIL ↔ NSGA-II ∼ ∼ ∼ + +

MOEA/D-PBIL ↔ NSGA-II-Xing ∼ ∼ ∼ + +

MOEA/D-PBIL ↔ SPEA2 + + + + +

MOEA/D-PBIL ↔ MOPSO + + + + +

MOEA/D-PBIL ↔ MOPBIL1 ∼ + ∼ ∼ +

MOEA/D-PBIL ↔ MOPBIL2 + + ∼ ∼ +

MOEA/D-PBIL ↔ MOEA/D + + + + +

Rnd-6 Rnd-7 Rnd-8 7copy 15copy

MOEA/D-PBIL ↔ NSGA-II ∼ + + + +

MOEA/D-PBIL ↔ NSGA-II-Xing ∼ + + ∼ +

MOEA/D-PBIL ↔ SPEA2 + + + + +

MOEA/D-PBIL ↔ MOPSO + + + + +

MOEA/D-PBIL ↔ MOPBIL1 + ∼ + + +

MOEA/D-PBIL ↔ MOPBIL2 + + + + +

MOEA/D-PBIL ↔ MOEA/D + + + + +

time to improve the optimization performance. MOEA/D-PBIL compared with835

other MOEAs (except the original MOEA/D) demonstrates its efficiency.

6. Conclusions

This paper formulated a multi-objective optimization problem in the con-

text of multicasting with network coding, where the three objectives, namely

the coding cost, link cost and the end-to-end delay are minimized simultaneous-840

ly. By analyzing the property of the search space, population-based incremental

learning (PBIL) components were incorporated into the evolutionary framework,

and a modified multi-objective evolutionary algorithm based on decomposition

(MOEA/D-PBIL) was proposed. Three performance-enhancing schemes were

developed, namely, the probability-based initialization scheme, the hybridized845

reproduction operator and the problem-specific population updating rule. The

first scheme is able to offer a feasible and diversified initial population; the sec-

ond one is in favor of avoiding the prematurity effect; and the last one helps to

balance the global exploration and local exploitation during the search. The ex-
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Table 11: Result of ACT (Sec.) (Best results are in bold) from the eight algorithms under

comparison

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5

NSGA-II 15.51 23.83 60.52 60.93 92.33

NSGA-II-Xing 15.08 23.53 58.85 60.95 90.50

SPEA2 9.66 17.73 34.01 48.87 77.55

MOPSO 28.38 25.94 27.38 178.60 228.54

MOPBIL1 9.21 17.22 36.71 62.72 80.05

MOPBIL2 9.36 18.90 36.86 64.37 86.03

MOEA/D 5.02 6.88 17.37 16.59 31.05

MOEA/D-PBIL 5.64 7.06 17.15 34.23 34.34

Rnd-6 Rnd-7 Rnd-8 7copy 15copy

NSGA-II 67.55 195.37 265.49 95.57 909.79

NSGA-II-Xing 67.37 195.24 276.85 94.22 884.97

SPEA2 44.33 223.00 239.36 87.50 938.81

MOPSO 26.84 501.15 782.50 182.00 1603.45

MOPBIL1 45.95 148.50 289.39 91.11 869.67

MOPBIL2 48.61 146.36 298.66 93.80 846.94

MOEA/D 18.03 37.31 66.59 29.79 210.79

MOEA/D-PBIL 17.93 41.35 89.05 40.12 711.45

40



perimental results demonstrated that with the three new schemes, the proposed850

MOEA/D-PBIL algorithm gained the best optimization performance in terms of

performance indicators, namely the inverted generational distance, generational

distance, maximum spread, t-test results, compared with seven state-of-the-art

MOEAs in the literature on the problem under consideration.
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