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Abstract

Efficient truck dispatching strategies are paramount in container terminal op-

erations. The quality of these strategies heavily relies on accurate and expe-

dient simulations, which provide a crucial platform for training and evaluating

dispatching algorithms. In this study, we introduce data-driven machine learn-

ing methods to enhance container port truck dispatching simulation accuracy.

These methods effectively surrogate the intersections within the simulation,

thereby increasing the accuracy of simulated outcomes without imposing sig-

nificant computational overhead in sparse data environments. We incorporate

three data-driven learning methods: genetic programming (GP), reinforcement

learning (RL), and a GP and RL hybrid heuristic (GPRL-H) approach. The

GPRL-H method proved the most efficacious through a detailed comparative

study, striking an effective balance between simulation accuracy and computa-

tional efficiency. It reduced the error rate of simulation from approximately 35%

to about 7%, while also halving the simulation time compared to the RL-based

method. Our proposed method also does not rely on precise Global Position-

ing System (GPS) data to simulate truck operations within a port accurately.
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Demonstrating robustness and adaptability, this approach holds promise for ex-

tending beyond port operations to improve the simulation accuracy of vehicle

operations in various scenarios characterized by sparse data.

Keywords: Intelligent Intersection, Transport Simulation, Reinforcement

Learning, Genetic Programming, Port Optimization

1. Introduction

The importance of container shipping in world trade cannot be overstated,

particularly in this era of globalization (Chuang et al., 2010). Container ship-

ping volumes have been increasing at an unprecedented pace, challenging the

capacities of container ports to keep up the rapid growth(Notteboom, 2016).

In response, container ports constantly strive to improve turnover efficiency,

aiming to accommodate more ships and optimize their operations.

A critical factor limiting ports’ efficiency is the truck dispatching strategy.

Container transport operations are largely dependent on container trucks; as

such, the development of intelligent truck dispatching algorithms has been a

priority for many port companies in their quests to boost efficiency (He et al.,

2015). In this context, simulators play a crucial role. They are instrumental

in the training and evaluation of dispatching algorithms, and their performance

directly influences the efficacy of the resultant strategies.

However, we observed that regular event-based simulations (Hassan, 1993),

which overlook some specific route/junction related regulations, often yield in-

flated performance estimates. Our comparative analysis of real port operation

data and simulated results revealed a key discrepancy: the time consumed by

trucks at intersections, typically ignored in event-based simulations, was signif-

icantly underestimated. In these simulations, trucks are moved from one crane

to another, disregarding potential delays at intersections.

Initially, a time-stepped simulation was developed to track truck actions

and interactions at every time step (Fig. 1). This approach facilitates com-

prehensive tracking of trucks’ positions, resulting in more accurate performance
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Figure 1: The Difference between Time-Stepped and Event-Based Simulation

estimation. However, time-stepped simulations present a dilemma regarding the

setting of the time step. If the time step is excessively large, the precision of

the truck route simulation will be compromised. Conversely, if the time step

is too small, the computational cost becomes prohibitively high (Ramirez &

Belytschko, 1989). Our findings indicate that a time-stepped simulator with a

one-second time step is approximately 200 times more computationally intensive

than an event-based simulation in the context of container truck dispatching.

The significant computational overhead primarily arises from the need to accu-

rately assess a truck’s passage through an intersection, requiring evaluation of

the truck’s collision relationship at each time step. This computational cost is

particularly prohibitive when training auto-generated truck dispatching strate-

gies, which often necessitate tens of thousands of simulation runs (Chen et al.,

2020).

Several state-of-the-art methods have been introduced to apply machine

learning techniques in analyzing vehicle behavior at junctions, resulting in ac-

curate predictions (Bagdatli & Dokuz, 2021; Yu & Zhou, 2019; Morgan et al.,

2019). However, much of the research in port truck simulation for dispatching

or scheduling rule training still relies on traditional discrete-event methods or

simulation software (Afrapoli et al., 2019; Chen et al., 2024; Wei et al., 2023).

This prevailing approach often overlooks a deep analysis of simulator accuracy

and truck behavior at junctions. Consequently, while trained models may per-
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form well in simulation environments, their effectiveness in real-world scenarios

is limited. Therefore, this paper pioneers the integration of machine learning-

driven intersection nodes into an event-based simulation model. By doing so,

it addresses the limitations of traditional simulations in container ports, par-

ticularly in neglecting the intricacies of truck travel between cranes (Dragović

et al., 2017), thereby enhancing simulation accuracy. Importantly, this frame-

work achieves these advancements without significantly increasing computa-

tional costs, rendering it suitable for seamless integration into truck dispatching

or crane scheduling training in container ports.

Figure 2: The Difference Between Traditional and Proposed Simulation

In the revised framework, the movement of trucks has been restructured to

traverse node by node, departing from the conventional approach of moving

directly from one crane to another (refer to Fig. 2). This enhancement entails

deploying intelligent intersection nodes that autonomously compute the passage

time of trucks at intersections. These computations are grounded in analyz-

ing historical truck movement data and environmental conditions. A notable

challenge in container port operations is the lack of reliable Global Positioning

System (GPS) data for trucks. When such data is available, it often requires ex-

tensive pre-processing due to signal interference caused by the containers, which

can obstruct satellite communication. Learning-based methodologies have been

integrated into the simulation framework to address this issue. These methods

are designed to deduce truck movements at intersections by leveraging existing
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operational data from the port, thereby compensating for the limitations of GPS

data.

This paper compares two learning-based methods - Genetic Programming

(GP) and Reinforcement Learning (RL) - to generate estimates of truck passing

times at intersections. Our findings reveal that while RL outperforms GP in

accuracy, it is also significantly more computationally intensive. To optimize

this trade-off, we propose a hybrid method combining the advantages of GP

and RL, augmented by an intersection importance analysis framework. Utiliz-

ing data insights, we rank all intersections’ influence on simulation accuracy.

Consequently, we designate the more critical intersections to be controlled by

RL, while GP manages the remainder.

This innovative approach successfully strikes a balance between performance

and computational cost. Furthermore, it enables us to generate more precise

performance estimates and develop more efficient truck dispatching strategies.

Importantly, our method can be readily applied to other transportation sim-

ulation challenges, significantly improving simulation accuracy even without

detailed GPS location and other precise operation data.

The primary contributions of this paper are as follows:

• Introduction of machine learning-based intersection nodes in container

port truck dispatching simulation, significantly improving simulation ac-

curacy in sparse data environments.

• Proposal for integrating GP, RL, and a novel GPRL-H hybrid method to

simulate truck actions at these intersections. This hybrid method achieves

a preferable balance between simulation accuracy and computational effi-

ciency, demonstrating robust performance even in sparse data scenarios.

• Design of timely rewards in traditional RL to effectively address the issue

of sparse rewards in real-world simulation scenarios.

• Provision of experimental evidence showcasing the superior performance

of the proposed methods.
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The rest of this paper is organized as follows. Section 2 reviews related

works and provides background information on the marine container terminal

truck dispatching simulation problem. Section 3 introduces the dynamic truck

dispatching and the simulation problem. The proposed learning-based methods

are delineated in Section 4. Section 5 presents the experimental results, followed

by a discussion in Section 6, which offers insights into the strong performance

of our new framework. Finally, conclusions are drawn in Section 7.

2. Background and Literature Review

2.1. Container Port Truck Dispatching

A container port is a pivotal transfer station for importing and exporting

goods in containers by shipping (Bonacich & Wilson, 2008). It functions pri-

marily as an intermediary for container transfer between the ship and the hin-

terland. The container trucks, much like blood in the human body, facilitate

smooth transformations of these operations. They pick up containers from quay

cranes (QCs) and yard cranes (YCs) and transport them to the appropriate lo-

cations (Luo & Wu, 2020). Consequently, an efficient truck dispatching system

is vital for the operation of ports, as all transportation activities rely heavily on

trucks.

Increasingly, research is being directed towards improving the efficiency of

truck dispatching (Bai et al., 2023). There are two primary strategies for truck

dispatching - static truck dispatching and dynamic truck dispatching. While

static dispatching calculates a pre-determined truck dispatching plan for a given

period (Schulte et al., 2017), dynamic dispatching dispatches a truck as soon as

one becomes idle (Poss & Raack, 2013). Despite the inability of the dynamic

method to guarantee optimality, its flexibility and robustness make it highly

favored in real port applications (Chen et al., 2022).

Regardless of the approach, both static and dynamic truck dispatching re-

quire the support of simulators for strategy evaluation and performance evo-

lution (Moradi Afrapoli, 2019). This is particularly crucial for learning-based
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strategies, which demand tens of thousands of training and testing iterations

in simulators for continuous performance improvement (Zhang et al., 2022).

Therefore, a quick and accurate simulator is indispensable for training and test-

ing strategies, enhancing truck dispatching efficiency in container terminals.

2.2. Truck Dispatching Simulation

Given the critical importance of simulation in optimizing container truck

dispatching within ports, previous research has extensively utilized simulation-

supported optimization methods to address this challenge (Mirzaei-Nasirabad

et al., 2023; Tang et al., 2024; Hu et al., 2024). However, the predominant use

of event-based simulations, while offering simplicity and speed, has neglected

the complexities of road truck travel.

Event-based simulations estimate travel time by calculating distances be-

tween start and end positions and dividing them by fixed or fluctuating speeds

(Juan et al., 2013). Unfortunately, these simulations overlook crucial actions

during travel, particularly truck interactions at intersections, which significantly

impact simulation accuracy (Arvin et al., 2020).

Figure 3: Examples of Intersection Actions

As depicted in Fig. 3, scenarios such as trucks waiting to cross intersections

when others are present or approaching highlight the complexity. While these

examples consider only two trucks, complexity amplifies with additional vehicles
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involved.

This complexity is pivotal in container port truck dispatching simulations

and necessitates precise modeling of truck routes and actions at intersections.

Ideally, time-stepped simulations would be employed to track truck statuses at

each time point (Gould et al., 2007). However, few studies have adopted this

approach due to its computational intensity and challenges in algorithm training

and strategy optimization (Hu & Mohamed, 2013).

Several modified event-based methods have been proposed to simulate inter-

sections, improving simulation accuracy while significantly reducing simulation

time compared to time-stepped simulations (Xu et al., 2014). These methods

are particularly suitable for training and evaluating optimization algorithms.

However, they rely on accurate vehicle data at intersections to build intersection

models (Harahap et al., 2020), posing challenges for application in environments

like container ports where precise GPS data may be unavailable.

Thus, this paper proposes a learning-based approach to constructing inter-

section models for simulation using sparse data, aiming to accurately repre-

sent port traffic in scenarios where data availability is limited. Our method

improves simulation accuracy without imposing significant computational over-

head in sparse data environments. The following sections present two potential

learning models within our framework.

2.3. Genetic Programming

Genetic Programming (GP), first introduced by Koza in the 1990s (Koza,

1994), has been widely recognized for its ability to generate solutions to complex

problems automatically. It utilizes principles of natural evolution, particularly

the notions of mutation, crossover, and selection, to evolve populations of solu-

tions over time (Ahvanooey et al., 2019).

Over the years, researchers have successfully applied GP in many data-driven

applications, demonstrating its capability to extract valuable knowledge from

diverse data sets (Banzhaf et al., 1998; Bi et al., 2021). Notable examples include

optimizing the control of autonomous vehicles (Ardeh et al., 2022), predicting
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financial market trends (Christodoulaki et al., 2022), classifying images (Fan

et al., 2022), and dynamic truck dispatching (Chen et al., 2019).

In container terminal simulation, despite the absence of precise GPS data for

direct learning of truck movements at intersections, GP capitalizes on existing

data as a reference point, persistently probing intersection passing rules during

its evolutionary progression to ascertain the correct protocols. Throughout this

evolution, GP operates independently of prior knowledge of either the rule or

the intersection passing data, instead utilizing the ultimate truck traveling time

as a guiding estimator to steer it towards accurate prediction (Elhenawy et al.,

2014). This inherent flexibility positions GP as an appealing choice for rule

generation within our proposed data-driven, learning-based intersection nodes.

This choice aligns with our broader objective: to optimize the efficiency

and accuracy of truck dispatching simulations while minimizing computational

costs. By leveraging the power of GP, we can effectively model intersection

behaviors in event-based simulation, advancing the precision of container port

truck dispatching strategies.

2.4. Reinforcement Learning

Reinforcement learning (RL), a significant subfield of machine learning, fo-

cuses on how an agent should act in an environment to maximize a cumulative

reward (Sutton et al., 1998). This concept originates from behavioral psychol-

ogy and has gained immense popularity in recent decades due to its successful

applications across various complex problems.

Since its inception, RL has evolved significantly with the advent of deep re-

inforcement learning (DRL), which integrates deep learning and RL. DRL has

been instrumental in solving numerous high-dimensional problems that were tra-

ditionally challenging for ordinary RL (Arulkumaran et al., 2017). Noteworthy

applications of RL and DRL span various domains, such as traffic controlling

(Lee et al., 2020), metaheuristic designing (Yi et al., 2022), and dynamic re-

source allocation (Yu et al., 2021).

Diverging from conventional supervised learning methods, which typically
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predict vehicle behavior at intersections based on models trained with real vehi-

cle intersection passing data (Shirazi & Morris, 2017), RL brings an innovative

approach to the table. Initially, RL hypothesizes a rule for truck passing be-

havior, given the current state (Yung & Ye, 1999). This tentative rule is then

iteratively adjusted via a reward mechanism, which, in this context, is the real

travel time of the truck. This continuous feedback loop guides RL in refining

the predicted rule until it culminates in a highly accurate model for estimating

truck passing times.

Given the substantial learning capabilities of RL, we elected to employ it

as a robust contender in predicting actions at intersections within our simula-

tions. However, even though RL has so many successful applications in truck

dispatching (Jin et al., 2023), berth allocation (Lv et al., 2024), and ship traffic

scheduling (Zhang et al., 2024), it has rarely been used in boosting simulation

accuracy. All the performance results of these results of these dispatching are

based on the simulation. If the simulation is incorrect, how can we trust the

results? RL offers more than merely the potential for accurate simulation of in-

tersection behaviors; it also provides an avenue for revealing novel, data-driven

insights into truck dispatching. This ability, in turn, can significantly enhance

the simulation accuracy and decision-making process in container port truck

dispatching.

Recognizing the significant capabilities of RL in predictive modeling, we

chose to integrate RL into our simulation framework as a robust method for

predicting actions at intersections. While RL has found numerous successful

applications in truck dispatching (Jin et al., 2023; de Carvalho & Dimitrakopou-

los, 2021), jobshop scheduling (Xu et al., 2024) and vehicle routing (Hildebrandt

et al., 2023; Koh et al., 2020), its use in enhancing simulation accuracy, par-

ticularly in the context of container port truck dispatching, remains relatively

unexplored. This gap presents a notable opportunity, as the performance of

dispatching and routing strategies heavily relies on the accuracy of underlying

simulations. With RL, there is the potential for precise simulation of intersection

behaviors and for uncovering novel, data-driven insights into truck dispatching.
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These insights can significantly refine the decision-making process in container

port management, leading to more efficient and effective strategies. The capa-

bility of RL to transcend mere accuracy in simulation and contribute to deeper

understanding and optimization of dispatching processes underscores its value

in our simulation model.

Figure 4: Sample Map of Container Port

3. Problem Description

The primary aim of a container port is to maximize the number of ships

served within a given time period, thereby increasing the port’s turnover effi-

ciency. As illustrated in Fig. 4, container ports comprise two significant areas

– the berths and the yards – linked by container trucks.

Fundamentally, there are two primary operations within a container termi-

nal: loading and unloading containers onto or from ships at the berths and to

or from the containers in the yards with the help of container trucks. There are

two prevalent container sizes: the small Twenty-Foot Equivalent Unit (TEU)

and the large container, equivalent to two TEUs. Each truck can carry one

large container or two small containers. Typically, a small container is bundled

with another small container to form a standard task, while a large container
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is treated as a task. However, in specific scenarios, dynamic truck dispatching

algorithms may be necessitated to dispatch two separate small containers when

possible.

Throughout loading and unloading operations, trucks convey containers be-

tween yards and ships. QCs are tasked with loading or unloading containers

from and onto ships, while YCs manage the yard operations. QCs can handle

one large container or two small containers in one action, whereas YCs can only

operate one small or large container due to differences in clamp types. The fact

that QCs and YCs can only operate containers from one truck at a time results

in waiting periods and congestion under these cranes. Moreover, as illustrated

by the passage direction arrows in Fig 4, trucks must comply with the port’s

traffic regulations. Certain routes permit bidirectional traffic, whereas others

allow for unidirectional movement only. This regulatory structure is critical for

maintaining a safe and efficient circulation of trucks within the port.

Table 1: Example of Work Instructions

ID ContainerID Src Dst Type TEUsTonTwinID

1731 FCIU3705890 CR12 J4 DSCH 2 17 0

1287 ECMU9249162 Q2 CR1 LOAD 1 23 1514

137 NYKU2797417 Q5 CR7 LOAD 2 15 0

1514 TCLU5546292 CR12 CR15 DSCH 1 19 1287

All container operations adhere to pre-designed work instructions (tasks)

as outlined in Table 1. Each task is identified by an ’ID’, and ’ContainerID’

represents the unique identifier for each container involved. ’Src’ and ’Dst’

denote the container’s source and destination locations, respectively. Tasks

are categorized into ’DSCH’ for unloading from ship to yard and ’LOAD’ for

loading from yard to ship. The size of the container is indicated by ’TEUs’,

while ’Ton’ represents its weight. Typically, containers are either 40-foot or

20-foot, allowing each truck to carry either two small or one large container.
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To accommodate this, small containers are paired to create a combined ’bind

task’, identified by ’TwinID’. Each task contains unique information and must

be executed in sequence to maintain a balanced ship’s allotment. However, for

unloading tasks, the sequence can be swapped within a certain number (sn) to

optimize operations.

Considering the crucial role of maintaining continuous operation of the QCs

for optimal ship operation efficiency, the QC waiting time (QCW) (Chen et al.,

2016) has emerged as a vital metric for evaluating dispatching strategies. Let

sij and eij denote the start and end times, respectively, for task j of QC i, with

ni representing the total number of tasks for QC i and m being the number of

QCs. The total QC waiting time can be represented in Equation (1). Another

important metric is the number of TEUs processed per hour (TEU/h, TPH)

(Lubulwa et al., 2010) for the entire port. This metric directly impacts the ship

docking time and overall turnover efficiency of the port. Let n be the total

number of tasks, sizei represent the size of task i, E denote the end times for

the task set, and S represent the start times for the task set. The TPH can

then be expressed in Equation (2).

These two metrics are paramount for port companies’ operational endeavors

and are widely adopted across numerous research focusing on optimizing port

operations. Consequently, in our paper, we consider the computational error

rate of these two metrics as the primary benchmark for comparing the perfor-

mance of all algorithms. By aligning our evaluation with the industry-standard

metrics, we ensure the relevance and applicability of our findings to real-world

port operations.

QCW =

m∑
i=1

n∑
j=2

sij − ei(j−1) (1)

TPH =

∑n
i=1 sizei

maxE −minS
(2)

Given the formidable challenges of testing dispatching strategies in real-

world scenarios, most research efforts have turned to surrogate simulators.
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These replicate the port operation process and train and test dispatching al-

gorithms (Jackson et al., 2024; Raza et al., 2024; Sarmiento et al., 2019). Work

instructions are typically input into these simulators, which simulate the en-

tire task completion process. The dispatching algorithms within the simulator

distribute trucks, subsequently outputting TPH and QCW values to evaluate al-

gorithmic performance. Although many studies have demonstrated substantial

improvements in these metrics, the development of their surrogate simulators

frequently neglects the interaction between trucks during transit. Although it’s

customary to exclude ostensibly non-essential processes when constructing sur-

rogate simulation models, this approach can introduce complications in specific

applications, such as truck dispatching in container terminals.

Our tests at Ningbo Meishan Port highlighted that dispatching algorithms,

trained using conventional event-based simulators, do not consider intersection

conditions during truck dispatching. This omission can lead to inadequate dis-

patching decisions, resulting in an uneven distribution of trucks across QCs,

with some experiencing a surplus and others a shortage. Such imbalances ne-

cessitate constant monitoring of QC statuses by port dispatching operators, who

must make on-the-fly adjustments to dispatching plans to maintain operational

efficiency within the port. It is clear from these findings that there is a need

for a more sophisticated surrogate simulator to train and test dispatching algo-

rithms effectively, ensuring that the strategies developed are both feasible and

efficient in real-world container port settings.

Furthermore, as detailed in Section 5, our analysis revealed that normal

event-based simulators often overestimate TPH and QCW values. Such mis-

calculations could lead to misjudgments of algorithm performance in real-world

scenarios. Recognizing this limitation, we were motivated to develop an innova-

tive truck dispatching simulator. By integrating a data-driven, learning-based

approach, we aim to enhance simulation accuracy without significantly increas-

ing computational overhead. In the subsequent sections, we outline the struc-

ture of our simulator and discuss the algorithms implemented to emulate truck

movements at intersection nodes accurately.
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4. Methodology

This section outlines our event-based container truck dispatching simulator

framework, detailing our novel learning-based methods for simulation. We ex-

plore three algorithms: GP, RL, and a hybrid GP-RL method, focusing on their

utility in simulating intersection node operations.

A significant challenge we faced was the lack of high-quality GPS data for

trucks at intersections, as relayed by our industry collaborator, Ningbo Port.

This limitation hindered our ability to establish accurate operational rules for

intersections based on trucks’ movement data. To overcome this, we utilized

available data, including task timings, crane distances, truck positions, and

truck routes, to train our learning-based models. This information, sourced

from Radio-Frequency Identification (RFID) and Terminal Operating Systems

(TOS), provides reliable and precise information on truck locations. Based on

these accurate data, we built learning-based models to mimic additional data,

thereby enhancing the simulation’s accuracy.

Our experiments demonstrate that GP and RL algorithms significantly en-

hance simulation accuracy, with RL showing superior results but at higher com-

putational costs. To optimize accuracy and efficiency, we developed the GPRL-

H method, which strategically employs RL for critical nodes and GP for others.

This approach ensures a balanced trade-off between computational demand and

simulation precision.

4.1. Event-Based Simulator Framework

Event-based simulation is a form of discrete-event simulation (DES) that

propels the simulation process by initiating sequences of events. In an event-

based simulation, the simulation step corresponds to the time difference between

occurrences of events, and the simulator proceeds through the simulation step

by step in alignment with the event sequence.

The principal events in container port truck dispatching include container

loading, container unloading, and truck movements. Leveraging the principles
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Figure 5: Event-based Port Simulator Flow Chart

of event-based simulation and the operation process of container port truck dis-

patching, we have developed a simulator as illustrated in Fig. 5. This simulator

must accurately evaluate the efficiency of truck dispatching strategies. Often,

accuracy is checked with historical data.

In its initial state, the simulator draws upon historical port operation data,

including tasks, truck numbers, and current truck locations. It generates trucks

at their given positions and assigns tasks to their respective QCs. Upon the

commencement of the main simulation loop, the simulator scrutinizes all trucks,

particularly idle ones.

For idle trucks, the simulator computes the environmental states and imple-

ments them into the dispatching strategies to determine the suitable tasks for the

trucks. Nevertheless, as this paper’s primary concern is enhancing simulation

accuracy, we suggest an alternative approach. This technique employs dispatch-

ing records from historical operation data to maintain a fixed task assignment

sequence, thus mitigating the influence of various dispatching strategies.

Following task assignment, the truck performs its designated task, including

loading containers at a start crane and unloading them at an end crane. After

completion, the truck either proceeds to the next task or returns to the idle

state if no tasks remain. The simulator then checks whether all tasks have been

completed to conclude the simulation.

In this process, a significant source of inaccuracy arises from truck movement,

particularly within intersection nodes, where the timing can be hard to estimate

accurately. Addressing this issue is key to improving the overall accuracy of the
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simulator, which is the central focus of our subsequent sections.

Upon the completion of the simulation, TPH and QCW metrics are readily

calculable. It is important to acknowledge that in this conventional event-based

simulator, the truck’s journey is oversimplified - it directly transits from one

crane to another, while the details of the travel process are mostly neglected. As

we have explained, this simplification significantly compromises the simulation’s

accuracy. To rectify this, we propose a learning-based method for our event-

based simulation, outlined in the following subsection.

4.2. Learning-Based Methods for Simulation

In our endeavor to simulate the truck movement process more precisely, we

have segmented the traveling route of trucks, which typically extends from crane

to crane. The route now comprises intermediary stops at intersection nodes, as

depicted in Fig. 2. To elucidate the role of these intersection nodes in the

simulation, we have drawn a logic map of the previous sample container port

map as seen in Fig. 4.

Figure 6: Example of Truck Routing in Logic Map

As illustrated in Fig. 6, the traditional event-based simulation calculates

the truck movement path based on the actual path length but neglects inter-

sections. This method is akin to a truck moving instantaneously from YC1
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to QC3, bypassing all intermediate steps such as Intersection (Int.) 1 and 2.

However, our proposed learning-based simulation method moves the truck from

node to node. All nodes on the path, such as Int. 7, 8, and 9, are considered,

as demonstrated in the figure. This segmented path can more accurately sim-

ulate truck movement, considering all actions and interactions at intersection

nodes. For instance, a situation as depicted in Fig. 3, wherein situation 1 oc-

curs at an intersection node along the truck’s route. Upon the truck’s arrival

at this intersection node, the intelligent node autonomously assesses its cur-

rent state. Drawing from this assessment, the node determines a passage time

that accommodates the truck’s waiting, deceleration, and acceleration phases.

This comprehensive computation of passage time enables adjustments to truck

speeds and accurately simulates truck actions at intersections. As a result, it

significantly enhances the precision of the truck dispatching simulation.

The calculation incorporates the following state factors in this paper:

• The current number of trucks at the node.

• The maximum passage time of the current node trucks.

• The truck number coming from the left/right/up/down.

• The closest truck distance from the left/right/up/down.

The above description presents the truck operation function in Algorithm

1. In this function, in addition to a dispatchable truck list and a to be com-

pleted task list, routing is a procedure that calculates the shortest path from

the start crane to the end crane of each task while respecting traffic regula-

tions set by the port. To simplify the experimental process, the route from one

crane to another is a pre-computed fixed path. For the path from QC8 to YC4,

the traditional event-based simulation output merely the O-D pair [QC8, YC4]

with a constant travel time, with truck interactions at intersections being over-

looked. In our proposed learning-based simulation, however, the output path

will be [QC8, Int.7, Int.8, Int.9, YC4]. When passing the intersection nodes,

the function n.passing() will generate a passing time for this node by using

the forecast model with the environmental states as inputs. Upon completing a

18



Algorithm 1 Truck Operation Function

Require: truck, task, routing, env

1: truck.start task(task)

2: truck.path← routing(truck.pos, task.start crane)

3: for n in truck.path do

4: truck.wait(truck.travel(n))

5: truck.pos← n

6: if n.type = crane then

7: truck.wait until(n.available)

8: truck.wait(task.operate())

9: if truck.pos = task.twin task.start crane or truck.pos =

task.twin task.end crane and task.twin task then

10: if n.type ̸= quay crane then

11: wait(task.twin task.operate())

12: end if

13: end if

14: else if n.type = intersection then

15: truck.wait(n.passing(env.states))

16: end if

17: truck.leave(n)

18: end for

19: truck.end task(task)
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task at the designated location, the truck assesses whether it carries additional

containers (twin tasks, as a single truck can accommodate two small contain-

ers). If no further containers are to be loaded or unloaded, the truck proceeds

to the unloading site to finalize its task after the loading is completed. From

the perspective of the entire simulator workflow, the most challenging aspect to

compute is the movement time of the trucks. This is influenced by varying con-

gestion levels at different intersections during each transit, resulting in distinct

travel times for the trucks. Consequently, accurately calculating the time trucks

take to pass through each intersection has become a pivotal factor constraining

the effectiveness of container truck dispatching simulations.

Despite the considerable advances in our simulation strategy, we still face a

fundamental issue: how to use state factors to reliably predict the truck passing

time to boost the precision of our simulations. Conventionally, we can access

historical data elucidating the relationship between the truck’s passing time and

intersection status parameters. In that case, a forecast model can be built to

leverage this rule to calculate passing time. Moreover, it is possible to extract

this correlational data from detailed truck GPS information to build a deeper

understanding.

Container ports present a significant challenge due to a scarcity of high-

quality truck GPS data. This dearth of reliable information impedes our ability

to identify hidden relationships between various operational parameters. De-

spite substantial investments in real time kinematic (RTK) devices and numer-

ous engineering efforts, the GPS-unfriendly port environment still yields a high

proportion of erroneous positioning data. In the absence of precise GPS data

for trucks and information on the queuing wait time at each crane, the accurate

replication of the trucks’ historical route poses a substantial challenge.

We propose a learning-based method that estimates intersection passing

times using a reward-based system to address this issue. This approach fa-

cilitates the discovery of traffic flow rules, even in contexts where operational

data might be sparse or limited. Learning-based methods like GP and RL do

not rely on explicit programming or hand-crafted rules. Instead, they learn
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from available data, iterating over numerous cycles, making and learning from

errors, and progressively improving their predictions. The central mechanism is

a reward-based system: the more a prediction or model’s action aligns with ac-

tual outcomes, the higher the reward. The algorithms strive to maximize these

rewards, gradually improving their performance despite limited data.

GP and RL are particularly suited to the task at hand due to their flexibility,

ability to manage complex, non-linear relationships, and resilience against noisy

or sparse data. These methods are not only trained on previous historical data

but can also uncover hidden insights through interaction with the simulation

environment, countering the drawbacks of insufficient data. These attributes

make them ideal for enhancing the accuracy of our truck dispatching simula-

tor. In the subsequent sections, we provide detailed insights into the selected

algorithms and learning methods, highlighting their contribution to accurately

predicting intersection crossing times despite data limitations.

4.2.1. Data-driven Genetic Programming

GP is an evolutionary computation method inspired by the principles of bi-

ological evolution. Its essence lies in refining a population of solutions through

consistent modifications of crossover and mutations. Hence, by designing a

fitness function that encourages the generated individuals to provide truck in-

tersection passing times that match the historical data best, we can allow the

model to learn hidden rules through its evolution.

Figure 7: AGP and LGP Structure

GP employs various representations, but the tree structure is the most com-

mon, easy to understand, and adopted in this study. As depicted in Fig. 7,
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GP can be divided into two types: arithmetic genetic programming (AGP) and

logical genetic programming (LGP), contingent upon whether logical operators

are included or not.

AGP utilizes addition, subtraction, multiplication, and protected division

operations in this paper. Meanwhile, LGP integrates additional logic opera-

tors, including greater than or equal to, less than or equal to, if-else, and, or,

maximum, and minimum. The terminals in GP are the state factors enumer-

ated in the previous subsection, amounting to 10 state factors plus one random

constant.

In the context of the learning-based simulation, GP individuals act as the

n.passing() function to compute the passing time of trucks at intersections. To

train these GP individuals, the fitness function is set up according to Equation

(3), which combines the metrics detailed in Equations (1) and (2).

Rf = δ

m∑
i=1

n∑
j=2

|sij − ei(j−1) − s′ij + e′i(j−1)|

+|maxE −minS −maxE′ +maxS′|

(3)

In the equation above, S/s and E/e represent the task start and end times

observed in actual operations, respectively, analyzed collectively and individu-

ally. Correspondingly, S′/s′ and E′/e′ symbolize the same times in the simu-

lated results.

The fitness function, denoted as Rf , measures the disparity between the

actual data from operational records and the simulation outcomes. This func-

tion focuses on two main metrics: TPH and QCW, as observed in the training

dataset. By gauging the performance of GP individuals, this fitness function

aids in pinpointing the entities possessing accurate knowledge necessary for es-

timating truck intersection passing times. As a result, the simulation developed

is highly reflective of actual operational data. The parameter δ is implemented

to balance the relative importance of the two metrics, and for this study, it is

set to 1. It’s important to note that in this paper, we don’t distinguish between

different intersections; we instead employ a single model to fit all intersections.
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This approach is consistent across both GP and RL methods.

The GP evolution process, as outlined in Algorithm 2, continually uses ge-

netic operations such as crossover and mutation methods to produce new indi-

viduals. This method screens out and eliminates individuals with low fitness,

allowing the entire population to evolve toward individuals with higher fitness.

This paper employs tournament selection for better control on the selection

pressure. The crossover and mutation methods align with those mentioned in

our previous work (Chen et al., 2022). Notably, since the fitness of GP signifies

the disparity between metric values of real data and simulated results, lower

fitness indicates higher simulation accuracy.

Algorithm 2 AGP, LGP Evolution Function

Require: Initial Parameters initial

p← NewPopulation

p.initial individuals(initial.population size)

generation← 0

while generation < initial.max generation do

p.calculate fitness()

p.penalize long individuals()

next generation← NewPopulation

while next generation.size() < p.size() do

Insert an individual to next generation by

Crossover, Mutation, or Reproduction in p

end while

p← next generation

generation← generation+ 1

end while

While our experimental results indicate that both AGP and LGP can sig-

nificantly improve the accuracy of simulations, they have a key limitation: the

fitness function of traditional GP can only be calculated upon completion of

the entire simulation process. This delay means that the valuable data gener-
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ated during the simulation cannot be fully exploited to optimize the accuracy

of simulations in real time.

In light of these considerations, we believe that leveraging RL to learn the

truck’s passing time at intersections could greatly enhance the efficiency and

accuracy of our simulations. Using RL, we can fully utilize the historical data

and acquire more precise and informative insights in real time, ultimately leading

to more accurate simulations. This RL-based approach will be discussed in

detail in the following subsection.

4.2.2. Reinforcement Learning

RL is a machine learning algorithm that trains an agent to select an appropri-

ate action to obtain maximum rewards. Unlike GP, which relies on evolutionary

principles to refine its predictive models, RL leverages its ongoing interaction

history, often via mechanisms like experience replay, to progressively enhance

its decision-making policies. In the traditional GP context, Rf is calculated

as a reward (fitness) after completing all task simulations, providing limited

feedback to the learning process. In this environment, the trajectory-based ex-

periences gathered by the agent do not offer substantial information about the

quality of the action, which in turn considerably impacts the quality of the final

simulation results.

Figure 8: RL Structure

However, RL introduces a notable paradigm shift in the learning approach

compared to GP. Rather than being completely disconnected from the envi-

ronment during the evolutionary process, as with GP, RL allows the agent to
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interact continually with the environment. The agent performs actions and re-

ceives feedback in the form of rewards, as depicted in Fig. 8. This dynamic

interaction facilitates a more adaptive learning process and can help to opti-

mize the actions more effectively. Specific aspects of this feedback mechanism,

including its immediacy and influence on the learning process, will be explored

in detail in the results section.

Thus, we introduce a timely reward, Rt, formulated as per Equation (4) in

the RL method. The symbols sij and eij represent the start and end times in

the actual data for the jth task of the ith QC, respectively, while s′ij and e′ij

denote the start and end times in the simulation. The reward Rt is calculated

as the discrepancy between each task’s actual and simulated truck movement

times. As with the reward Rf , smaller Rt values signify a higher simulation

accuracy.

Rt = |Eij − Sij − E′
ij + S′

ij | (4)

The novel aspect of our RL approach is the concurrent use of the real-

time computed reward Rt and the episode-end reward Rf to guide the learning

process. This combined guidance allows the RL agent to learn the logic of

truck operations at the intersection more effectively from historical data. By

incorporating the real-time computed reward Rt following each action At by the

RL agent, we can better use the previously ignored data on the truck movement

time for each task. Consequently, the agent can acquire more information,

improving the quality of actions and, ultimately, a more accurate simulation.

In our experiment on the test dataset, we ran 10 iterations and trained for

500 episodes to assess the impact of different rewards on RL performance. As

illustrated in Fig. 9, using the traditional final reward approach did not lead

to effective convergence. RL failed to acquire helpful knowledge, resulting in a

high simulation error rate. Conversely, our proposed combination of two types

of rewards significantly improved RL’s convergence. This approach enabled

RL to converge on complex problems, overcoming challenges associated with
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RL in intersection simulations and substantially increasing the accuracy of the

simulations.

In the context of this research, RL is expected to output the truck crossing

time at an intersection as a continuous variable. This requirement presents

a challenge to traditional RL methods such as deep Q-learning (Mnih et al.,

2013) (DQN) and double deep Q-learning (Van Hasselt et al., 2016) (DDQN),

which are not optimized for handling continuous action spaces effectively. We

conducted a comparison of various deep reinforcement learning models. From

this comparison, we found that the policy optimization (PPO) method achieved

the best balance between performance and simulation time. Therefore, we have

adopted it to calculate the intersection’s truck crossing time.

PPO is a policy-based optimization algorithm introduced in 2017 (Schulman

et al., 2017). It is designed to tackle the challenges posed by earlier algorithms,

such as trust region policy optimization (Schulman et al., 2015) (TRPO) and

asynchronous advantage actor-critic (Mnih et al., 2016) (A3C). PPO enhances

sample efficiency and stability by employing a trust region approach and a

clipped objective function, as depicted in Equation (5).

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(5)

In this equation, rt(θ) represents the probability ratio between the current

policy and the old policy, given by πθ(at|st)
πθold

(at|st) . The variable Ât indicates the

estimated advantage function at time step t, while ϵ is a hyperparameter that

defines the degree of trust region in the policy update.

The RL training environment used in this study is similar to the one for the

port dispatch simulator previously discussed. Like in the Genetic Programming

(GP) method, the RL agent performs the function n.passing() in Algorithm

1, producing a continuous number that represents the time a truck took to

cross the intersection, given the current environment parameters. The 10 state

parameters described in Section 4.1 define the environment state.

During training, the simulator provides the agent with intersection state
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information St, and the agent outputs the predicted intersection passage time

based on its learned knowledge. Each time the agent makes an action At, the

simulator returns a reward Rt. Once all actions are completed, a final reward

Rf is computed. The entire training process of the PPO-based RL algorithm is

illustrated in Algorithm 3.

Algorithm 3 Proximal Policy Optimization (PPO) Training

1: Initialize policy parameters θ and value function parameters ϕ

2: for each iteration do

3: Collect a set of trajectories τ using the current policy πθ

4: Compute the timely reword Rt for each time step in trajectories

5: if Simulation finished then

6: Compute the final reword Rt

7: end if

8: Compute advantage estimates At using value function Vϕ

9: for each optimization epoch do

10: for each time step t in trajectories do

11: Compute probability ratio ρt(θ) =
πθ(at|st)

πθold
(at|st)

12: Compute surrogate objective Lt(θ) = min(ρt(θ)At, clip(ρt(θ), 1−

ϵ, 1 + ϵ)At)

13: Perform gradient ascent on θ to maximize Et[Lt(θ)]

14: Update value function parameters ϕ by minimizing the value loss

15: end for

16: end for

17: Update policy πθold ← πθ

18: end for

Experimental results indicate that RL demonstrates superior simulation ac-

curacy compared to GP. This improvement is largely attributed to the inclusion

of the timely reward Rt, which provides RL agents with an immediate response

to their actions, leading to more refined decisions. However, this added preci-

sion has a significant drawback: increased computational cost. Our experiments
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show that utilizing RL for simulation requires approximately twice the compu-

tational time of using GP.

The higher computational cost results from the RL-generated agent being

invoked to predict every time a truck passes an intersection. While individual

predictions may take minimal time, a complete simulation requires hundreds or

thousands of computations. This cumulative computation time can render the

RL’s learning-based simulation too time-intensive when used to train dispatch-

ing strategies, thereby limiting its practicality.

We propose a hybrid GP and RL simulation approach to balance accuracy

and computational efficiency. This strategy involves using GP to simulate less

important intersections and RL to simulate intersections of high importance.

By leveraging the strengths of both methods in this way, we aim to minimize

the computational cost while preserving the accuracy of the simulation. The ef-

fectiveness and efficiency of this GPRL-H simulation approach will be examined

in the subsequent part.

4.2.3. Hybridizing GP and RL

Unlike GP, wherein the acquired knowledge is directly translatable into arith-

metic functions, thereby substantially accelerating each truck pass time calcula-

tion, RL enhances simulation accuracy and considerably extends the simulator’s

runtime. Empirical results indicate that RL-based simulations demand about

thrice the computational time compared to GPs. To reduce this simulation time

while preserving the accuracy of the simulations, this paper puts forward an in-

novative approach: the GPRL-H method for fast estimation of truck passage

times at intersections.

As visualized in Fig. 10 and algorithm 4, when the simulation necessitates

the computation of intersection passing time, the GPRL-H method determines

whether to employ GP or RL for this calculation based on the current intersec-

tion’s significance where the truck is positioned. Our historical truck movement

data analysis revealed that certain intersections, particularly those at critical

locations, frequently witness multiple trucks crossing simultaneously. In con-
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Figure 10: GPRL-H Method Flow Chart

trast, at other intersections, such instances are rather rare. Consequently, given

their complex traffic conditions, we hypothesize that these critical intersections

demand a detailed simulation facilitated by RL. In contrast, intersections with

less complex traffic patterns could be effectively simulated using GP, yielding

a level of accuracy similar to that of a comprehensive RL simulation. This hy-

pothesis forms the basis for our proposal of the GPRL-H method, striking a

balance between simulation accuracy and computational efficiency.

Algorithm 4 GPRL-H Method for Intersection Simulation

1: Input: Intersection significance, Historical truck movement data

2: Output: Computed passing time for truck

3: procedure compute passing time(intersection, truck position)

4: if is critical(intersection) then

5: use Reinforcement Learning (RL)

6: RL cross time ← RL Model(intersection, truck position)

7: return RL pass time

8: else

9: use Genetic Programming (GP)

10: GP cross time ← GP Model(intersection, truck position)

11: return GP pass time

12: end if

13: end procedure

Nevertheless, the GPRL-H approach brings forth a challenge - determining
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the importance of each intersection. Given the unavailability of accurate GPS

data, direct analysis of each intersection’s congestion levels using historical GPS

data to determine intersection significance is unfeasible. Therefore, drawing

inspiration from the Pareto chart (Harvey & Sotardi, 2018), we propose a data-

driven method incorporating the previously mentioned RL-based intersection

simulation to evaluate the significance of various intersection nodes.

Denote that there are a total of o intersections within the port. In this

research, we have o = 66, and all intersections in the default simulator sd are

controlled by RL agents. The process can be outlined as follows:

1. Train the GP-based and RL-based agents independently on the training

sets.

2. Replace the RL agent of one of the o intersections in the sd with the GP

individual sequentially, generating o distinctive GPRL-H simulators.

3. Execute these substituted o simulators on test data sets and tally the final

simulation results.

4. Implement the paired sample t-test method to compare the results of the

o simulations with the sd, and compute the t-value. The higher t-test

results indicate a greater discrepancy between the outcomes before and

after removing a specific node. This suggests the higher importance of the

node, implying that it should not be substituted with GP for control.

5. Choose the replaced intersection in the simulator with the lowest t-value

(lowest influence on simulation accuracy) as the least important intersec-

tion and replace the RL agent at this intersection with a GP individual

in default simulator sd. Set o = o− 1 to save simulation time and return

to step 2 to continue replacing the next intersection until GP individuals

control all intersections.

Moreover, we utilize the LGP generated individual as the GP part in the

GPRL-H method. This approach has been adopted due to its superior perfor-

mance compared to AGP in our experiments while maintaining a comparable

execution time. Following the previously outlined steps, we derive the intersec-
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tion importance diagram depicted in Fig. 11. This diagram reveals that, when

substituting 40 out of 66 intersections with GP agents, approximately 96% of

the performance characteristics observed in a fully RL-driven simulation are

maintained. As a result, the proposed GPRL-H method in this paper defaults

to controlling these 40 less significant intersections using GP, thereby ensuring

an effective balance between simulation accuracy and speed.
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Figure 11: Intersection Importance Analysis Result

Our experimental results reveal that the proposed GPRL-H method com-

bines the strengths of both GP and RL and strikes an effective balance between

simulation accuracy and computational cost. We propose that this innovative

method can be applied to the port dispatch simulation discussed in this paper

and to a broader range of road traffic simulation applications, including factory

automated guided vehicle (AGV) path simulation, urban traffic simulation, and

mine vehicle scheduling. To demonstrate the superiority of the GPRL-H algo-

rithm, a series of experiments and comparisons will be conducted in the next

section.
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5. Experiments and Results

In this section, we present the validation of the traditional event-based con-

tainer port truck dispatching simulation proposed by (Shabayek & Yeung, 2002)

as well as the learning-based AGP (Fogel et al., 1966), LGP (Wong & Leung,

1995), RL (Schulman et al., 2017), and GPRL-H methods that we have pro-

posed, utilizing real-life historical data obtained from the Ningbo Meishan Port.

Our primary objective is to highlight the excellent performance of our empha-

sized GPRL-H method. As articulated in Section 3, our central focus remains

on the computation time and errors of two principal metrics: QCW and TPH.

The validation leverages real-world data and maps from Ningbo Meishan

Port. The designated truck routes comply with the stipulations of the port;

each route from crane to crane is unique and pre-set. The historical operational

data chiefly constitutes the initiation sij and termination eij timings for the

truck operations at the loading crane i and task j, supplemented with the start

and end times of operations at the unloading cranes.

We have processed 20 days of historical operational data to generate 10

training and 10 test sets. Each set comprises roughly 20,000 job tasks, approxi-

mating the daily job volume at the port. The port comprises 5 berths, 35 QCs,

and 75 YCs. Moreover, there are 66 intersections, and the number of trucks

varies between 100 and 200, which is determined by the actual count of trucks

in the historical data.

The parameter configurations and evolution methodologies for all GP meth-

ods are consistent with our prior work on AGP and LGP methods (Chen et al.,

2022), having a population size of 1024, and crossover, mutation, and reproduc-

tion rates of 60%, 30%, and 10%, respectively. The GPRL-H method utilizes RL

to regulate the 26 crucial intersections and employs LGP to fit 40 less critical

intersections. The AGP, LGP, RL, and GPRL-H methods are trained on the 10

training sets using 100 distinct random seeds for 1000 generations each.

For the RL component of our study, we have chosen PPO and configured it to

use two distinct deep neural networks. One of these networks serves as the policy
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network, or the ’actor network,’ while the other functions as the value network,

often termed the ’critic network.’ The learning rate has been predetermined at

0.0003 for the actor network, and for the critic network, it is set at 0.001. These

neural networks consist of layers with neuron quantities of 10, 100, 180, and 1,

respectively. The Rectified Linear Unit (ReLU) is implemented as the activation

function across all layers. Additionally, other hyperparameter settings of the RL

model follow those outlined in (Chen et al., 2024), and early stopping is used to

prevent overfitting. The final performance of the models, post-training, on the

training sets is illustrated in Table 2.
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As outlined in the table, the unit of measure for TPH is TEU/hour, while

that for QCW is hours. The error term represents the average absolute deviation

across the ten datasets. Notably, our learning-based simulations consistently

outperform conventional event-based simulations, irrespective of the intersec-

tion simulation method employed. We also incorporated an error parameter

into our experiments to gauge the accuracy of various simulation techniques. It

is crucial to clarify that this error is not merely an average of the last two metrics,

but rather represents the cumulative error in predicting individual segments of

truck travel time. Hence, scenarios may arise where the final metrics exhibit a

smaller mean error but a larger cumulative error. Traditional event-based simu-

lations display a significant error rate of approximately 35%. In contrast, AGP

and LGP demonstrate considerably improved performance, with respective er-

ror rates of around 25% and 18%. Intriguingly, incorporating logical operators

into GP enables LGP to outperform AGP. This suggests that intersection sim-

ulation is not a simple linear problem; it encapsulates diverse conditions that

warrant the inclusion of logical operators for more accurate fitting. Remarkably,

reinforcement learning (RL) exhibits a significantly lower error rate of around

6.5%, substantiating our claims in Section 4.2.2 that GP’s performance is con-

siderably influenced by its singular interactions with the environment during

each evolutionary cycle. Although LGP manages some less critical nodes, the

GPRL-H method maintains performance metrics comparable to RL, with an

error rate of approximately 7%, essentially on par with RL.

Subsequently, we deployed the AGP, LGP, RL, and GPRL-H methods, ini-

tially trained on the training sets, into the test sets as shown in Table 3. To

mitigate the risk of distortion arising from discrepancies in historical data when

comparing training and test sets, we carefully selected test sets that closely mir-

ror the characteristics of the training sets and historical data. This approach

ensures consistency, particularly in the performance of manual heuristic meth-

ods, which exhibit similar effectiveness on both training and testing sets. This

strategy aids in maintaining the reliability of our comparisons and the validity of

our findings. The performance of the conventional method remained relatively
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unchanged, with an error rate persisting around 36%. Meanwhile, the AGP,

LGP, RL, and GPRL-H methods all experienced nominal decreases, though

these were not significant, merely around 1%-2%. This suggests our training

did not lead to overfitting, and the intersection traffic rules gleaned from the

learning-based methods are indeed generalizable, yielding effective performance

even on datasets not previously encountered. This further affirms the versatility

of our proposed method and its potential applicability in other simulations.
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Additionally, we computed the simulation time (SimT) consumed over each

instance in seconds for each method. As presented in Table 4, it is evident

that the standard event-based simulation is the most time-efficient, with an av-

erage simulation duration of approximately 5 seconds. The mean simulation

times for AGP and LGP do not exhibit a notable difference, hovering around

11 seconds, which is approximately twice as long as the standard method. How-

ever, RL incurs the longest simulation time, with an astounding average of 35

seconds—sevenfold that of the standard method. Despite RL exhibiting the

most impressive performance among all methods, such an extensive runtime is

untenable. In employing the simulator to train port container truck dispatch-

ing strategies, many simulation executions are required. A simulation time

seven times longer implies a corresponding increase in training duration when

using the standard simulator, substantially impeding training efficiency. In con-

trast, our innovative GPRL-H method necessitates an average simulation time

of around 17 seconds, merely half of that required by the RL method, while re-

taining near-equivalent simulation precision. This underscores that the GPRL-H

method achieves a commendable equilibrium between two critical metrics: sim-

ulation time and simulation accuracy. It is capable of substantially reducing

simulation time while preserving adequate simulation precision.

Table 4: Normal, AGP, LGP, RL, GPRL-H Methods Simulation Time (Second)

Normal AGP LGP RL GPRL-H

Avg. 4.97 10.87 11.27 36.49 17.50

The empirical results compellingly demonstrate the efficacy of our machine

learning based simulation methodology for container port truck dispatching.

Under the purview of our proposed framework, applying AGP, LGP, RL, and

GPRL-H methodologies to model truck throughput times at intersections sub-

stantially enhances the simulation’s precision. Our GPRL-H method warrants

specific mention. By amalgamating GP’s computational speed and RL’s supe-
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rior accuracy, this approach is uniquely positioned to deliver high-grade simu-

lation accuracy within a significantly reduced time frame.

This study’s key strength resides in its capacity to provide a sophisticated,

learning-based tool that transcends conventional event-based simulations. The

GPRL-H method, being anchored in both GP and RL, exploits the strengths of

these paradigms to yield a potent framework that is both time-efficient and high

in precision. This innovative fusion of techniques renders the model responsive

and adaptable, making it a powerful tool for real-world applications.

Integrating GP and RL in our method is an innovative approach that could

be employed in other fixed-area vehicle simulations to improve simulation ac-

curacy. While surrogate models are prevalent in simulation studies, our unique

combination of GP and RL provides a novel contribution to the field. We must

note, however, that the true reach of this method and its applicability beyond

port dispatch is a promising prospect that warrants further investigation and

corroboration. Its potential to significantly contribute to sectors where precise

and efficient simulation is paramount is a compelling avenue for future explo-

ration.

6. Discussion and Supplementary Experiments

In the previous experimental section, we provided evidence supporting the

efficacy of our proposed learning-based simulation approach. In this section, we

delve further into the necessity of implementing intersection simulations and the

importance of integrating learning-based methods for more precise simulation.

The cornerstone of our hypothesis is that the waiting times incurred by trucks

at intersections during container transport markedly influence the overall trans-

portation time. By enhancing the precision of truck passage time simulations at

intersections, we can significantly improve the overall accuracy of the container

port truck dispatch simulation. In turn, refining the simulation of truck passage

through intersections bolsters the accuracy of the entire simulation. Moreover,

calculating waiting times for trucks at intersections presents a complex task,
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necessitating the consideration of various conditions present at the intersection

during the truck’s passage. Thus, a constant intersection waiting time falls short

of accurately simulating varying truck traffic conditions.

We reviewed our experimental data and noted that the standard event-based

simulation generally overestimated TPH and underestimated QWT. This obser-

vation could potentially stem from the disregard for additional transit times that

trucks incur at intersections during the transportation process. Consequently,

we first introduced the fixed extra travel time (FETT) method, rooted in an

exhaustive search approach (Nievergelt, 2000). This method endeavors to iden-

tify a constant additional truck travel time that minimizes the average error on

the training set by exhaustive searching.

Table 5: Other Algorithems’ Performance

Method
Train Test

Average Error SimT Average Error SimT

FETT
TPH 466.15 27.35%

5.37
424.34 34.50%

5.62
QCW 72.09 29.28% 80.30 34.93%

FIPT
TPH 421.48 20.26%

8.72
427.28 28.63%

8.66
QCW 80.87 21.35% 78.73 28.95%

DT
TPH 412.15 22.35%

6.35
424.34 33.50%

6.21
QCW 82.09 23.28% 79.43 32.93%

DNN
TPH 431.48 18.26%

6.87
415.28 30.63%

6.52
QCW 77.87 17.35% 85.73 31.95%

XGBoost
TPH 419.15 5.54%

7.32
432.34 27.63%

7.24
QCW 79.89 5.26% 78.30 26.95%

As illustrated in Table 5, introducing a fixed extra travel time decreases the

error on the training set to approximately 28%, substantiating the effectiveness

of considering additional travel time. Nonetheless, this reduction in error is

notably limited. This observation suggests that given the substantial variance
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in the time required for each truck transit, it is impractical to identify a universal

extra truck travel time that significantly reduces the average simulation error

across multiple training sets. Furthermore, it was noted that the error reduction

achieved with the FETT method on the test sets closely mirrored that of the

conventional event-based method. This suggests that, while it may be feasible

to identify a relatively optimal extra truck travel time for a specific subset of

data sets, this value lacks broad generalizability. When the data set changes,

the error rate escalates dramatically, underscoring the need for more adaptable,

learning-based approaches.

To further our exploration, we proposed the fixed intersection passing time

(FIPT) simulation method (Belbasi & Foulaadvand, 2008), anchored in the

intersection simulation framework elaborated in this paper. Like the FETT

method, the FIPT approach also leverages an exhaustive search but instead

aims to identify a fixed intersection passing time that minimizes the average

error on the training set. Remarkably, this method demonstrates a significantly

lower error rate on the test sets than the FETT method, with an error rate

of approximately 20%. This figure is comparable to the error rate associated

with the GP methods and is even slightly superior to that of the AGP. These

findings suggest a relatively satisfactory solution can be achieved upon intro-

ducing data-driven methodologies to learn intersection passing times, even with

a simple exhaustive search method. This highlights the significance of simulat-

ing intersections and employing data-driven approaches. The exhaustive search

method yielded a relatively fine solution through continuous testing on historical

data, thereby fully substantiating the efficacy of the data-driven, learning-based

simulation approach proposed in this study. Conversely, the FIPT method also

exhibited a considerable increase in error on the training sets. This indicates

that a fixed intersection passing time is not a universal rule; it solely represents

the knowledge derived from a specific data set and does not constitute an ab-

stract principle. This underlines the importance of incorporating sophisticated

algorithms like GP and RL to learn the real-world dynamics of intersection

passage.
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Figure 12: Error and Simulation Time (seconds) of All Methods in Test

After evaluating the impact of fixed extra travel time and fixed intersection

passing time, we extended our comparative analysis to include three state-of-

the-art supervised learning methods: decision tree (DT) (Myles et al., 2004),

deep neural network (DNN) (Montavon et al., 2018), and extreme gradient

boosting (XGBoost) (Chen & Guestrin, 2016). While we lack real-time data

on truck intersection passing, we do possess comprehensive data on total travel

time between work cranes. Consequently, we employed these supervised learn-

ing algorithms to predict truck travel time under various states. All algorithms

were trained on a uniform dataset, utilizing state descriptors such as task type,

container type, total number of trucks operating under the current bridge crane,

port-bound truck count, target crane workload, historical average travel time,

and overall port truck count. The algorithms were trained using default hy-

perparameters from the scikit-learn library, and their performance is tabulated

in Table 5. Both DT and DNN exhibited poor convergence on the training set

with approximately 20% error, while XGBoost outperformed them with an error

rate of roughly 5.5%. However, when transitioned to the test set, all three algo-

rithms displayed an error rate of about 30%, comparable to the simple FETT

and FIPT methods. Moreover, XGBoost demonstrated significant performance
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degradation, indicative of overfitting during training.

From these experiments, it becomes evident that predicting truck travel time

solely based on current port operation states is inherently flawed, especially in

the absence of data on truck intersection passages. Despite XGBoost’s initially

promising training performance, it too falters on the test set due to overfitting.

This underscores the crucial role of incorporating intersection simulations to rep-

resent port truck operations accurately. Notably, even a rudimentary method

like FIPT approximates the performance of these supervised algorithms, at-

testing to the importance of intersection simulation in this context. Given the

unavailability of intersection-specific data, employing unsupervised learning ap-

proaches in port truck dispatching simulation becomes indispensable, thereby

justifying our initial focus on data-driven unsupervised learning in intersection

simulation for more precise port simulation.

In the subsequent analysis, we plotted the simulation time and associated

error in test for the Traditional, AGP, LGP, RL, GPRL-H, FETT, FIPT, DT,

DNN , and XGBoost methods in Fig. 12. It is discernible from the graph that

RL and GPRL-H methods markedly outperform the other approaches in terms

of simulation error. Simultaneously, it is evident that each method holds its

unique advantages when optimizing the two key objectives - simulation time

and accuracy. Thus, in practical applications, decision-makers can tailor their

method to align with their specific requirements. Furthermore, the graph un-

derlines that the GPRL-H method attains high simulation accuracy without

significantly increasing simulation time. This reinforces the superiority of the

method introduced in this study, lending further credence to its effectiveness in

balancing simulation accuracy and efficiency.

As a result of comprehensive experimental analysis, our research validates

the initial hypothesis that truck transit times at intersections play a crucial

role in the accuracy of simulation models. Furthermore, incorporating unsuper-

vised learning techniques to model these transit times significantly enhances the

precision of the simulation. The key findings of our study are summarized as

follows:
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• Experimental results substantiate the pivotal impact that truck transit

times at intersections exert on the accuracy of simulation models.

• The inclusion of simple transit events in the simulation substantially im-

proves model accuracy, emphasizing the necessity of accurately represent-

ing complex real-world conditions.

• Findings from using the FIPT method reveal the inherent complexity of

intersection passing rules, which simplistic temporal metrics cannot cap-

ture.

• Traditional supervised learning methods, such as DT, DNN, and XG-

Boost, are inadequate for precisely predicting truck travel times without

intersection considerations.

• The observed complexities validate the need to employ unsupervised algo-

rithms like GP and RL to decode intricate intersection rules. This lends

credence to the efficacy of a data-driven, learning-based approach for ad-

dressing the challenges in container port truck dispatch scenarios.

While the data-driven machine learning-based simulation method enhances

accuracy in port truck dispatching simulations, it has limitations. The method

requires additional training and may not perform optimally in unfamiliar en-

vironments. To refine simulation accuracy further, integration of GPS data is

essential. The learning algorithm can automatically correct and refine this data,

leading to more precise simulation outcomes. Moreover, the increasing adoption

of IoT (Internet of Things) technologies in modern container terminals offers po-

tential for more accurate data collection. As IoT devices become more prevalent,

they can provide precise data that further enhances simulation accuracy. Fur-

thermore, we conducted simulation experiments based solely on the historical

operation data of Meishan Terminal of Ningbo Port and the map layout of it.

These experiments have limitations; Ningbo Meishan Port is a semi-automated

terminal with a different yard layout compared to a fully-automated terminal.

Additionally, variations in port operation tasks, weather, and shoreline length
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may affect the final simulation results. However, overall, the advantages of the

RLGP-H method are evident, making it a highly viable and practical solution

for current real-world applications.

7. Conclusion and Future Work

The importance of intersection simulation in container port logistics can-

not be overstated, significantly influencing the final simulation accuracy. As

demonstrated in this research, the application of data-driven machine learning

based simulations drastically improves the precision of intersection simulations,

thereby enhancing the overall efficiency of truck dispatch operations. The in-

trinsic complexity of intersection passing rules necessitates the integration of

advanced machine learning algorithms to create realistic simulations success-

fully.

Our comparative analysis, including AGP, LGP, RL, GPRL-H, DT, DNN,

and XGBoost, highlights GPRL-H’s advantages. GPRL-H achieves superior ac-

curacy without excessive computation time by combining RL and GP strengths.

This balance makes it ideal for complex intersection simulations, marking a shift

in research toward data-driven methods for transportation simulation. With ro-

bust performance, GPRL-H shows promise for broader vehicle and equipment

movement simulation applications.

In terms of applications, the machine learning-based simulation method re-

duces simulation errors, opening avenues for integration with various existing

optimal scheduling algorithms. This integration can aid in training the algo-

rithm or validating its performance, enhancing algorithmic robustness and fa-

cilitating more effective practical solutions. Ultimately, this approach can assist

port companies in mitigating performance degradation of scheduling algorithms

when transitioning from simulated to real environments, thereby enhancing op-

erational logistic efficiency in real-world scenarios.

Looking forward, our focus is to integrate RL and GP methods further, lever-

aging the unique strengths of each to achieve optimal performance. Specifically,
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we plan to explore techniques such as using RL to optimize GP individuals,

guiding GP evolution with RL, and determining the genotype fitness of GP

individuals using RL. Through extensive integration of RL and GP, we aim to

harness their combined strengths and develop a synergistic approach. This com-

prehensive integration has broad applicability beyond simulation, extending to

scheduling, routing, packing, and other problem domains. Additionally, we aim

to conduct more exploratory data analysis to identify pain points in port logis-

tics operations and further enhance the port’s operation efficiency by solving

these problems.
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