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Abstract—International and domestic maritime trade has been
expanding dramatically in last few decades, seaborne container
transportation has become an indispensable part of maritime
trade efficient and easy-to-use containers. As an important hub
of container transport, container terminals use a range of metrics
to measure their efficiency, among which the hourly container
throughput (i.e., the number of twenty-foot equivalent unit
containers, or TEUs) is the most important objective to improve.
This paper proposes a genetic programming approach to build a
dynamic truck dispatching system trained on real-world stochas-
tic operations data. The experimental results demonstrated the
superiority of this dynamic approach and the potential for
practical applications.

Index Terms—container terminal, genetic programming (GP),
truck dispatching, dynamic

I. INTRODUCTION AND PROBLEM DESCRIPTION

Global maritime trade expanded at a fast pace in the last
few decades, and it comprises over 80% international trade
now [1]. Therefore, as one of the major transportation hubs in
maritime trade, container terminals are becoming more and
more competitive, especially among terminals with similar
geographical locations. This kind of competition is multi-
dimensional, not only in absolute volume but also in work
efficiency. Most shipping companies prefer to choose terminals
with shorter average vessel stay time, which directly impacts
their costs. In order to gain competitive advantages, terminals
are extremely motivated to shorten the ship dock time.

Once a ship arrives, the container terminal unloads the
containers to the storage yard and loads the export containers
onto the ship from the storage yard. This operation time,
plus any necessary waiting time, almost equals to ship stay
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time which most terminals want to reduce. In loading and
unloading operation, QCs (Quay Cranes) are responsible for
loading and unloading containers on the quayside; container
trucks transport containers between quayside and yards as
transport equipment; YCs (Yard Cranes) complete the loading
and unloading of containers on yard areas (temporary storage
space in the container terminal), thus forming a series of
internal container transport operations including loading and
unloading between the quayside and container yards. It is
obvious that the more equipment devices participate in the
operations, the less total operation time is required. However,
with the influence of marginal decreasing and geographical
limitation, such kind of strategy is difficult to take effect
nowadays. Therefore, the container terminal must optimize the
efficiency of existing resources to improve their productivity
further [2].

Generally, there are three primary schedulable resources in
container terminals, which are QCs, YCs, and trucks corre-
sponding to three major types of container terminal optimiza-
tion problems: QC assignment problem, YC routing problem,
and truck dispatching problem. All of these there problems
aiming to improve the operation efficiency of the container
terminal through enhancing the utilization rate or working
speed of corresponding equipment. However, different from
the other two problems, because the operation of QCs and
YCs requires the assistance of trucks, the solution of truck
dispatch problems can also reduce the idle time of QCs and
YCs and improve their operational efficiency.

Unfortunately, the traditional method that statically assigns
trucks to the QCs (i.e. dedicated truck assignments to each
QC) with some manual fine-tuning will enormously reduce
operation efficiency since trucks are not able to take better-
coordinated tasks available from other QCs. In other words, to
finish tasks of binding QCs, trucks need to choose follow-up



tasks from these QCs instead of selecting more appropriate
tasks of other QCs [3]. For instance, after transiting the
container to binding QC, the truck must idle to the yard area
to pick up next container of binding QC. While the better
choice is moving to nearby QC and load another container
to the yard area. Such strategy will not only increase trucks’
no-load mileage but also cause QCs and YCs waiting and
significantly affect their work efficiency. Because of this, to
improve the utilization, boost operation efficiency of terminal
equipment, reduce no-load truck moving distance, and shorten
ship waiting time, this paper introduces a novel system that can
dispatch trucks dynamically by real-time work instructions.

Work instruction (see an example in Table I) contains tasks
to complete in the whole container terminal by sequence.
Each line of work instruction is a task, and it includes the
task identifier, the container identifier, the source crane, the
destination crane, the operating type, the container size, and
the container weight. Usually, tasks in a work instruction need
to be completed in a fixed order because of various constraints
related to the ship loading plans, container weights, etc. Also,
as shown in the TEUs column in Table I, containers are divided
into standard 20-foot containers and 40-foot large containers.
Container trucks can take one large container or two standard
containers at a time. Therefore, if a truck has loaded a small
container, it can take another standard container before being
dispatched to the destination crane to avoid the waste of truck
resources.

TABLE I
EXAMPLE OF WORK INSTRUCTIONS
ID ContainerID Sre Dst Type TEUs | Ton
1731 FCIU3705890 CR12 J4 DSCH 2 17
1287 | ECMU9249162 CR7 Q2 DSCH 1 23
137 NYKU2797417 Q5 CR7 LOAD 2 15
1514 TCLUS5546292 F3 CR15 | LOAD 1 19

According to the requirements and situations described
above, a dispatching system flow chart is given in Figurel.
When the system starts, it will read truck information to
the vehicle pool, and then dynamically dispatches tasks to
trucks according to the dispatching algorithm. After tasks
are assigned to trucks, truck information in the vehicle pool
will be updated. At the algorithm part of this dispatching
system, as this is a dynamic dispatching system that needs
to dispatch trucks in 2 seconds (based on the requirement of
container terminal company), it is difficult to use the traditional
static truck dispatch algorithm which needs several seconds
to calculate a solution. Heuristic algorithms were introduced
in this paper since they can obtain dispatching solutions
immediately, provide better comprehensibility for operators,
and tolerate real-world stochastic situations by abstracting
problems and solving them in higher dimensions.

Unlike other research works which aim to find best priory
route combination in specific tasks sequence and operate
environment, the system proposed in this paper does not
guarantee optimality. Instead, it provides a dispatching solution

dynamically with proper consideration of all main equipment’s
work conditions within 2 seconds. Due to the impact of
real-time tasks updating and various other emergencies in
real container terminals, such kind of dynamic dispatching
algorithms are more suitable to adjust unpredictable produc-
tion environment through incorporating real-time environment
parameters into heuristics. Moreover, heuristic-based dynamic
dispatching system is also able to simulate human operation
by converting operators’ operational experience into heuristics

[4].
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Fig. 1. Dispatching System Flow Chart

Owing to the above advantages of dynamic heuristic al-
gorithms, this paper proposes two completely different types
of heuristics to act as a dispatch algorithm in a dynamic
dispatching system. One is a manually crafted heuristic by
summarizing the accumulated experience and rules from
container terminal operators. The other is a data-driven GP
(Genetic Programming) heuristic trained by real operation data
of a container terminal. We deduced that although opera-
tors’ practical experience can be collected and transformed
into heuristic to improve container terminal work efficiency,
these experiences still have some limitations, especially in
some uncommon conditions. In contrast, GP can obtain better
heuristics through training individuals on numerous real-life
data. The proposed GP trained heuristics can consider si-
multaneously equipment’s working conditions and some extra
features that may be omitted in operators’ experience and
adapt to particular conditions that operators’ experience can
not handle adequately. This hypothesis was verified though
test results of different algorithms in Section V.

II. LITERATURE REVIEW

A typical container terminal has three major parts: berth
area, yard area, and in & out area. It includes QCs, YCs,
and trucks as three main schedulable resources work in those
areas [5]. Research has been focusing primarily on improving
container terminal efficiency by optimizing these three re-
sources more rationally. Basic information and overview about
container terminal optimization problem can be found in [6]-
[14].

QCs are located in the berth area, once vessels arrived
QCs will start to load or unload containers from or to trucks



under them. Generally, tracks will be laid under QCs to allow
QCs to move laterally, but not to across berths nor other
QCs. Because QCs are equipment that can directly operate
containers on the ship, since 1985 Paul et al. [15] have tried
to find an optimal combination of crane and berth to minimize
QC makespan. Kim and Park [16] regarded QCs as the most
crucial equipment in container terminal and proposed a branch
and bound (B & B) method to schedule QCs by considering
the nonsimultaneous constraints between adjacent berths as
the safe distance of QCs. Though the comparison between
the greedy randomized adaptive search procedure (GRASP)
method and B & B method, B & B method shows better
performance in small-scale questions. Kaveshgar et al. [17]
further considered the time availability of the QC operation
and introduced a new question named quay crane scheduling
problem with time windows (QCSPTW). A GA (Genetic
Algorithm) heuristic was applied to solve this new question
with a broad set of numerical experiments using as benchmark
instances. The outcome shows that the GA method is not only
faster than other methods but also leads to an improvement in
the solution quality in QCSPTW questions. Many other related
studies have proposed different kinds of new algorithms to
reduce the makespan of QCs [18]-[23], but most of these
researches consider the scheduling of bridge crane and the
actual tasks separately.

YCs are located behind the berth area, at the yard area
of the container terminal. Yard area is the most essential
part of container terminal which can store a large number of
containers temporarily until they are loaded on the vessel or
transported out to container terminal by trucks. Although YCs
will not transport containers to/from vessel directly, as most
crucial transit center for loading and unloading containers,
if YCs can not store or take out the container immediately,
it will cause trucks jam in the yard area, which will lead
to no truck supply for QCs and increase the makespan of
whole loading and unloading operation. After Lai et al. [24]
summarized the several yard crane schedule module, Zhang
et al. [25] and Cheung et al. [26] have proposed static gantry
crane scheduling models with tasks known in advance. They
have demonstrated their model and gave a reasonable static
solution of YC routing. While Kim et al. [27] simplified the
optimization of YCs efficiency to find the minimum moving
distance of YCs, and have built a mixed-integer optimization
model to minimize the moving distance of YCs in the yard.
Chen et al. [28] have formulated a YC scheduling problem as
a hybrid flow shop scheduling problem with precedence and
Blocking constraints (HFSS-B) and introduced a tabu search
algorithm to solve it. Under the constraint that the YCs cannot
interfere with each other, Javanshir et al. [29] have tried GA
heuristics on this problem. Besides scheduling YCs to improve
the efficiency of the yard, optimizing the storage location of
containers can also reduce the time to access the containers
and improve the turnover efficiency of the yard. Lee et al.
[30] proposed a novel approach that integrates yard truck
scheduling and the storage allocation two problems and tried a
hybrid insertion algorithm to minimize total delay of requests

and the total travel time of yard trucks.

Trucks are a kind of mobile resource without a fixed
location, and they are responsible for the transportation of
containers between QCs and YCs, including some inbound
and outbound containers. Despite the fact that trucks do not
work at a particular place, they usually gather at a stop station
at the beginning or ending of a shift. Since the work of
QCs and YCs needs the support of trucks, optimizing the
dispatches of trucks is another popular research area. The
first piece of relevant research is from Dantzig et al. [31] on
the routing of trucks in a bulk terminal. However, modern
container terminals generally have constant driving routes
for trucks. Containers in container terminals are transported
according to these routes. Consequently, research about trucks
dispatching problems in modern container terminals are more
concerned with truck dispatching strategies or policies than
trucks routes. Lu et al. [32] formulated a min-max nonlinear
integer programming model to dispatching yard trucks. A
two-phase heuristic method was applied in their model and
obtained better results than the closest position assignment
principle which is better in solving larger-scale problems.
Cao et al. [33] analyzed the problem of truck scheduling
and configuration, and established an integer programming
model with the objective of searching the shortest waiting time
of trucks. They tried genetic algorithm and heuristic method
to solve the optimization model. Their final results showed
that the heuristic method is more suitable for the model.
Bish et al. [34] targeted the minimization of the total time
required to serve a ship and developed heuristic algorithms
that are easy to implement. Through numerical experiments,
they showed that these algorithms could get results close to the
optimal solution. Beyond these traditional operation research
methods, genetic algorithms have been applied to solve truck
dispatching problems in a container terminal in [35]-[38].
Above research studies have proposed algorithms with good
performance which can improve the operation efficiency of a
terminal to a certain degree, and/or reduce the waiting time
of ships. After all, they still have some limitations in their
algorithms. For example, the existing GA methods are used to
produce solutions for predefined particular scenarios but they
are not able to generate solutions or solutions methods that
can adapt to different problem solving environments.

Although many pieces of research works have reported
improved the efficiency of container terminals from several
different aspects, they focused more on the improvement of
locally isolated problems. For example, few research studies
on truck dispatching consider the handling capacity at QCs and
YCs, which will determine whether the trucks are congested in
QCs and YCs or not. Equipment in container terminals needs
to cooperate when dealing with tasks in work instruction when
each operation node at QCs and YCs is subject to capacity
constraints. This means the conditions at other operation nodes
should be considered when optimizing operation at a given
operation node. Furthermore, most researches are based on
the current state to give a static solution, each time the port
situation changes the solution needs to be recalculated, which



make it hard to be adopted to application environments that
are continuously changing.

To resolve the shortcomings of previous researches, this
paper introduces a GP heuristic to calculate dispatching so-
lutions base on the current situation of container terminals
dynamically instead of generating a static dispatching scheme.
To improve the coordination among different operation nodes
in container terminals, we designed some innovative parame-
ters in Section IV such as powt, powd, remain_tasks, etc. to
capture the working states of different devices in container
terminals. Heuristics can generate dispatching schemes ac-
cording to the real-time values of these parameters to ensure
that the QCs and the YCs have sufficient truck supplies for
interrupted working. Moreover, in GP heuristics, we abandon
the traditional objective function, which is mainly based on the
driving distance and no-load distance of trucks, and used the
number of standard containers handled per hour (TEUs/hour)
as the optimization objective. This enables trucks to choose
some distant destinations with long no-load mileages but
lacking truck supply. The description of the principles and
structures of these heuristic algorithms and their performance
in test sets will be given in the following section.

III. PROBLEM DESCRIPTION AND FORMULATION

The main goal of the problem under consideration is to
improve the efficiency of container terminal operation by
reducing the ships’ waiting time and improving the turnover.
The specific objective of this study is to minimize the overall
finishing time of all tasks.

Denote @) and Y the sets of all QCs and YCs, respectively,
in the container terminal, and let C' = QUY . V represents the
set of m trucks available for assignment in the container ter-
minal, and their loading/unloading positions shall be selected
from C. Function t(z,y) calculates the travel time between
two operation points x and y according to the actual terminal
road network. Let d be the depot of all trucks. At the beginning
of the operation, d is generally the default position that trucks
start from, and after all tasks are completed, trucks will
return to d. Loading, unloading, and moving of containers are
three different types of operations. Trucks transport containers
between YCs and QCs, and in some cases, between YCs to
YCs. After receiving its task, each truck will go to either
a QC or a YC depend on the task type (ship loading or
unloading). Upon completion of the task, the truck may wait
or execute a next task. The work instruction set includes all n
tasks represented as W = {wq, ws, w3, ..., w,}. Source and
destination locations for each task ¢ are denoted by a; and
b; respectively, and a;,b; € C. Denote s; the start time that
task ¢ is serviced at its source node and e; the completion
time at its destination node. S = {s1,$2,83,...,8,} and
E ={e1,ea,e3,...,e,}. Because at both the start and end of
a task, a crane is needed to either load or unload the container,
two functions sct(w; ), ect(w;) are used to query the operation
time of task ¢ at these two positions. The operation times at
the source and destination nodes are stochastic and are drawn
from the given probability distributions. Whether a task w; is

bound to crane c¢; is denoted by a binary indicator given in
(1) which is given as inputs of the problem.

1 a4 =c
v(wi,cj)—{o o ()
i j

The assignment relationship between tasks and trucks is
represented by (2).

a(vi’wj> = {1

0 wj is not assigned to v;

w; is assigned to v;

2)

Equation (3) shows if wy, is serviced immediately after task
wy by V.

5( ) 1 Wy, 18 next to w; 3)
Vi, Wi, W = .
7k 0wy is not next to w;

The truck dispatching optimization is to allocate all tasks
in W to different trucks while maximizing the throughput
(i.e. TEUs/hour) of the container terminal. Combined with
the above definitions, the truck dispatching model can be
expressed:

n
ax max F — min S @
> a(vi,wy) =1 Yw; €W (5)
i=1
ZZﬁ(Uuwy‘,wk)Sl Vw; € Wow; # wi, (6)
i=1 k=1
SO Blok,wy,wi) - (Kb, ai) + €5)
s; =max{ 77! . ®)
t(d, ai) . (1 — Z B(Uk,wj,wi))
k=1
ei = s; + t(a;, b;) + sct(w;) + ect(w;)
. )]
Viell,n
Y(wi, ¢5) - (si + sct(w;)) < Y(Wik, ¢5) - (Sivr) (10)

Vk > 1,Vwi,wi+k S VV,VCJ' eC

Formula (4) is the objective function to maximum
TEUs/hour by minimizing the difference between the end
time of the last completed task and the starting time of the
first started task among fixed number of tasks n. Constraint
(5) ensures that each task is assigned exactly to one truck.
Constraint (6) ensures that each task is followed by maximum
one other task or nothing if it is the last task. Constraint (7)
that the travel time on the map include the stop station d is
greater than 0. Formulas (8) and (9) calculate task start time
and end time. For each crane, due to the container terminal
transportation rules, constraint (10) make sure that tasks start
until previous tasks are completed.



IV. METHODOLOGIES

This section describes the design of the heuristic-based
dynamic dispatching system as well as heuristic truck dis-
patching algorithms. As mentioned above, most of the re-
searches about container terminal truck dispatching problem
have excellent performance in experimental environment, but
they are normally deterministic algorithms, which assume a
deterministic problem environment. Such solutions did not fit
real-life container terminals working environment well since
container terminals’ environment are changing frequently.
These changes include changes in tasks’ destination require-
ments and sequence, cranes’ operation time, and trucks’ travel
time as well as trucks’ availability. For these deterministic
methods, if the environment has changed, the solution must
be re-computed to guarantee the feasibility. Otherwise, old
solutions generated based on the previous environment may
cause unreasonable decisions, and result in truck congestion
as well as long crane waiting time. Additionally, time required
to re-compute a new solution usually exceeds the computing
time restriction in container terminal companies.

A. Proposed Dynamic Dispatching System

Consequently, we propose to use dynamic algorithms to
dispatch trucks base on the actual situation of the container
terminal in real-time. As it has been shown in Figure 1, a
dynamic dispatching system has been developed. This system
will automatically loop all available trucks in the container ter-
minal vehicle pool then send instructions to idle trucks. Trucks
will be dispatched to most appropriate cranes measured by a
utility function (which include heuristics, see details in later
subsections) and the first available task of the dispatched crane
is executed to ensure that tasks associated with cranes can be
completed in the predefined sequence. The core algorithm of
the dynamic dispatching system is shown in Algorithm 1.

B. Manual crafted Heuristic based on Experience

Currently, most container terminals bind trucks to cranes
statically to complete corresponding tasks and let operators
optimize these dispatching schemes. Even if this most basic
truck dispatching method is adopted, under the optimization
of experienced operators, many container terminals can still
maintain high operation efficiency, Which shows that the rules
summarized by these operators base on their historical work
experience in container terminal can effectively improve the
container terminal operation efficiency. Through the commu-
nications and discussions with these experienced operators,
we transformed the rules summarized by operators into a
heuristic algorithm. Moreover, this algorithm is inserted into
the dynamic truck dispatching system mentioned above to
simulate solutions made by operators and work as a control
group. The structure of manual heuristic is shown in the
Algorithm 2.

In this manual heuristic algorithm, some user parameters are
used, such as desired_trucks, which means the most suitable
number of trucks for all working cranes, and powt_limit
means the maximum number of trucks assigned to any work

Algorithm 1 Dynamic Truck Dispatching
Require: Truck trucks, Crane cranes, Heuristic heuristic
function dispatch(truck)
man_score < 400, dispatch_task < NULL
for cr in cranes do
cr.score < heuristic(cr, truck)
if cr.score < min_score and cr.taskNum > 0

then
min_score < cr.score
dispatch_task + cr.tasks|0]
end if
end for

return dispatch_task
end function
while tasks.number > 0 do
for tr in trucks do
if tr.tasks = NULL then
while tr.teu < 2 do
tr.tasks < dispatch(tr)
end while
end if
end for
end while

Algorithm 2 Manual Heuristic Algorithm

Require: Parameters parameter, Travel Time ¢
function heuristic(cr, truck)
if crane.powa < parameter.desired_trucks then
score < t(truck, cr) * (cr.powa — cr.priority)
else
score < t(truck, cr) * parameter.desired_trucks
end if
if crane.powt > parameter.powt_limit then
score <+ score + 200000
end if
return score
end function

crane. These user parameters are based on the actual needs of
the container terminal and generated by the statistics result of
the operators’ records. Other variables are calculated in real-
time like crane.powa, which indicates the available number
of trucks that have already arrived at the crane, as well as
another parameter crane.powt which is the total number of
trucks working for the crane. On account of the needs of the
operation in the real container terminal, each crane will be set a
corresponding priority crane.priority, and the algorithm will
give priority to the crane with a higher crane.priority value.
The function ¢ can calculate the travel time that a truck takes
from its current position to the crane. When the algorithm
is running, real-time parameters will be used to calculate a
specific score for each crane, and then the dispatching system
will judge whether to dispatch trucks to corresponding crane
by its score.



C. Genetic Programming

Genetic programming is a technique for generating tree-
based computer programs through evolution [39]. In this
paper, the individual fitness of GP is assessed by TUE/hour.
Furthermore, genetic operations such as crossover, mutation,
selection are used as evolution methods between generations
of individuals. Parameters used in GP are shown in Table II.

TABLE II
THE PROPOSED GP TERMINALS AND OPERATORS

Name Label Description
+ + Add operation
- - Minus operation
* * Multiplication operation
/ / division operation
> (>) > (>=) Greater than (Greater than or
equal to)
< () < (<=) Less than (Less than or equal
to)
& && Logic and
| I Logic or
powa powa_table_i Arrived truck number of
crane;
powt powt_table_i Total truck number of crane;
powd powd_table_i Total truck moving distance

of crane; (expressed in sec-
ond)

5, the expression 10 evaluates to 50, which can be regarded
as scores in Algorithm 1. Eventually, when all tasks are
finished by the GP heuristic dispatch method, TEUs/hour will
be calculated as the fitness. Individuals will be sorted by their
fitness values and then the next generation of evolution process
starts.

TABLE III
GP INITIALIZATION AND PARAMETERS
Population Size 10000
Max Generation 1000
Crossover Probability 0.45
Mutation Probability 0.15

Reproduction Probability 0.4

Tree Initialization Method Ramped half-and-half
Selection Method Tournament selection, size 9
Depth Restriction 12

With initial parameters in Table III, individuals can be
produced through Algorithm 3. According to the steps in the
algorithm 3, first initial individuals by initialization parameters
in the GP population. Moreover, to prevent evolved GP heuris-
tics being too long, the individuals’ fitnesses are punished
base on their length. Then evolve the population by default
parameters till reach max generation.

Desired Trucks Desired trucks number of a

crane

desired_wq_trucks

Travel Time tr_fp2src_time Travel time form truck to
crane;

powt limit powt_limit Total truck number limit of a
crane

Remain tasks remain_task_num Remain tasks number of
crane;

Constant Number constant Random constant number

Fig. 2. Instance of GP Heuristic Tree

tr_fp2src_time/remain_task_num/2 % powt

(1)

As Figure 2 illustrated, individuals in GP populations are
formed like trees, and leaves of trees will be replaced or
removed in mutation and crossover. These GP individual
trees can be transformed into expressions that are easier
to comprehend. For example, the tree in Figure 2 can be
decoded into Expression (11). If we give parameters values as
tr_fp2src_time = 400, remain_task_num = 20, powt =

Algorithm 3 Proposed GP Algorithm for Dynamic Truck
Dispatch
Require: Initial Parameters initial
p < Population
p.anitial_individuals(initial .population_size)
generation < 0
for generation < initial.max_generation do
p.calculate_fitness()
p.penalize_long_individuals()
next_generation < Population
while next_generation.size() < p.size() do
Insert an individual to next_generation by
Crossover, Mutation, or Reproduction in p
end while
p < next_generation
generation < generation + 1
end for

GP heuristics are assumed to consider more hidden factors
and perform better than manual heuristic since humans have
experimental limitations [40], which leads them to pay too
much attention to common phenomena and parameters when
summarizing the experience. The manual heuristic will ignore
some exclusive solutions that seem to be abnormal in short
term but beget excellent performance while GP heuristics are
trained on actual operation data and are more likely to better
handle all different scenarios. The comparison results of these
heuristics are given in the next section.

V. PROBLEM INSTANCES AND EXPERIMENTS RESULTS

In all experiments, although the dynamic dispatching algo-
rithm can adapt to a different number of trucks and QCs, to



TABLE IV
TEST RESULTS IN 40 TRUCKS 7000 TASKS (TEUS/HOUR)

.. GP Heuristics
Test Set Original | Manual 7 > 3 7 3
TestSet1_7000_average 130.61 145.04 157.17 157.11 157.21 157.21 157.21
TestSet2_7000_average 129.75 145.92 155.85 155.85 155.94 155.93 155.93
TestSet3_7000_average 126.71 149.04 158.23 158.23 157.86 157.84 157.84
Average Improvement Base Original 0.00% 13.67% | 21.75% | 21.73% | 21.68% | 21.68% | 21.68%
Average Gap -100.00% 0.00% 59.03% | 58.92% | 58.57% | 58.53% | 58.53%

ensure the consistency of data as well as facilitate comparison
and analysis, the number of QCs is set to 8, and the number
of trucks is set to 40. For simulating the stochastic changes of
real container terminal environments, training and testing sets
will have 10 subsets of different load/unload time of cranes
and travel time of trucks. GP fitness and ultimate output will
be represented through the average value of these 10 subsets.
The five best GP heuristics are as follows:

1) (((powd_table_i<remain_task_num)*powt_table_i)*
(tr_fp2src_time||remain_task_num))-remain_task_num

2) ((7<remain_task_num)+3)-remain_task_num-+
desired_wq_trucks

3) (remain_task_numé&&(powa_table_i)/9<tr_fp2src_time
<desired_wq_trucks*powt_limit/tr_fp2src_time/
powt_table_i)-remain_task_num

4) ((((powt_limit<powt_table_i<desired_wq_trucks/6))/
desired_wq_trucks<desired_wq_trucks>powt_limit))-
(powt_limit&&powa_table_i)+remain_task_num

5) ((((powt_limit+powd_table_i))/desired_wq_trucks
<desired_wq_trucks>powt_limit))-(powt_limit&&
powa_table_i)+remain_task_num

All the above GP heuristics were trained on 10 training
sets with 500 tasks each, and the fitness of these results
is the TEUs/hour in finishing all tasks. To prevent possible
over-fitting, during the process of GP evolution, a training
set will be selected randomly every 20 generations from 10
candidate training sets to simulate real container terminals, in
which tasks do change over time. Test sets have 7000 tasks,
the original static algorithm, manual algorithm, GP generated
heuristic algorithms are compared for the same test sets. Test
results are shown in Table IV.

Based on the test outcome, it can be concluded that in these
three test sets (include 30 subsets in different conditions),
the average TEUs/hour of manual heuristic and GP heuristics
are both higher than original algorithm which binds trucks
to cranes. The manual heuristic can improve about 14%
TEUs/hour from the original algorithm used in practice. While
these GP heuristics performed better and gained an improve-
ment of around 22%. In the last row of Table IV, to describe
the difference between manual heuristic and GP heuristics
more clearly, the performance gap is introduced base on
Formula (12) which tries to compare the improvement of GP
heuristics and manual heuristics base on the original algorithm.
As it is shown in Table IV, GP heuristics’ performance about
59% better than manual heuristic.

Result — Original

Gap = ( 1) -100% (12)

Manual — Original

The manual heuristic algorithm has been practiced in
Ningbo port over years, base on the statistical data, work
efficiency has improved 8.14% and ship stay time has reduced
2.24%. If using the saving time to operate more ships, accord-
ing to previous annual profits, manual algorithm could improve
profits by about $2,400,000 per year. Although GP heuristics
have not applied in real port yet, it can be inferred from manual
heuristic algorithm’s performance that GP heuristic algorithm
can make around $1,320,000 extra profits each year.

VI. CONCLUSION AND FUTURE WORK

In this paper, a dynamic heuristic algorithm scheme is
proposed to solve the container terminal truck dispatching
problem. In this scheme, trucks in container terminals dis-
patched dynamically guided by scores generated by heuristics.
Different from the traditional port truck dispatching system,
such a heuristic-based dynamic dispatching system no longer
needs the operators to assign trucks to different cranes fre-
quently.

Two different types of heuristics (manual and GP evolved)
are used as the core dispatching algorithms in the dynamic
dispatching system, and compared with the original algorithm
used in practice for test data sets. Both manual heuristic and
GP heuristics make improvements over the original dispatch-
ing algorithm, which indicates that the heuristic dispatching
approach can effectively improve the operations efficiency
for container terminals. Furthermore, according to the test
results, the improvements from the best five GP heuristics are
about 59% compared with the method in practice. It can be
concluded that GP can learn some hidden factors omitted in
manual heuristic during the evolution process in real operation
data. For instance, all of the best five GP heuristics use
remain_task_num as a key factor to adjust dispatching for
the remaining tasks, while manual heuristic does not use it at
all.

In conclusion, dynamic GP heuristic dispatching approach
adapt well to complex real-world container terminal environ-
ments, dispatch trucks accurately and quickly. GP heuristics
show an ability to make up flaws in the manual crafted
heuristic, and they significantly improve the efficiency of
container terminals, shorten ship dock time, and boost the
benefits of container terminals. However, there are still spaces
for further improvement, such as weak generality. Performance



of GP can be affected by uncertain environments, and the
heuristics is not easy to read. In future research, we plan to
use GP to generate Hyper-Heuristics to overcome these defects
and get better dispatching solutions.
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