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Abstract 

This paper presents our investigations on a hybrid constraint programming based column generation (CP-CG) 

approach to nurse rostering problems. We present a complete model to formulate all the complex real-world 

constraints in several benchmark nurse rostering problems. The hybrid CP-CG approach is featured with not only 

the effective relaxation and optimality reasoning of linear programming but also the powerful expressiveness of 

constraint programming in modeling the complex logical constraints in nurse rostering problems. In solving the CP 

pricing subproblem, we propose two strategies to generate promising columns which contribute to the efficiency of 

the CG procedure. A Depth Bounded Discrepancy Search is employed to obtain diverse columns. A cost threshold is 

adaptively tightened based on the information collected during the search to generate columns of good quality. 

Computational experiments on a set of benchmark nurse rostering problems demonstrate a faster convergence by the 

two strategies and justify the effectiveness and efficiency of the hybrid CP-CG approach. 
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1 Introduction 

1.1 Background 

The nurse rostering problem (NRP) represents an important administration activity in modern hospitals. 

The problem consists of generating a configuration of individual schedules for all available nurses 

satisfying a set of constraints including working regulations and nurses’ preferences. Solving the problem 

properly has a positive impact on nurses’ working conditions and contributes to a higher quality of 

healthcare [1, 2]. NRPs belong to the personnel scheduling problem, which is one of the combinatorial 

optimization problems. Solving complex NRPs, which is NP-hard [3], presents a challenge to both 

practitioners in practice and researchers in Operations Research (OR) and Artificial Intelligence (AI) 

communities. 

Due to their strengths in optimality reasoning and relaxation, OR techniques such as linear programming 

[4], integer programming [5] and mixed-integer programming [6] have been applied to NRPs. The core 

problem of NRPs can be modeled as the set partitioning or set covering problem. These well structured 

models, although are often rather simplified, can help to reveal important problem properties and define 

efficient (and often polynomial) algorithms [7]. In personnel scheduling, researchers have investigated 

column generation and branch-and-price approaches [8-11].  

However, real-world large scale NRPs are usually highly constrained and difficult to solve efficiently by 

using pure OR techniques. Constraint Programming (CP) offers a rich modeling paradigm to handle 

complex and heterogeneous constraints in combinatorial problems. Its strength of feasibility reasoning 

has been widely recognized in the literature, where NRPs are modeled as constraint satisfaction problems 

and solved subject to a set of complex constraints [12, 13]. 

In solving complex NRPs efficiently, the real challenges come from both the feasibility and optimality 

reasoning. This motivated our research on integrating OR and AI techniques within an integrated scheme. 

Constraint Programming based Column Generation (CP-CG) is such a scheme to integrate these two 
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techniques. The overall efficiency of CP-CG depends on both the linear program relaxation and the 

solving of the CP pricing subproblem. Problem specific features can also be considered in modeling the 

problem to further improve the efficiency of CP-CG. In this paper we aim to investigate the effective 

interactions between CG and CP within CP-CG to solve complex NRPs.  

1.2 Related work in CP-CG 

The CP-CG approach has been firstly introduced in [14] and [15] to model and solve the crew assignment 

problem. It is a decomposition approach where CP is used to solve the pricing subproblem and CG is used 

to solve the master problem. The results show that, compared to using CP, using dynamic programming 

to solve the pricing subproblem is very time consuming due to the large set of constraints [14]. The CP-

CG approach has since been widely applied to airline crew scheduling [16], vehicle routing [17] and bin 

packing [18] problems. In this work, motivated by the above work on different problems, CP is used to 

effectively model the complex constraints in NRPs and solve the pricing subproblem in CP-CG. 

All the problems addressed by CP-CG share the similar structure. They may be inherently decomposed 

into a pricing subproblem and master problem. CG in the master problem is used to select a subset of 

patterns from a huge pool of all possible weighted patterns to construct the best complete solution to the 

problem. CP in the subproblem is used to generate the large pool of patterns with desired features of the 

problem solution [19]. For example, in the airline crew scheduling problem, each schedule (individual 

pattern) for the crew should satisfy a specific set of working regulations. Integer variables in the master 

problem of CP-CG represent which columns (i.e. patterns) are chosen to construct the complete solution. 

The linear relaxation of the integer program in the master problem is used to iteratively derive the 

optimality and choose a subset of columns. Through this integration, the hybrid CP-CG approach benefits 

from both the feasibility reasoning of CP and the optimality reasoning of linear programming. 

In personal scheduling, CP-CG has been applied to airline crew assignment problems [14-16] and a  

personnel scheduling problem in a bank [19]. Research mainly focuses on solving the pricing subproblem 

using CP. The efficiency of the CP-CG algorithms mainly relies on the development of efficient cost 

filtering (propagation) algorithms in CP. In [19], all the key features of the problem have been modelled 

as hard constraints in the CP subproblem. The approach has showed to be inefficient when the working 

regulations are complex and the scheduling period is long, which are often the case in real-world NRPs.  

In solving a physician scheduling problem [20], instead of focusing on cost filtering in CP as in most of 

the previous work [14-16, 19], the researchers have proposed two search strategies, a dual strategy and a 

master strategy, to improve the efficiency of CP-CG. To speed up the convergence of the objective value, 

in the linear relaxation of the master problem, the dual strategy selects the shift with the lth largest dual 

value (where l is randomly chosen) to drive the search towards columns with negative reduced cost. To 

speed up the convergence of the integer solutions, the master strategy stores the information of shifts that 

have been assigned, and chooses the least used shifts first. This strategy can be seen as a heuristic which 

chooses diverse columns for constructing integer solutions.  

1.3 Motivations 

Theoretically, at each iteration of CG in the master problem, the pricing subproblem searches for those 

columns with the greatest reduced cost (negative for the minimisation problem concerned here). When no 

such columns with negative reduced cost can be found, we obtain the optimal solution to the original 

problem [21, 22]. In CG, a column with the greatest (negative) reduced costs may not lead to the largest 

decrease of the objective function. The decrease of the objective function also depends on how much the 

entering variables can be increased. Thus, choosing the optimal column (with the minimum negative cost) 

is not always the best choice. In practice, any feasible columns which have negative reduced cost can 

serve as candidates to enter the master problem. 



Generating feasible columns rather than optimal ones presents an easier problem, but leads to a slower 

convergence to the optimum with respect to the number of required iterations in CG. In this paper we 

address the issue of slow convergence in CG approaches. Another issue we face in developing efficient 

CP-CG is that the CP pricing subproblem tends to generate similar columns [21, 22] due to the default 

Depth First Search in CP, thus it is difficult to quickly reach integer solutions for the master problem. 

In this paper we aim to address the above research issues in applying the CP-CG approach to complex 

NRPs. To deal with the slow convergence of CP-CG, we propose a cost threshold to select good quality 

columns. That is, not only the generated columns have negative reduced costs, but also their cost 

coefficients in the objective function are below a threshold. This cost threshold is adaptively updated 

(reduced) according to the solutions collected during the CG procedure. With regard to similar columns 

generated, we apply the Depth Bounded Discrepancy Search to obtain diverse columns. This strategy, to 

some extent, quickly leads to integer solutions of the master problem. The main contributions of the paper 

are as follows: 

 We propose a CP-CG solution procedure where a complete model formulates all, rather than a subset 

of, real-world constraints in several benchmark NRPs concerned. 

 We apply the Depth Bounded Discrepancy Search in CP-CG to obtain diverse columns for the master 

problem in CG concerning integrality. An adaptive bound tightening strategy is devised to obtain high 

quality columns during the problem solving based on a repeatedly updated cost threshold. 

The remainder of this paper is organized as follows. Section 2 presents the integer program model in the 

master problem and the CP model in the subproblem for NRPs. Section 3 presents the overall solution 

procedure with details of the key steps. We demonstrate the efficiency of the CP-CG approach in Section 

4 by an in-depth analysis over a set of experiments. This leads to the conclusions and future work in 

Section 5. 

2 Modelling the Nurse Rostering Problem 

2.1 The nurse rostering problem 

In this work, we denote a sequence of day-on and day-off duties for a nurse within the scheduling period 

as the schedule of the individual nurse. On each day-on, the nurse can be assigned to a particular shift 

(e.g., early, day, evening or night shift). The overall timetable for all nurses (all schedules) is denoted as 

the roster. The NRP is to assign a schedule to each available nurse of a specific skill category. The 

problem data such as the number of personnel in a ward, and in each skill category, the demand of each 

category of nurses and the definition of shift types is determined in staff planning, which is the first stage 

of overall nurse workforce management [2]. 

Nurse rostering in hospitals involves a large number of constraints including working regulations, legal 

requirements and nurses’ preferences, etc. The NRPs concerned in this paper are derived from real-life 

scenarios in hospital wards, and are a set of mostly tested benchmark problems in the literature. The rules 

and regulations have been directly taken from real-world cases and preserved with essential 

characteristics. The constraints in these problems are categorized into hard constraints and soft constraints, 

explained as follows: 

 Hard constraints must be satisfied to obtain feasible solutions for use in practice. In our benchmarks 

we treat hospital rules as hard constraints to ensure a continuous service, i.e. hospitals must provide 

some minimum level of care in terms of the number of nurses for each shift type. Each nurse cannot 

work more than one shift on the same day. Other hard constraints include the working time (e.g. 

maximum 38 hours per week for full time nurses) and shift patterns (e.g. a minimum of 42 hours rest 

is required after two consecutive night shifts). 



 Soft constraints are not obligatory but desired to be satisfied as much as possible. Balanced workload 

and individual preferences are usually treated as soft constraints. A weight (a non-negative value) is 

assigned to each soft constraint to reflect its importance (especially in comparison with other soft 

constraints). The higher the weight, the more strongly the constraint is desired to be satisfied. These 

weights are set either by the head nurses or based on feedback from the nurses with regard to the 

quality of their schedules they desire. 

We present a summary of these constraints in Table 1. Details of all constraints in different problems 

concerned in this paper are listed in Appendix A.  

Table 1 Summary of constraint categories in the benchmark NRPs, more details are presented in Appendix A. 

Hard constraints Only one shift on a day for each nurse 

 Exact coverage requirement (no over/under cover of shifts) 

 Working time 

 Shift patterns 

Soft constraints Workload balance 

 Shift patterns 

 Pattern preferences 

The objective of NRPs can be defined as to find a feasible roster (i.e. which satisfies all hard constraints) 

with the lowest possible penalty caused by soft constraint violations, i.e. to minimize a weighted sum of 

the penalties from all violations of soft constraints. 

When modeling the master problem within the CP-CG approach (see Section 2.3), we only need to 

consider the coverage constraint in Table 1. All the other detailed constraints are encapsulated as the 

features of columns, and formulated in CP within CP-CG (see Section 2.4 and Appendix B). 

2.2 The basic column generation formulation  

Column generation (CG) is an efficient algorithm for solving linear programs with a large number of 

variables [23,24]. The basic idea is to, by exploiting problem substructures, decompose a linear program 

into two complementary components: a master problem (MP) and a pricing subproblem (Psub). The 

master problem (MP) has a compact linear program formulation as follows: 

(MP) min CX  

subject to AX ≥ B 

 X ≥ 0 

Where vector X represents decision variables xj; C represents objective function coefficients cj; B 

represents the right hand side coefficients bi; and matrix A represents constraint coefficients aij; i I = 

{1, …, n}, j J = {1, …, m}. 

It is often impossible to directly solve the large master problem. CG provides a way to obtain the solution 

indirectly [16] by solving a much smaller problem, termed as restricted master problem (RMP) as follows: 

(RMP) min CX  

subject to AX B  

0X  

where A A is a subset of m’ < m columns and X are the corresponding variables. An optimal solution to 

the restricted master problem provides dual values λi of each constraint i, i.e. 
ij j i

j J

a x b , of the original 

linear program. 

We then need to add variables to X  and the corresponding columns to A  to yield a linear problem with 

the same solution as the original master problem. The linear programming duality theory proves that only 



columns with negative reduced cost ( i < 0) can be candidates to A , where a reduced cost measures the 

improvement of the objective function coefficient for the value change of the corresponding variable. 

This is the same way as how the Simplex algorithm chooses columns internally. It is also used to generate 

external columns in the CG method [16]. 

Let vector α = (α1, …, αn)
T
 represent a new column we generate for the corresponding variables X of the 

master problem, and cα denote the objective function coefficient associated to column α. Let F denote the 

feasibility region of the combinatorial objects represented by the columns of A. With the optimal dual 

values λi associated with constraints
ij j i

j J

a x b , we have the following pricing subproblem (PSub): 

(PSub) 0
ni

i

iii c  

α F 

where α are the decision variables of the pricing subproblem which encode the combinatorial objects and 

solution characteristics, i.e. characterize columns of A. If α is a valid solution for the subproblem, i.e. 

α F, α is added to A  in the master restricted problem. 

Based on the above general formulations, next we define our NRPs within the CP-CG scheme, where the 

pricing subproblem defined in CP provides columns to CG of the master problem. 

2.3 Formulating the master problem as integer program 

Problem size parameters: 

--N: set of nurses (index i) 

--D: set of days in the scheduling period (index j) 

--S: set of shift types, i.e. Late, Early, Night, Off, etc (index k) 

Nurse parameters: 

--G: set of nurse categories (i.e. different working contracts, e.g. 20, 32 or 36 hours per week, respectively) 

(index m)  

--Fm: set of feasible schedules for nurse of category m with respect to related constraints of contract 

stipulations (index l) 

--ailmjk: is 1 if schedule l for nurse i in category m covers the required shift k on day j; 0 otherwise 

--cil: penalty of schedule l which violates the constraints of contract stipulations of nurse i 

Demand coverage parameter: 

--Rjk: coverage demand of shift type k on day j 

Decision variables in the master problem: 

-- yil: takes value 1 if nurse i is assigned to schedule l; 0 otherwise. 

The Master Problem Formulation (NRPs MP) is modeled as follows: 

(NRPs MP) min
m

il il

m G i N l F

c y      (1) 

s.t. , ,
m

ilmjk il jk

m G i N l F

a y R j D k S    (2) 

1,
m

il

l F

y i N      (3) 

In (NRPs MP), the objective function is linear over the schedules yil. The penalty of the entire solution 

(roster) is defined as the sum of the penalties of the selected schedules, i.e. objective (1) of the master 



problem aims to minimize the sum of penalties associated with the individual schedules yil each nurse i is 

assigned to. Constraint (2) defines the required number of nurses for each shift type on each day (exact 

coverage). Formulating the coverage constraint as such allows flexible substitutability between nurses, i.e. 

schedules are exchangeable among nurses of the same category m. Constraint (3) assigns exactly one 

feasible schedule to each nurse subject to his or her specific constraints. A similar formulation of the 

restricted master problem has also been applied in [11]. 

In the above seemingly simple model, a large amount of complexity is actually hidden in the definition of 

schedule l in yil, i.e. all the other constraints in Appendix A are implicitly modeled by the definition of 

schedule l, and the generation of each column (feasible schedule l) by CP must be subject to these 

constraints (see Section 2.4).  

2.4 Formulating the pricing subproblem in CP  

The subproblem concerning all complex constraints (except the coverage constraint) is modeled in CP to 

provide columns of desired features in CP-CG. The pricing subproblem is in the general form as follows:  

(P) 0
ni

i

iii c      (4) 

α F       (5) 

Two groups of constraints, namely the negative reduced cost (4) and the feasibility constraints (5), are 

concerned.  

In the reduced cost constraint (4), we define the reduced cost il in our problem as follows: 

m

il il i jk ilmjk

m G i N l F

c a     (6) 

-- il is the reduced cost of column l for nurse i 

--cil is the cost coefficient of column l for nurse i 

-- i is the dual value of constraint (3) for nurse i 

-- jk is the dual value of constraint (2) for shift k on day j 

--ailmjk corresponds to the coefficients matrix in (2) of the master problem (NRPs MP) 

In (6), i and jk are the dual values obtained from the linear program solution of the master problem 

(NRPs MP). cil and ailmjk are obtained from the solution of the pricing subproblem. Each schedule l for 

nurse i is a sequence of shifts that satisfies all the related constraints (l  Fm). It introduces a new column 

in the master problem with cost coefficient cil (we use the term “cost” in the CP pricing subproblem 

which corresponds to “penalty” in the master problem).  

The modeling of feasibility constraint (5) in our CP-CG requires careful consideration of the complex 

constraints in NRPs. The issue of how to efficiently formulate the complex constraints in CP has been 

studied in our previous work [25]. In constraint satisfaction problems, a constraint is defined as a logical 

relation among several variables which restricts the possible values that variables can simultaneously take 

from their domains. In NRPs, we could define working regulations, etc. by using simple primitive 

constraints. For example, “if sij = late, sij+1 ≠ early” defines that no early shift is allowed after a late shift, 

where sij is a decision variable with finite domain. However, this will lead to a massive number of 

primitive constraints in complex NRPs. What’s more, one of the essential ideas in CP is propagation, 

where inconsistent values to variables are detected as early as possible. Using only the primitive 

constraints significantly restricts the power of propagation in CP [26].  

2.4.1 Global constraints 



In this work we use global constraints and soft versions of some global constraints to model some of the 

constraints in our NRPs. Global constraint is a substitute of a set of primitive constraints and is usually 

equipped with efficient propagation algorithms to remove inconsistent values of variables (see a list of 

global constraints with propagation algorithms in [27]). 

Global cardinality constraint gcc(s, v, l, u), also named as distribute (see [27] pages 420-450), bounds the 

number of times, in range [l, u], certain values v can be taken by variables s. For example, gcc(sij, Night, 0, 

3), j=1…n, defines that nurse i should work at most 3 night shifts in the whole period j. 

Another global constraint stretch(s, v, l, u, P) (see [27] pages 420-450) bounds [l, u] the number of 

consecutive days (i.e. stretch) a nurse can work on a shift v, and restricts the shift v’ that immediately 

follows the stretch, i.e. the pair of values (v, v’) must be in pattern P. A stretch is a sequence of 

consecutive variables that take the same value. For example, stretch(sij, Night, 2, 3, P), P = {(Night, Off)}, 

j=1…n, restricts nurse i to have consecutive night shifts within length [2, 3], and the only shift type 

allowed following the night shifts is Off, as given in P. 

When dealing with nurse preferences in our NRPs, soft constraints are used. The objective is to minimize 

violations of these constraints by using the associated violation measure. We use ~ hereinafter to denote 

the extended soft version of the above global constraints to handle soft constraint violations. 

The violation measure 
~gcc

 of ~gcc(s, v, l, u) calculates the deviations of shift assignments from the lower 

bound l and the upper bound u as in [28]. The penalty of such soft constraint violations is defined as the 

weighted sum w
~gcc

 of the deviations. For example, if nurse i prefers to work on Day shifts within the 

range [4, 5] per week, represented by ~gcc(sij, Day, 4, 5), j = 1…7, and a schedule below or over this 

range leads to a penalty of weight 100, then for the schedule of a week l = [Day, Day, Day, Off, Off, Off, 

Off], a penalty can be calculated as w
~gcc

(l) = 100  |4 – 3| = 100, where |sij = Day| = 3, l = 4, u = 5. The 

violation measure 
~gcc

 for ~gcc(sij, Day, 4, 5), j = 1…7 is 1 for nurse i. 

The deviations as calculated in ~gcc are also used to measure the violations of ~stretch constraint. To 

indicate the starting point of a given sequence auxiliary variables are introduced. Although this leads 

more variables, the resulting constraints are linear and easy to solve in CP. Our experiments have 

demonstrated a satisfactory performance of the search. 

For the gcc and stretch constraints, we can achieve general arc consistence using the filtering algorithm 

(i.e. propagation) in CP. However, for ~gcc and ~stretch, the time spent in filtering is highly dependent 

on the specific propagation algorithms. In our work, instead of implementing the cost propagation 

algorithms for soft constraints, we focus on the search strategies, namely a cost threshold and Depth 

Bounded Discrepancy Search, to improve the efficiency of CP within CP-CG. 

2.4.2. The CP model 

Based on the primitive and (soft) global constraints, we model our CP pricing subproblem within CP-CG 

by defining the detailed feasibility constraint (5)   F. The constraints we model here are from one of 

the most complex benchmark NRPs. Other problems can be modeled in a similar way. 

Parameters: 

--hm: available working hours for nurses of category m in the scheduling period; 

--n: number of days in the scheduling period; 

Decision variables in the pricing subproblem: 

--sij: decision variables with finite domain S. i.e. D(sij) = S. 

The NRPs concerned are defined as follows: 



(NRPs P) 

CCe

Ceil lwlEc Ce )()(

 

where E(l) represents the evaluation of schedule l. C is the set of constraints. The evaluation of the soft 

constraint Ce is calculated by wCeμ
Ce

(l), where wCe is the weight of the constraint given in Appendix A and 

μ
Ce

(l) is the violation measure of the soft constraint. Based on the above defined (soft) global constraints, 

the hard and soft constraints are modeled as shown in Appendix B. 

In our CP-CG approach, we concern two different types of decision variables, namely the binary variables 

in the integer program model and finite domain variables in the CP model. In the implementation of the 

approach, a set of communication variables has been introduced to reflect the interactions between the 

two models: 

--ximjk: binary variables as the communication variables between the master problem and the pricing 

subproblem. ximjk = 1 if nurse i in category m is assigned to shift k on day j; ximjk = 0 otherwise. For 

example, if sij = k, where nurse i is in category m, then ximjk = 1. 

After (NRPs P) is solved and the values of cil and sij have been obtained, the communication variables ximjk 

transform sij in the pricing subproblem to the coefficient ailmjk in the master problem. For example, a 

schedule l = [Day, Day, Night, Night, Off, Off, Day] can be transferred as a column 

[110000100110000000110]
T
. Values of cil and ailmjk are used to calculate the reduced cost il in (6).  

3 The Solution Procedure 

Fig. 1 illustrates the general CG procedure for a linear program. Theoretically, it is necessary to generate 

all possible columns with negative reduced cost before the procedure terminates, i.e. {α
(1)

, …, α
(k)

} = Ø. 

However, in practice the procedure is usually terminated when some conditions are met, i.e. a total 

number of iterations or time limit. The master problem is then seen as being solved [21, 22]. 

 

Fig. 1. The column generation method for linear program [16] 

The variables of the linear program in Fig. 1 are continuous. The solution obtained is the linear program 

relaxation solution, and quite often is not valid when solving an integer program. In practice, two general 

techniques are usually used to generate integer solutions for the master problem. Branch-and-bound 

(B&B) enumerates all candidate solutions in the search tree and prunes worse solutions using the upper 

and/or lower bounds obtained. It can be used to produce feasible integer solutions to the restricted master 

problem with the current columns, although the optimality is not guaranteed. Another technique, Branch-

and-Price [21], generates columns at each node of the search tree after branching to find the optimal 

solution. 

The overall CP-CG procedure is illustrated in Fig. 2. A feasible initial solution is firstly generated and fed 

into the restricted master problem (NRPs MP). Each column in the initial solution is associated with a 

Algorithm 1. Column Generation for linear program 

:A the subset of feasible columns of A  

: dual values 

{α
(1)

, …, α
(k)

}: columns with negative reduced cost 

:A obtain initial columns 

Repeat 

λ := solve the restricted master problem A  to obtain dual values λ 

{α
(1)

, …, α
(k)

} := solve the pricing subproblem based on λ to obtain columns with 

negative reduced costs 

add columns {α
(1)

, …, α
(k)

} to matrix A  

Until ({α
(1)

, …, α
(k)

} = Ø) or the termination condition is met 



cost 
CCe

Ce

Ceil wlEc )( , and the highest cost is used as the threshold in the CP pricing subproblem. 

Candidate columns which preserve feasibility and have a cost below the cost threshold are generated by 

solveCPSubProblem( c~ , DDS) using the Depth Bounded Discrepancy Search (DDS) strategy [29]. 

Columns with negative reduced costs are then priced out and added to the restricted master problem to 

solve the linear program problem again. The new lower bound of the linear program relaxation and the 

new dual value λ are derived in the linear program, as shown in the inner loop in Fig. 2. 

Within the outer loop in Fig. 2, B&B is run based on the generated columns to obtain an integer solution 

yil. We apply the 0/1 branching strategy on variable yil of the master problem to assign a particular 

schedule l (yil = 1) or prohibit the specific assignment (yil = 0) to a nurse i. In CPLEX, this default 

branching rule automatically chooses which variable to branch first. The solution serves as the upper 

bound of the master problem. The cost threshold is then updated as the highest cost of all columns in the 

current solution. The column pool is then emptied and DDS restarts to generate columns with a tightened 

bound. This bound tightening strategy aims to avoid generating columns of high costs. If the cost 

threshold remains the same, parameters of the DDS search will be adjusted to direct the search to find 

columns in different parts of the search tree, see Section 3.2. The whole procedure stops when no 

improvement of cilyil can be obtained in a certain number of iterations. An integer solution with a certain 

gap to the linear program relaxation is obtained.  

 

Fig. 2. The CP based column generation solution procedure 

In the literature, integer solutions to the master problem are obtained by either running B&B on the linear 

program relaxation or running Branch-and-Price. In our CP-CG, instead of running Branch-and-Price at 

each node to derive optimal solutions, we run B&B on the generated diverse columns which are of good 

quality by using search strategies in CP to derive integer solutions to the master problem. 

To illustrate what are columns of good structure, i.e. diverse columns, assume that we already have a set 

of columns as follows: 

l1 = [Day, Day, Night, Night, Off, Off, Day] 

l2 = [Day, Day, Day, Day, Off, Off, Off] 

l3 = [Day, Day, Day, Off, Off, Off, Off] 

l4 = [Day, Day, Day, Day, Day, Off, Off] 

Algorithm 2. CP based Column Generation Approach 

:A the subset of feasible columns of A  

: dual values 

{α
(1)

, …, α
(k)

}: columns generated by CP 

:c cost threshold of columns 

 

:A = get initial columns // see Section 3.1 

:c = initial cost threshold 

Repeat 

Repeat 

  Ap := empty the column pool  

λ := solve the RMP A   

Ap := {α
(1)

, …, α
(k)

} = solveCPSubProblem( c~ , DDS) // see Section 3.2 

price columns with negative reduced costs from Ap and add them to A  

Until stop condition is met (i.e. a pre-defined number of iterations) 

yil = solve the integer solution of MP A
~
 using B&B 

update the cost threshold c~ // the bound tightening strategy, see Section 3.3 

Until termination condition is met (without improvement of cilyil) 



The master problem (NRPs MP) chooses exactly one column for each nurse to construct a whole roster 

which satisfies the coverage constraint, for example, 3 Day shifts and 1 Night shift should be assigned on 

the first day. All the current columns have a Day shift on the first day, so they are not diverse columns. To 

satisfy the coverage constraint, new diverse columns with Night shift on the first day (of course also with 

negative reduced cost) are expected. 

3.1 Initial solutions 

In our previous work [25], where CP is used to solve complex NRPs, it has been observed that finding 

initial feasible solutions with respect to all hard and soft constraints is very time consuming. This is due to 

that propagation upon soft constraints, compared with that on hard constraints, is very inefficient [30]. 

Specific propagation algorithms have thus been designed in the literature. 

In our CP-CG approach, instead of specific propagation algorithms, an indirect and simple heuristic 

relaxation is used to quickly construct initial solutions to enter the restricted master problem, see Fig. 3. 

Firstly all soft constraints are treated crisply as hard constraints, which will obviously lead to no feasible 

solutions for the highly constrained problem concerned in our work. Then the soft constraint with the 

least weight is relaxed one by one until a feasible solution can be found. This method has shown to be 

very efficient due to the powerful propagation in CP to find feasible solutions. 

 

Fig. 3. Initial solution generation 

3.2 Depth Bounded Discrepancy Search to obtain diverse columns 

Depth First Search (DFS) [31] is a standard search strategy in CP. It searches down to the leaf of one 

branch before starting another branch in the search tree. Whenever a dead-end of a branch with no 

solution is reached, the search goes back to an upper depth of the search tree, i.e. backtracking, and 

continues to another branch. The main drawback of DFS is that, given a limited computational time, even 

for problems of moderate size, it can only explore a very small part of the search tree, returning very 

similar solutions (with only the last several variables taking different values) [31, 32]. We apply Depth 

Bounded Discrepancy Search in our CP-CG to obtain diverse columns (solutions in different parts of the 

tree). 

Depth Bounded Discrepancy Search (DDS) [29] is an alternative search strategy that iteratively explores 

the search tree based on the innovative idea of discrepancy. A discrepancy is “any decision point in a 

search tree where we go against the heuristic” [33]. Assume a heuristic orders the branches in a left-to-

right manner by estimating which branch is more likely to contain solutions, taking the left branch is to 

follow the heuristic, and taking the right branch is a discrepancy. DDS explores the search tree in a series 

of DFS, where discrepancies (i.e. search goes to the right branches) happen at early stage of the search. 

As we know heuristics tend to be less informative and make more mistakes near the root of the search tree 

[29]. Discrepancies at early stage provide chances of exploring diverse and promising branches. 

DDS explores the search tree iteratively in d iterations of DFS, d is the depth of the tree. In iteration i, i = 

0,…,(d–1), all discrepancies must happen at and above depth i. That is, at depth i of the tree, the search 

must take the right branch (discrepancy) of the node. At depth above i, the search explores both the right 

and left branches. Below depth i, the search must take the left branch at all nodes (i.e. follow the heuristic, 

no discrepancy is allowed in the later stage). The latest discrepancy in DDS happens at depth i in the tree, 

Algorithm 3. Initial solution generation 

1. Add all soft constraints and all the hard constraints into the constraint set C; 

2. Solve the problem P(X, D, C) as a constraint satisfaction problem by CP; 

If no feasible solution for P(X, D, C) 

Then remove the soft constraint with the least weight from C; go to step 2; 

Else return the feasible solution. 



i.e. bounded at depth i in iteration i. This controls (forces) the search to traverse to different parts of the 

tree, resulting into more diverse solutions compared to the standard DFS [32-34]. 

Fig. 4 illustrates how DDS traverses the tree. Without loss of generality, the binary tree represents 

assignments of the simplified variables sj, j = 1,…,5, the domain of sj is (Day, Off), and the left and right 

branches take the value Day and Off, respectively. In the first iteration of DDS, depth i = 0, so no 

discrepancy happens. The search takes the left branch at all nodes, leading to path (1) DDDDD. In the 

second iteration, depth i = 1, DDS obtains path (17) ODDDD by taking the discrepancy at depth 1 (i.e. 

takes the value Off at the right branch). In the third iteration, the discrepancy must happen at depth i = 2, 

thus leading to paths (9) DODDD and (25) OODDD. It can be seen that the paths explored by DDS 

(illustrated at the bottom of Fig. 4) lead to diverse assignments, i.e. first variables in the assignments also 

take different values. 

 

Fig. 4. The Depth Bounded Discrepancy Search 

In the default settings in ILOG Solver, based on the standard Depth Bounded Discrepancy Search (DDS) 

[29], an extended DDS search is defined by introducing three additional parameters (depth, width, Max 

Discrepancy) as follows. The first parameter depth restricts the depths at which the search explores to be 

between depth×i and depth×(i+1) in iteration i. That is, in the first iteration, i = 0, the search explores the 

nodes at depths above depth. In the second iteration, i = 1, it explores the nodes between depth and 

depth×2, and so on. The second parameter width is used to restrict the number of paths explored by 

limiting the number of discrepancies occurring between depth×i and depth×(i+1). The third parameter, 

Max Discrepancy, restricts the total number of discrepancies by defining the total number of times that 

the search is forced (diversified) to different parts of the tree. 

3.3 Pricing subproblem with threshold 

In our CP-CG approach, it is easy to generate feasible candidate columns due to the efficient constraint 

handling in CP. However, most of the huge number of columns are of poor quality with high cost, and are 

not helpful to reduce the objective function value in CG. The issue of selecting “good” candidate columns 

to reduce the computational time in CG has been first discussed in [35]. In [36], for the maximization 

problem concerned, columns with reduced cost of zero have been used with fast improvement algorithms 

to construct high quality solutions. 

To eliminate poor columns in CP-CG, we introduce an additional cost bounding constraint, threshold c , 

to the pricing subproblem. The enhanced model for the subproblem based on (NRPs P) is presented as 

follows: 



(En NRPs P): l  F  

i < 0 

ci < c  

where l represents a feasible schedule and the reduced cost i is calculated by equation (6).  

This (En NRPs P) model is solved by CP as a constraint satisfaction problem to seek feasible solutions as 

candidate columns. In the research of constraint optimization problems (or constraint satisfaction 

problems with soft constraints), cost filtering algorithms associated with (global) constraints have been 

used for each soft constraint in the model [19, 30, 38] to reduce the domain of both cost variables and 

decision variables (we refer to Focacci’s work [37] for further discussions). However, there is a tradeoff 

between the time needed and the achieved efficiency of the algorithm. 

In our work, instead of using cost filtering algorithms on each soft constraint to filter the domain of the 

cost variable cil, we use the cost (i.e. the violation measure of the soft constraint) in the bound tightening 

strategy to filter the domain of decision variables sij (see Fig. 2). The filtering rule is: if the cost of a 

sequence of assignments at node q is greater than the upper bound (i.e. cil >= the cost threshold c~ ), we 

remove this value from the domain of the assignments, i.e. node q is pruned. We should note that 

although this cost threshold encourages the generation of columns with good reduced cost, it may lead to 

bad (large) cost coefficient in the objective function. The bound tightening strategy adaptively tightens 

the bound. At the beginning of the procedure, the cost threshold is set at a relatively high value thus 

columns with large costs also have the chance to enter the master problem. By adaptively tightening the 

cost threshold, the search gradually accepts better columns with smaller cost. 

The bound tightening strategy, working with feasibility pruning in CP, can help to accelerate the search. 

The search in the tree (i.e. the generation of columns) is thus controlled by both the search strategy DDS 

(with its parameters) and the adaptive upper bound of the columns (the cost threshold) to obtain good 

quality columns.  

4 Computational Experiments 

4.1 Problems and algorithm settings 

We demonstrate the effectiveness of our CP-CG approach on several benchmark NRPs at 

http://www.cs.nott.ac.uk/~tec/NRP. The site presents a range of problems collected from practice and 

scientific publications. The rules, regulations and objectives have been directly taken from real-world 

hospital wards and preserved with essential characteristics, see Table 2. In the existing literature, to our 

knowledge, there are no general classifications on nurse rostering problems. Problems at the site are 

modeled in a unified XML template to offer a flexible format so that various constraints and rules in a 

range of real world scenarios can be easily handled and formulated. In the literature, most of the 

published academic papers have tested a single problem, and no published work has tested all or more 

than three problems from this site. Evaluating our approach over all the problems is a tedious task, where 

the same process of modeling different constraints has to be repeatedly carried out. 

These three problems are the most complex and have been mostly tested, thus have become benchmark 

problems during the years. Considering them also makes it possible to compare our approach to a number 

of existing approaches in the literature on the same problems (see Table 9). 

Table 2 Characteristics of the chosen benchmark NRPs 

Problems No. of Nurses No. of Shift types Scheduling Period (days) 

Gpost 8 3 28 

Valouxis 16 4 28 

ORTEC 16 5 28,30,31 

http://www.cs.nott.ac.uk/~tec/NRP


It is important to note that the difficulty of problems depends not only on the number of shift types, the 

number of nurses and the length of the scheduling period, but also on the complex constraints involved 

(see all the constraints in Appendix A). In Table 2, the problem ORTEC is the largest and also the most 

difficult, where 12 instances (of 12 months) have been widely tested by a number of approaches in the 

literature. This serves a perfect testbed to evaluate the effects of the search strategies in CP and the 

column management in our CP-CG approach. The other two simpler problems, although of relatively 

smaller size, are highly constrained, and are used to tune our CP-CG approach and provide insight of the 

effects of different components in the CP-CG approach. 

All experiments have been carried out on an Intel(R) Core(TM) 2CPU 1.86GHz machine with 1.97GB 

memory. The hybrid CP-CG approach is implemented in C++, linking ILOG CPLEX 10.0 to solve the 

linear program and the integer program, and ILOG Solver 6.2 to solve the CP pricing subproblem as well 

as to provide initial solutions. Default parameters are used in all the CPLEX software packages unless 

otherwise stated. The parameter settings in the CP-CG approach for all problems are given in Table 3. 

The total computational time is set as one hour, the same as that in other existing methods in the literature 

(see Table 9). Other parameters are set based on observations of the algorithm performance on the two 

smaller problems Gpost and Valouxis in a number of initial tests. To control the size of the master 

problem solved by B&B in CG, the maximum number of columns evaluated is set as 10,000. 

Table 3 Parameter settings for the CP-CG approach 

Parameters Values 

Total CPU time limit 1 hour 

Maximum CPU time for CP solver per iteration 60(sec) 

Maximum number of iterations 50 

Maximum number of columns in CG 10,000 

4.2 Performance of initialisation methods and variable/value ordering 

We first evaluate our initialization method in terms of solution quality and computational time, results 

shown in Table 4. All the problems tested are over-constrained, and no solution can be found if all 

constraints are imposed crisply. By relaxing the least important soft constraints one by one (see Section 

3.1), a feasible solution can be obtained quickly. Due to the strong propagation in CP to detect 

infeasibilities, this initialisation method is very efficient (computational time is close to zero seconds). 

In CP, the efficiency of search also depends on variable and value ordering. Table 5 presents the 

evaluation of six basic variable ordering heuristics for the problem Gpost. The number of choice points 

and fails encountered during the search indicate that the MinSizeInt and MinMaxInt heuristics perform 

the best, with no statistically significant differences between them. The MinSizeInt heuristic is randomly 

picked and used in the following DFS and DDS search procedures. 

Table 4 Results from the initialization method. For the problem Gpost, “-” indicates feasible solutions have been 

found so there is no need to relax more soft constraints. 

Problem All constraints Relax w(SoftCon)  10 Relax w(SoftCon)  40 

 obj CPU(sec) obj CPU(sec) obj CPU(sec) 

Gpost infeasible 0 18 50 - - 

Valouxis infeasible 0 infeasible 0 1120 65 

ORTEC infeasible 0 infeasible 0 1686 112 

The value ordering heuristic we applied is night shift first, which has been tested in our previous work 

[25]. The night shift is the most important shift in the problems, due to the fact that it is involved in a 

number of hard constraints (H5, H7, and H9) and soft constraints (S2, S3) with high costs of 1000. It is 

also observed from experienced administrative nurses in the hospitals that the night shift is the most 



complicated shift and is more likely to cause conflicts. Therefore in value ordering, night shifts are 

assigned first before the other shifts are randomly selected and assigned to the nurses. 

Table 5 Evaluation of six variable ordering heuristics for the problem Gpost in Table 2. 

Heuristics No. of 

choice points 

No. of fails CPU 

(sec) 

Variable ordering strategies 

MinSizeInt 8966 7995 1.3 the smallest domain first 

MaxSizeInt 10706 9723 1.5 the largest domain first 

MinMinInt 10703 9720 1.5 the least minimal bound first 

MaxMinInt 11978 10995 1.8 the greatest minimal bound first 

MinMaxInt 9290 8319 1.2 the least maximal bound first 

MaxMaxInt 126003 11620 1.8 the greatest maximal bound first 

4.3 Performance of search strategies in CP-CG 

First, we comment on the number of columns processed by DDS with and without the cost threshold in 

CP-CG, see Table 6. The settings of these threshold values for different problems are based on the 

weights of the soft constraints shown in Appendix A. Without the cost threshold, a large number of 

columns with very large cost can be generated. However, a majority of these columns makes no 

contribution to the restricted master problem. The last column in Table 6 demonstrates that, a large 

number of columns with costs above the threshold can be discarded by using the cost threshold to provide 

good columns at each iteration of CG.  

Fig. 5 presents the decrease of objective function value over the iterations of CG. It can also be clearly 

seen from the faster convergence of DDS with the cost threshold, that “good” columns make the real 

contribution to the search procedure. Since the maximum CPU time per iteration in the CP solver is set as 

60 seconds, shown in Table 3, Fig.5 can also indicate the relationship between the convergence of the 

objective value and the CPU time. 

Table 6 Number of columns processed by DDS with and without cost thresholds in CP-CG. “up to limit” indicates 

that the search stopped after reaching the maximum number of 10000 columns, as shown in Table 3. 

Problem Without threshold With adaptive threshold 

 no. of columns 

added into RMP 

threshold 

values 

no. of columns 

added into RMP 

no. of columns 

discarded 

Gpost 5862 2 2567 7433 

Valouxis 8562 40 3860 6140 

ORTEC up to limit 100 4586 5414 

 

 



 

Fig. 5. The decrease of objective function value over iterations of CP-CG with different search strategies for the 

three problems. “16n*5s*35d” denotes a problem with 16 nurses, 5 shift types and 35 days. 

Next we comment on the decrease of objective value in CP-CG with four search strategies, namely DFS, 

DDS, DDS with static threshold and DDS with adaptive threshold, shown in Fig. 5. Compared with DFS 

and pure DDS, the convergence of the objective value from DDS with static cost threshold is faster, i.e. 

continuously decreased. DDS is further improved by the bound tightening strategy which adaptively 

updates the threshold according to the information collected during the search. With the adaptive cost 

threshold, fewer columns are processed, so less iterations of CG are executed compared with DFS and 

pure DDS. 

To provide an in-depth analysis on the search strategies in CP-CG concerning the lower bound of linear 

program and the integer solution obtained after B&B, Table 7 compares numerical results of DFS, DDS 

and DDS with the adaptive threshold. For each strategy, objective values of solutions after the 

initialization, linear program relaxation and B&B are presented. In terms of the linear program lower 

bound, DDS with the adaptive cost threshold makes the most improvement to initial solutions, although 

both DFS and DDS strategies can also improve the initial solutions to a certain scope. After B&B, for the 

small problem Gpost, integer solutions can be found by all three strategies, and the optimal solution can 

only be found by using DDS with adaptive cost threshold. For larger problems, integer solutions can only 

be obtained by DDS and DDS with adaptive cost threshold within the time limit, of which the latter 

obtained much better results for both problems. 

Table 7  Numerical results of CP-CG with DFS, DDS and DDS + adaptive cost threshold. Optimal results are shown 

in bold. Avg CPU(sec): the average time of a single iteration of CG by CP; ZIN: the objective value of the initial 

solution; ZLP: the objective value of the best solution of the LP relaxation of the master problem obtained at the end 

of the CG procedure; ZIP: the objective value of the best integer solution obtained after applying B&B on generated 

columns. 

Problem Strategy 
IN

Z  
LP

Z  
IP

Z  Avg CPU(sec) 

Gpost DFS 18 16 16 5.62 

 DDS 18 10 14 3.58 

 DDS + adaptive cost threshold 18 3 3 3.68 

Valouxis DFS 1120 860 -- 8.21 

 DDS 1120 460 540 4.20 

 DDS + adaptive cost threshold 1120 40 60 4.28 

ORTEC DFS 1686 1240 -- 18.75 

 DDS 1686 860 -- 9.24 

 DDS + adaptive cost threshold 1686 300 401 8.78 

As we mentioned above, to obtain integer solutions to the master problem, we only run B&B on the 

generated columns at the root node, thus the obtained integer solution may not be optimal. To provide a 



measure of such loss of optimality, in Table 8, we compare ZLP and ZIP in Table 7 with the best lower 

bound ZLB obtained in the literature. 

Table 8 The gap between ZLP and ZIP in Table 7 to the best lower bound ZLB in the literature, respectively. “--" 

denotes that the values are not available. 

 ZLP ZLB gap ZIP ZLB gap 

Gpost 3 3 0% 3 3 0% 

Valouxis 40 -- -- 60 -- -- 

ORTEC 300 270 11% 401 270 33% 

In Table 8, for both problem instances Gpost and ORTEC, the best lower bound ZLB is obtained by 

solving the linear relaxation of the instances in the linear program solver CPLEX (see more details at 

http://www.cs.nott.ac.uk/~tec/NRP). The integrality constraint is relaxed. Hence ZLB is not the result of an 

integer solution but the solution to the continuous relaxation. Our lower bound ZLP is computed by the 

algorithm presented in Fig. 2, where a subset of negative reduced cost columns is generated. Our ZIP is 

obtained by applying B&B on the generated columns. ZLP, ZIP and ZLB are all obtained by considering the 

same model of the problem instances. Therefore, the gaps between their values are comparable.  

The gaps in Table 8 give an idea of the loss of the optimality by applying our CP-CG approach. They are 

relatively small, indicating the good quality of our lower bounds. We should note that ZLB is not obtained 

by running a Branch-and-Price algorithm which guarantees the optimality of the solution. It is obtained by 

running B&B on the relaxed problem instances, thus may not represent the real optimal objective value 

for the problem. In the literature Branch-and-Price has not been investigated for these datasets yet. 

4.4 CP-CG compared with existing approaches in the literature 

We finally evaluate our CP-CG approach on the most constrained problem, ORTEC in Table 2. We 

compare CP-CG with those existing approaches in the literature on 12 instances of the problem in Table 9. 

In all the other approaches in Table 9, meta-heuristic algorithms (e.g. genetic algorithms and variable 

neighbourhood search) have either been delicately designed using domain knowledge to solve the 

problem [39, 40], or played an important role in the procedure to improve the solutions obtained by 

integer programming or CP [25, 41]. It is interesting to see that both the hybrid integer programming [41] 

and hybrid CP [25] approaches have employed variable neighbourhood search to the solutions obtained 

from exact mathematical methods in a sequential manner. Our CP-CG approach does not employ any 

advanced meta-heuristic algorithm to solutions, but embeds heuristics in DDS more closely within the CG 

procedure. 

Table 9  Existing approaches to the ORTEC benchmark in the literature, best results in bold. “p.d.”: the percentage 

deviation from the best result. The threshold c = 40 in CP-CG. Hybrid GA: a genetic algorithm hybridised with 

local search, developed in the commercial software Harmony
TM

 at ORTEC, and compared with the hybrid variable 

neighbourhood search (Hybrid VNS) in [40]. Hybrid IP: IP solutions improved by a VNS. Hybrid CP: a CP 

approach followed by a VNS. Original results of Hybrid CP in [25] were obtained within 0.5 hours. We present the 

results of Hybrid CP from one hour for a fair comparison. 

ORTEC 

Problem 

instances 

Hybrid GA 

[39] 

(1 hour) 

Hybrid VNS 

[40] 

(1 hour) 

Hybrid IP 

[41]  

(1 hour) 

Hybrid CP 

[25] 

(1 hour) 

CP-CG  

 

(1 hour) 

 obj  p.d. obj p.d. obj p.d. obj p.d obj p.d. 

Jan 775 157% 735 144% 460 53% 595 98% 301 0% 

Feb 1791 42% 1866 48% 1526 21% 1721 36% 1261 0% 

Mar 2030 19% 2010 17% 1713 0% 2706 58% 1975 15% 

Apr 612 57% 457 17% 391 0% 915 134% 621 59% 

May 2296 29% 2161 21% 2090 17% 1786 0% 1941 8% 

Jun 9466 52% 9291 49% 8826 42% 8700 40% 6231 0% 



Jul 781 84% 481 13% 425 0% 586 38% 751 77% 

Aug 4850 123% 4880 125% 3488 61% 2171 0% 2171 0% 

Sep 615 86% 647 96% 330 0% 1215 268% 401 22% 

Oct 736 145% 665 121% 445 48% 616 105% 301 0% 

Nov 2126 34% 2030 28% 1613 1% 1605 1% 1590 0% 

Dec 625 54% 520 28% 405 0% 405 0% 450 11% 

Within the same computational effort, results obtained by CP-CG are highly competitive (obtained the 

best solutions in the literature for 6 out of 12 instances), especially concerning that CP-CG is built upon 

the complete model formulating all constraints, and thus the quality of solutions is warranted, i.e. not 

relying on meta-heuristics which may return different results from different runs. In our CP-CG approach, 

no meta-heuristic improvement algorithms have been applied afterwards. The idea is to provide a clear 

indication of the guaranteed effectiveness of the pure CP-CG approach. Hybridizations of our CP-CG 

approach with meta-heuristics concerning effectiveness and computational efforts will be investigated in 

our future work, and is out of the scope of this paper. 

5 Conclusions 

In this paper, we investigate a hybrid column generation approach CP-CG, where constraint programming 

(CP) is integrated to solve the highly constrained nurse rostering problems. The complex problems have 

been modeled in a column generation (CG) scheme, where the master problem is formulated as an integer 

program and the pricing subproblem is modeled as a weighted constraint optimization problem in the CP 

paradigm. 

In the standard CG procedure, the quality of columns is only measured by the reduced cost. Those 

columns which satisfy constraints of the pricing subproblem enter the restricted master problem. In our 

CP-CG approach, we propose two strategies to generate high quality diverse columns. A cost threshold 

has been introduced, and is adaptively updated by a bound tightening strategy during the search to choose 

those columns of good quality, i.e. only columns with negative reduced cost below the threshold enter the 

master problem. The Depth Bounded Discrepancy Search (DDS) has been used in CP to produce diverse 

columns and make real contributions to the convergence of the solution procedure. Computational results 

have demonstrated that a much smaller number of columns enter the master problem by using DDS 

compared with standard Depth First Search. Even with these fewer columns from DDS in the pricing 

subproblem, the objective value in linear relaxation converges faster than applying Depth First Search. 

Furthermore, the cost threshold also contributes a faster convergence in linear relaxation. 

The effectiveness and efficiency of our CP-CG approach have been demonstrated on three benchmark 

nurse rostering problems with different profiles. The adopted strategies in CP-CG have been justified by 

comparison results against several existing approaches and the analysis of different approaches on the 

benchmark nurse rostering problems tested. 

The main focus of this work is to design efficient search strategies which speed up the convergence of 

linear program relaxation while also satisfying the integrality request of the master problem. The Branch-

and-Bound technique has been applied at the root node in CP-CG to produce integer solutions with a 

certain gap to the optimal. Given more computational time, our CP-CG approach may be plugged at each 

node of the tree to derive optimal integer solutions to the problem, i.e. the Branch-and-Price algorithm. 

Other future research directions include hybridizations of CP-CG with more advanced search algorithms 

such as meta-heuristics with neighbourhoods and move strategies designed based on problem specific 

information, as well as more efficient cost propagations in solving the CP pricing subproblem. 
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Appendix A. Hard and Soft Constraints in the Nurse Rostering Benchmarks 
Hard 

constraints 

Category Details 

Gpost One shift per day One shift per day (D, N, O)* 

Coverage (no over/under cover) Weekday: 3D 1N; Weekend: 3D 1N 

Working time  Full time: 18 shifts; Part time: 10 shifts 

Shift patterns Maximum consecutive working days: 6 

Maximum consecutive N shifts: 3 

Maximum consecutive working weekends: 3 

After a series of work, at least 2 days off 

Complete weekends, i.e. free or work on both days 

After N shifts, at least 2 days off 

Valouxis One shift on one day One shift one day (D, E, N, O)* 

Coverage (no over/under cover) Weekday: 4D 4E 2N; Weekend: 3D 3E 2N 

Working time 18 shifts 

Shift patterns Maximum consecutive working days: 5 

Maximum consecutive N shifts: 3 

Maximum consecutive working weekends: 3 

After a series of work, at least 2 days off 

Complete weekends, i.e. free or work on both days 

After N shifts, at least 2 days off 

ORTEC One shift one day One shift on one day (E, L, D, N, O)* 

Coverage (no over/under cover) Weekday: 3E 3D 3L 1N; Weekend: 2E 2D 2L 1N 

Working time Group 1: 36 hours/week; Group 2: 32 hours/week; Group 3: 20 

hours/week 

Shift pattern Maximum consecutive working days: 6 

Maximum consecutive N shifts: 3 

Maximum consecutive working weekends: 3 

After a series of work, at least 2 days off 

Complete weekends, i.e. free or work on both days 

After N shift, at least 2 days off 

*D: day shift; E: evening shift; L: late shift; N: night shift; O: day off. 

 

Soft 

constraints 

Category Details Weights Violation measure 

Gpost Balanced 

workload 

Full time: [4,5] shift/week 

Part time: [2,3] shift/week 

1 *Difference between the no. of shifts 

received and the acceptable no. of shifts per 

week 

 Full time: shifts series length [4,6] 1 *Difference between the no. of shifts 



Part time: shifts series length [2,3] received and the acceptable series length 

Pattern 

preference 

No stand alone shift, i.e. single day 

on 

100 Number of isolated shifts 

 No one shift over a weekend 100 Number of incomplete weekends 

 No one day off between shift series 10 Number of one day off 

Valouxis Balanced 

workload 

No. of D shifts: [5, 8] in the schedule 100 Difference between the no. of shifts received 

and the acceptable no. of shifts 

No. of E shifts: [5, 8] in the schedule 100 Difference between the no. of shifts received 

and the acceptable no. of shifts 

No. of N shifts: [2, 5] in the schedule 100 Difference between the no. of shifts received 

and the acceptable no. of shifts 

Pattern 

preference 

No stand alone shift, i.e. single day 

on 

1000 Number of isolated shifts 

No one shift over a weekend 1000 Number of incomplete weekends 

A D after E should be avoided 1000 Number of D shifts after E shift 

A E after N should be avoided 1000 Number of E shifts after N shift 

A D after N should be avoided 1000 Number of D shifts after N shift 

At least 2 days off between shift 

series 

100 Number of one day off 

Series of D/E/N shift length:3 40 Difference between the series length and the 

acceptable length 

Series of D/E/N shift length: 3 20 Difference between the series length and the 

acceptable length 

ORTEC Balanced 

workload 

Group 1: [4,5] shifts/week 

Group 2: [4,5] shifts/week 

Group 3: [2,3] shifts/week 

10 *Difference between the no. of shifts 

received and the acceptable no. of shifts per 

week 

Group1: shift series length [4,6] 

Group2: shift series length [4,6] 

Group3: shift series length [2,3] 

10 *Difference between the no. of shifts 

received and the acceptable series length 

Pattern 

preference 

No stand alone shift, i.e. a single day 

on 

1000 Number of isolated shifts 

No one shift at a weekend 1000 Number of incomplete weekends 

Length of a series of N shifts: [2,3] 1000 Difference between the series length and the 

acceptable length 

At least 2 days off between shift 

series 

100 Number of one day off 

Length of a series of E shifts: [2,3] 10 Difference between the series length and the 

acceptable length 

Length of a series of L shifts: [2,3] 10 Difference between the series length and the 

acceptable length 

A E after D should be avoided 5 Number of E shifts after D shift 

A N after E should be avoided 1 Number of N shifts after E shift 

* In order to have the same evaluation functions as those of other approaches in the literature, the constraints denoted by * is 

measured by the quadratic function. That is, the measure of violations is squared and multiplied by the corresponding weight. 

 

Appendix B. The CP Model of Hard and Soft Constraints in the Nurse Rostering 
Benchmarks 

Hard Constraints 

H1 Coverage constraint. A number of different shifts must be covered throughout the scheduling period in order to guarantee the 

coverage of service. 

In the CP-CG approach, H1 is presented as (2) in the master problem model (NRPs MP). 

H2 For each day, one nurse can only start one shift. 

H2 is implicitly satisfied by assigning exactly one value to each decision variable. 

H3 Within a scheduling period, a nurse is allowed to work at most 4 hours more than his/her available working time. 

Each shift has 8 hours working time. H3 is thus modeled as sum(8  fij) ≤ hm+4 , j = 1…n, where 1,  

0,

ij

ij

if s off
f

otherwise

. hm is 

the available working hours for a nurse of category m in the scheduling period. 

H4 Maximum 36 hours working time per week. 



Each shift corresponds to 8 working hours. H4 is modeled as sum(8  fij) ≤ 36, j = 1….7, j = 8….14,… for the corresponding 

week. 

H5 Maximum 3 night shifts in the scheduling period.  

H5 is modeled as gcc(sij, Night, 0, 3), j = 1…n. 

H6 At least 2 weekends off in the scheduling period. 

H6 is modeled as gcc(sij, Off, 2, 5), in conjunction with an If-Then constraint: if sij = Off, then sij+1 =  Off, j = 6,13,20,27,34 

H7, 

H8 

Following a series of at least 2 consecutive night shifts, a minimum of 42 hours rest is required. At most 3 consecutive night 

shifts in the scheduling period.  

H7 and H8 are modeled as a single constraint stretch(sij, Night, 2, 3, P), P = {(Night,Off)}, j = 1…n. 

H9 At most 6 consecutive working days.  

H9 is modeled as stretch(sij, ~Off, 1, 6), j = 1…n. Here ~Off represents a day-on shift, and P is omitted, representing no 

restriction on the pattern. 

Soft Constraints 

S1 

 

Complete weekend. From Friday 23:00 to Monday 0:00, a nurse should have either no shift or 2 shifts. 

Violation measure: 

otherwise

ssif ijijS

ij
,0

,1 11

 

and

 34,27,20,13,6

11

j

S

ij

S

i u  

S2 Avoid a sequence of shifts of length 1 for all nurses. 

Violation measure: 

otherwise

offsoffsoffsif ijijijS

ij
,0

,,,1 212 and j = 1…n-3.  

S3 For all nurses, a series of night shifts should be within [2, 3]. It could be part of, but not before, another sequence of shifts.  

S3 is implicitly satisfied by constraints H7 and H8. 

S4 At least 2 days off after a series of day, early or late shifts. 

S4 is modeled as ~stretch (sij, Off, 2, 5), j = 1…n, violation measure is introduced in Section 2.4.1. 

S5 For full time nurses, the number of day-on shifts should be within [4, 5] per week. 

S5 is modeled as ~gcc(sij, ~Off, 4, 5), j = 1…7, j = 8….14… for the corresponding week. ~Off represents a day-on shift. For 

part time nurses, the number of shifts should be within [2, 3] per week, modeled as ~gcc(sij, ~Off, 2, 3), j = 1…7, j=8….14… 

for the corresponding week.  

S6 For full time nurses, the length of a series of shifts should be within [4, 6].  

S6 is modeled as ~stretch(sij, ~Off, 4, 6), j = 1…n, violation measure is introduced in Section 2.4.1. For part time nurses, the 

length of a series of shifts should be within [2, 3], modeled as ~stretch(sij, ~Off, 2, 3), j = 1…n  

S7 For all nurses, the length of a series of early shifts should be within [2, 3]. 

S7 is modeled as ~stretch(sij, Early, 2, 3), j = 1…n 

S8 For all nurses, the length of a series of late shifts should be within [2, 3]. 

S8 is modeled as ~stretch(sij, Late, 2, 3), j = 1…n 

S9 An Early shift after a Day shift should be avoided. 

Violation measure: 

otherwise

EarlysDaysif ijijS

ij
,0

,,1 19  and j = 1…n.  

Similar constraints include an Early shift after a Late shift should be avoided; a Day shift after a Late shift should be 

avoided, all can be modeled in a similar way. 

S10 A Night shift after an Early shift should be avoided. 

S10 can be modeled in a similar way as S9. 

 


