
IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION 1

A Population Based Incremental Learning for
Network Coding Resources Minimization

Huanlai Xing and Rong Qu

Abstract—In network coding based multicast, coding opera-
tions need to be minimized as they consume computational re-
sources and increase data processing complexity at corresponding
nodes in the network. To address the problem, we develop a
population based incremental learning algorithm which shows
to outperform existing algorithms in terms of both the solution
obtained and computational time consumed on networks with
various features.

Index Terms—multicast, network coding, population based
incremental learning.

I. INTRODUCTION

IN network coding, each intermediate node in the network
is allowed, if necessary, to recombine data packets received

from different incoming links [1]. By doing so, a maximized
multicast throughput can always be achieved [2]. Due to the
necessary coding operations, network coding incurs additional
cost such as computational overhead or transmission delay [3-
4]. It is thus important that the amount of coding operations is
minimized while the benefits of network coding are warranted.
However, such problem is NP-hard [4].

To tackle the problem, several evolutionary algorithms are
proposed in the literature. In [4], a genetic algorithm (GA) in
an algebraic framework is applied to acyclic networks. The GA
is then extended to networks with cycles by a graph decom-
position method [5]. In [6], two GAs with different genotype
encodings and operators are compared. A quantum-inspired
evolutionary algorithm (QEA) is developed in our previous
work, showing to outperform simple GA [7]. However, as
we observed in this paper, the results obtained by QEA are
sometimes suboptimal, and this motivates us to develop a more
effective algorithm.

Population based incremental learning (PBIL) is a combina-
tion of GA and competitive learning and has many applications
[8-10]. Different from GA, PBIL maintains a real-valued
probability vector, rather than a population, thus yields a
much lower memory requirement. Besides, with no complex
genetic operator such as crossover, PBIL occurs much less
computational cost. In this letter, we present an effective PBIL
to minimize the amount of coding operations required.

II. PROBLEM FORMULATION

A communication network can be modeled as a directed
graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 denote the sets of nodes
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and links, respectively [2]. A single-source network coding
based multicast can be defined as a set (𝐺, 𝑠, 𝑇,𝑅), where
information needs to be transmitted at data rate 𝑅 from the
source 𝑠 ∈ 𝑉 to a set of sinks 𝑇 = {𝑡1, ..., 𝑡𝑑} ⊂ 𝑉 in the
graph 𝐺. Data rate 𝑅 is achievable if there is a routing scheme
that enables each 𝑡𝑘, 𝑘 = 1, ..., 𝑑, to receive information at
rate 𝑅 [4-6]. We assume that each link has a unit capacity,
and a path from 𝑠 to 𝑡𝑘 thus has a unit capacity. If we manage
to set up 𝑅 link-disjoint paths {𝑝1(𝑠, 𝑡𝑘), ..., 𝑝𝑅(𝑠, 𝑡𝑘)} from
𝑠 to each 𝑡𝑘 ∈ 𝑇 , we make rate 𝑅 achievable.

A subgraph is referred to as network coding based multicast
subgraph (NCM subgraph, denoted by 𝐺𝑁𝐶𝑀 ) if there are 𝑅
link-disjoint paths 𝑝𝑖(𝑠, 𝑡𝑘), 𝑖 = 1, ..., 𝑅, from 𝑠 to each sink
𝑡𝑘, 𝑘 = 1, ..., 𝑑, within this subgraph. To find a 𝐺𝑁𝐶𝑀 , we
first find 𝑅 link-disjoint paths for each 𝑡𝑘 ∈ 𝑇 from 𝐺, i.e.
𝑝1(𝑠, 𝑡𝑘), ..., 𝑝𝑅(𝑠, 𝑡𝑘). We then select a subgraph𝐺𝑁𝐶𝑀 from
𝐺 that only contains these 𝑅 ⋅ 𝑑 paths. No coding happens at
a node with one incoming link. We refer to a non-sink node
with multiple incoming links as a merging node [5-6]. We
refer to each outgoing link of a merging node as a potential
coding link. A potential coding link becomes coding link if
this link is dependent on at least two of its incoming links.

For a given multicast, the number of coding links is more
precise to indicate the total amount of coding operations [3].
We therefore investigate to find a NCM subgraph 𝐺𝑁𝐶𝑀 with
coding links minimized. We define the following notations:
𝜎𝑖𝑗 : a variable associated with the 𝑗-th outgoing link of the

𝑖-th merging node, 𝑖 = 1, ..., 𝑀 , 𝑗 = 1, ..., 𝑍𝑖, where 𝑀 is
the total number of merging nodes and the 𝑖-th merging node
has 𝑍𝑖 outgoing links. 𝑣𝑖𝑗 = 1 if the 𝑗-th outgoing link of the
𝑖-th node serves as a coding link; 𝑣𝑖𝑗 = 0 otherwise.
Φ(𝐺𝑁𝐶𝑀 ): the number of coding links in a given NCM

subgraph 𝐺𝑁𝐶𝑀 .
𝜆(𝑠, 𝑡𝑘): the achievable rate from 𝑠 to 𝑡𝑘 in 𝐺𝑁𝐶𝑀 .
We define the problem concerned as to find a NCM sub-

graph 𝐺𝑁𝐶𝑀 where the number of coding links, Φ(𝐺𝑁𝐶𝑀 ),
is minimized and the data rate 𝑅 is met, shown as follows:

Mimimize:

Φ(𝐺𝑁𝐶𝑀 ) =
𝑀∑
𝑖=1

𝑍𝑖∑
𝑗=1

𝜎𝑖𝑗 (1)

subject to:

𝜆(𝑠, 𝑡𝑘) = 𝑅, ∀𝑡𝑘 ∈ 𝑇 (2)

Objective (1) defines our problem as to minimize the num-
ber of coding links; Constraint (2) defines that the achievable
data rate between 𝑠 and each sink is 𝑅.
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III. THE POPULATION BASED INCREMENTAL LEARNING

PBIL maintains a real-valued probability vector which,
when sampled, generates promising solutions with higher
probability [8]. Let P(𝑡) = {𝑃1, 𝑃2, ..., 𝑃𝐿} be a probability
vector at generation 𝑡 that generates binary solutions, where
𝑃𝑖 is the probability of obtaining ’1’ at the 𝑖-th position and 𝐿
is the solution length. At each generation, P(𝑡) is sampled 𝑁
times to obtain 𝑁 samples (i.e. solutions). Among them, high-
quality samples are selected and their statistic information is
used to adjust P(𝑡). Initially, the value of 𝑃𝑖 is set to 0.5, 𝑖 = 1,
..., 𝐿, and the first 𝑁 samples are randomly created from the
solution space. As search progresses, P(𝑡) is gradually shifted
towards an explicit solution as 𝑃𝑖, 𝑖 = 1, ..., 𝐿, is approaching
to either 0.0 or 1.0.

A. Probability Vector Update Scheme

Our PBIL uses a Hebbian-inspired rule [11] to update P(𝑡)

as described below. At generation 𝑡, the best ever found
solution B(𝑡−1) is inserted into the 𝑁 obtained samples. The
𝑁 + 1 solutions are then ordered by their fitness and the 𝜇
(𝜇 ≤ 𝑁+1) best solutions, Y1:𝑁+1, ..., Y𝜇:𝑁+1, are selected.
The statistic information of the 𝜇 solutions, i.e. P𝑠𝑒𝑙𝑒𝑐𝑡, is
extracted and used to modify P(𝑡). Note that P(𝑡) produces
feasible solutions as well as infeasible ones [5-6]. Let 𝜌(𝑡) be
the number of feasible solutions among the 𝑁 + 1 solutions
at generation 𝑡, 𝜇(𝑡) be the number of selected solutions at
generation 𝑡, and 𝐿𝑅 be the learning rate. The update scheme
at generation 𝑡 is as follows:

P(𝑡) = (1.0− 𝐿𝑅) ⋅P(𝑡−1) + 𝐿𝑅 ⋅P𝑠𝑒𝑙𝑒𝑐𝑡 (3)

P𝑠𝑒𝑙𝑒𝑐𝑡 =
1

𝜇(𝑡)
⋅
𝜇(𝑡)∑
𝑘=1

Y𝑘:𝑁+1 (4)

𝜇(𝑡) =

{
𝛼 ⋅𝑁, 𝑖𝑓 𝜌(𝑡) ≥ 𝛼 ⋅𝑁
𝜌(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

where 𝛼 indicates the maximum proportion of solutions to be
selected. In this paper, 𝛼 = 20%.

In this scheme, the statistics of selected solutions are used
to update P(𝑡) and limits the contribution to P(𝑡) from any
single solution. This helps to prevent P(𝑡) from converging
rapidly to local optima and thus to maintain an appropriate
diversification.

B. Restart Scheme

During the search, P(𝑡) gradually converges to an explicit
solution. If P(𝑡) is shifted to a local optima and the uncertainty
of P(𝑡) is low enough, the search will be stuck to this local
optima. We therefore restart the search in PBIL once the
uncertainty of P(𝑡) is lower than a threshold. Inspired by
the work in [9], the average entropy per bit of P(𝑡), 𝐸𝑃 , is
introduced to measure the uncertainty, as shown below:

𝐸𝑃 = − 1

𝐿

𝐿∑
𝑖=1

1∑
𝑘=0

𝑃
(𝑥=𝑘)
𝑖 ⋅ 𝑙𝑛(𝑃 (𝑥=𝑘)

𝑖 ) (6)

where 𝑃 (𝑥=𝑘)
𝑖 denotes the probability of generating ’𝑥’ at the

𝑖-th position, 𝑃 (𝑥=0)
𝑖 = 1−𝑃𝑖 and 𝑃 (𝑥=1)

𝑖 = 𝑃𝑖.

It can be seen that 𝐸𝑃 decreases and approaches to 0 when
P(𝑡) is converging to an explicit solution during the evolution.
Through empirical experiments we observed that P(𝑡) can
hardly find a better solution when 𝑃𝑖 is either higher than
0.97 or lower than 0.03. The critical value of 𝐸𝑃 is thus
calculated as 0.134, i.e. when each 𝑃𝑖 is either 0.97 or 0.03.
Let Ω denote the critical value of 𝐸𝑃 . In experiments, we set
Ω = 0.14. If 𝐸𝑃 < Ω, PBIL restarts from the same initial
solutions as those of the very beginning of the algorithm.

C. The Procedure of the PBIL Algorithm

1) Set generation 𝑡 = 0
2) Initialization
3) For 𝑖 = 1, 2, ..., 𝐿, set 𝑃𝑖 = 0.5
4) Set B(𝑡) as an all-one solution and evaluate B(𝑡)

5) Generate 𝑁 samples from P(𝑡)

6) Repeat
7) Set 𝑡 = 𝑡+ 1
8) Evaluate the 𝑁 samples
9) Select 𝜇(𝑡) solutions from the 𝑁 samples and B(𝑡)

10) Calculate P𝑠𝑒𝑙𝑒𝑐𝑡 by using Eq.(4)
11) Update P(𝑡) by Eq.(3)
12) If 𝐸𝑃 < Ω then
13) For 𝑖 = 1, 2, ..., 𝐿, reset 𝑃𝑖 = 0.5
14) Reset B(𝑡) as an all-one solution and evaluate B(𝑡)

15) Generate 𝑁 samples from P(𝑡)

16) Until termination condition is met

In the PBIL framework, we represent the problem being
concerned by using the graph decomposition method proposed
in [5]. Binary link state (BLS) [6] is adopted as the encoding
scheme. In the fitness evaluation, each infeasible solution
is assigned a sufficiently large value (50 in this paper). If
a solution is feasible, i.e. it corresponds to a valid NCM
subgraph, its fitness value is given by the number of coding
links in the NCM subgraph. To ensure that the algorithm
begins with at least one feasible solution in the population,
the initial best solution is set as an all ’1’ vector where all
merging nodes are active [5-6]. The termination criteria are
subject to two conditions: 1) a NCM subgraph without coding
is obtained, or 2) the algorithm reaches a pre-defined number
of generations.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We compare the following five algorithms:
1) GA-1: GA with block transmission state encoding and

operators [6].
2) GA-2: GA with binary link state encoding and operators

[6].
3) QEA: quantum inspired evolutionary algorithm [7].
4) PBIL-1: the proposed PBIL without restart scheme.
5) PBIL-2: the proposed PBIL with restart scheme.
Simulations have been carried out upon two fixed and six

random networks, where optimal solutions exist that yield
NCM subgraphs without coding. The two fixed networks are
7-copies network (57nodes, 84links, 8sinks, 𝑅 = 2) and 15-
copies network (121nodes, 180links, 16sinks, 𝑅 = 2). The six
random networks include Rand-1 (40nodes, 78links, 9sinks,
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TABLE I
NUMERICAL RESULT COMPARISONS

7-copies [6] 15-copies [6] Rand-1 Rand-2

SR AVG SD ACT SR AVG SD ACT SR AVG SD ACT SR AVG SD ACT

Algorithm (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

GA-1 [6] 95 0.05 0.2 35.7 5 2.2 1.5 213.2 30 0.9 0.7 48.6 100 0.0 0.0 5.3

GA-2 [6] 90 0.1 0.3 24.1 10 2.6 1.4 209.4 30 0.8 0.6 46.1 100 0.0 0.0 6.6

QEA [7] 50 1.2 2.4 45.5 0 7.3 6.6 272.2 55 0.5 0.6 32.0 100 0.0 0.0 1.1

PBIL-1 100 0.0 0.0 4.7 75 0.3 0.5 245.6 100 0.0 0.0 8.5 100 0.0 0.0 0.2

PBIL-2 100 0.0 0.0 3.5 100 0.0 0.0 70.8 100 0.0 0.0 5.6 100 0.0 0.0 0.4

Rand-3 Rand-4 Rand-5 Rand-6

SR AVG SD ACT SR AVG SD ACT SR AVG SD ACT SR AVG SD ACT

Algorithm (%) (sec.) (%) (sec.) (%) (sec.) (%) (sec.)

GA-1 [6] 25 0.8 0.5 72.6 10 1.7 1.0 108.9 10 1.4 0.8 176.9 10 1.2 0.6 188.2

GA-2 [6] 15 0.9 0.5 75.3 5 1.9 0.9 113.0 0 2.1 1.0 184.7 10 1.4 0.7 224.5

QEA [7] 50 0.5 0.5 55.1 50 0.6 0.6 161.2 10 1.6 1.1 204.2 70 0.3 0.4 113.8

PBIL-1 95 0.05 0.2 25.5 95 0.05 0.2 49.3 95 0.05 0.2 97.5 100 0.0 0.0 56.3

PBIL-2 100 0.0 0.0 25.6 100 0.0 0.0 28.3 100 0.0 0.0 62.2 100 0.0 0.0 38.5

𝑅 = 3), Rand-2 (40nodes, 85links, 9sinks, 𝑅 = 4), Rand-
3 (50nodes, 101links, 8sinks, 𝑅 = 3), Rand-4 (50nodes,
118links, 10sinks, 𝑅 = 4), Rand-5 (60nodes, 150links,
11sinks, 𝑅 = 5) and Rand-6 (60nodes, 156links, 10sinks,
𝑅 = 4). In all algorithms, the population size and pre-defined
termination generation are set to 40 and 500, respectively. The
crossover probability, tournament size and mutation probabil-
ity are set to 0.8, 10 and 0.012 for GA-1, and 0.8, 10 and
0.006 for GA-2, respectively. Please refer to [7] for parameters
settings of QEA. In PBIL-1 and PBIL-2, 𝐿𝑅 = 0.1 and
𝛼 = 0.2. In PBIL-2, Ω = 0.14. By running each algorithm 20
times, we collected the successful ratio of finding a subgraph
without coding (SR), the average best fitness (AVG) and
standard deviation (SD), and the average computational time
(ACT), as shown in Table I. All simulations were run on a
Windows XP computer with Intel(R) Core(TM)2 Duo CPU
E8400 3.0GHz, 2G RAM.

It can be seen clearly that PBIL-2 outperforms the other
four algorithms. In terms of successful ratio, PBIL-2 obtains
100% in each instance, always being able to find optimal
solutions in each run. PBIL-1 is the second best, with a
higher SR than GA-1, GA-2 and QEA in every instance.
The differences between the successful ratio of these existing
algorithms and the two PBILs reveal that our PBILs have
better global exploration ability. Besides, the results of average
best fitness and standard deviation also demonstrate that PBILs
perform better than GA-1, GA-2 and QEA. In addition,
it is evident that PBILs, especially PBIL-2, consumes less
average computational time in all instances. These all indicate
that the proposed PBIL is more effective to solve coding
resource optimization problem. Besides, QEA shows better
optimization performance than GA-1 and GA-2 in most of
the instances. However, the performance of QEA shows to
be sensitive to instances and sometimes cannot find optimal

solutions. When comparing the performance of PBIL-1 and
PBIL-2, the latter achieves better optimization results with less
computing time. This is because the restart scheme also helps
to improve the global searching ability of PBIL-2. PBIL-2
can promptly approach to one of optimal solutions and it stops

once an optimal solution is found regardless of the pre-defined
generation not being reached (see the stopping condition).
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