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ABSTRACT

In this paper, we are introducing a new method of
granular exam-to-dot alocation based on the pre-
processing of the basic student-exam information into a
more abstract (granulated) entity of conflict chains.
Since the conflict chains are designed to capture the
mutual dependencies between exams, they enable us to
reason about the exam-to-slot allocation for all examsin
a chain rather than just one exam at-a-time. The initia
exam-to-slot  alocation, generated through the
processing of conflict chains, is then refined by
considering the spread of the exams in the examination
session so as to minimize the appropriately defined cost
function. The granular pre-processing of problem data
has been shown to enhance the efficiency of the exam
scheduling task and has led to the identification of very
competitive exam schedules.

INTRODUCTION

Exam timetabling represents a difficult computational
problem due to the strong inter-dependencies between
exams caused by the many-to-many relationship
between students and exams. Timetabling researchers
have investigated various methods of exploring the
large combinatorial search space to generate timetables.
These methods were typically formalized as heuristic
assignment algorithms. However, it has been observed
that no single heuristic that can be used to solve all
timetabling problems because of the incorporation of
problem-specific features in the heuristics (Burke et. al,
1994). In their survey (Qu et. al, 2006) point to the
specialization of the timetabling research into sub-areas
of educational timetabling, nurse scheduling, transport
scheduling, sports timetabling, etc. However, according
to the authors the most studied and researched
timetabling problem is the educational timetabling and
in particular, exam timetabling. The survey highlights
families of related heuristics deployed in the solution of
timetabling problems which include: graph heuristics,
meta-heuristics, constraint based methods, multi-criteria
techniques, hybridizations, and methods that focus on
the investigation of neighbourhoods in the solution
space.

In exam timetabling problems, the constraints are
normally different from one institution to the other,
which makes it difficult to define the “standard
timetabling problem”. However, at a genera level the
exam timetabling can be thought of as a process of
ensuring that al students are able to take their exams
and that the schedule of examinations for each student is
designed so as to maximize the gap between
consecutive examinations.

In a more formal way, the timetabling literature
defines two types of constraints:

a) Hard Constraints

These are the constraints that must be satisfied at
all times. The principal hard constraint is the
requirement that not a single student is enrolled for
two exams scheduled in the same timeslot.
Another hard constraint that needs to be obeyed is
the room capacity; i.e. there must be enough
spaces in a room to accommodate all students
taking a given exam. A timetable, which satisfies
hard constraints, is called a feasible timetable.

b) Soft Constraints

Soft Constraints are not critical but their
satisfaction is beneficial to students and/or the
institution. An example of a soft constraint is the
requirement to spread out exams taken by
individual students so that they have sufficient
revision time between the exams they are enrolled
on. Typically one cannot satisfy all soft constraints
thus there is a need for a performance function
measuring the degree of satisfaction of these
constraints.

Since the complexity of the timetabling methods
reported in the literature seems to originate from the
many-to-many relationship between the students and
the exams we are proposing, in this paper, to cast the
timetabling problem as a granular modeling problem in
which the detailed student-exam data is pre-processed
into some granular entities before these are used for
expressing the timetabling problem itself. Apart from
generating feasible timetable, our focus is to produce a
good quality timetable, which satisfies the soft
constraints to the greatest possible extent. To
demonstrate the general applicability of the proposed
granular modeling we produce solutions for both



uncapacitated and capacitated versions of the
timetabling problems, reported in the literature. In is
worth noting here that the capacitated version of the
exam timetabling problem means that the problem is
subject to additional constraints on total room capacity
in each timeslot. Consequently the expected quality of
the timetables, as measured by the value of the cost
function, is necessarily inferior compared to the
uncapacitated version of the problem. For this paper,
we have used the University of Nottingham Semester
1, 1994 dataset that can be downloaded from the URL:
http://www.cs.nott.ac.uk/ ~ rxq/files/Nott.zip.

The quality of the timetable is measured using the cost
function originally proposed by Carter (Carter et al,
1996) and also used by other researchers (Burke et al,
2004). The function is:
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where N is the number of exams, §;is the number of
students enrolled in both exam i and j, pj is the time slot
where exam j is scheduled, pi is the time slot where
exam [ is scheduled and T is the total number of
students. Based on this cost function, a student taking 2
exams that are t slots apart, where t={1, 2, 3, 4, 5,
6}, will give rise to the costs of 16, 8, 4, 2, 1 and 0
respectively.

We also used another cost function that considered
only the number of students having exams on the same
day and students having exams separated by overnight
break.

INFORMATION
ALGORITHM

The proposed granular modeling of the timetabling
problem starts with the abstraction of the detailed
student-exam data into an aggregated (granular) entity
describing mutual dependence of individual exams
(arising from students taking both exams). We refer to
this granular construct as a “conflict chain”. The
rationale for building conflict chains is that once an
interrelated set of exams has been identified, allocating
any of the exams in the conflict chain to a specific time
dot implies a unique relative allocation of all other
exams in the conflict chain to their respective time slots.
In other words, we take advantage of the fact that the
potential conflict between exams does not depend on the
absolute allocation of exams to time slots. On the other
hand the all-important relative alocation of exams to
time slots is captured within one entity thus making any
subsequent reassignment very straightforward. The
generation of conflict chains is accomplished as a
simple pre-processing of the original problem data. The
resulting re-definition of the timetabling problem, away

GRANULATION IN THE

from the allocation of individual examsto time slots and
towards the allocation of conflict chains to the
corresponding sets of time dots is rooted in the
Granular Computing research (Bargiela, et. a, 2002,
2008).

The first pre-processing step is to determine potential
clashes between examinations and to count the number
of students that cause these clashes. Since the potential
clashes (unlike the actual ones) do not depend on the
subsequent allocation of exams to time slots they
represent useful information granules that can be
utilized in the timetabling process. Based on these
information granules we determine the minimum
number of time slots that are necessary for timetabling
the given set of examinations. We refer to this stage as
the construction of conflict chains. The algorithm
deployed at this stage can be summarized as follows:

1. Initiate the algorithm by allocating all exams to time
slot one.

2. Select the first exam as “current” and initiate the
counter for the current conflict chain.

3. Label the current exam as “allocated to the current
chain” and note all the exams that are in potential
conflict with the current exam.

4. If the list of potentially conflicting exams is non-
empty, re-allocate those exams to the next available
time slot. Otherwise label the current chain as
complete and proceed to Step 6.

5. If the list of potentially conflicting exams is non-
empty, select the first exam from the list and repeat
from Step 3 with the currently selected exam.

6. Check if all exams allocated at Step 1 are belonging
to one of the conflict chains; if YES than the
algorithm terminates; if NO, then the conflict chain
counter is incremented and the unallocated exam is
taken as “current” for processing starting from Step
3.

The outcome of the above algorithm is a set of conflict
chains that represent mutually dependent exams that
need to be scheduled in different time slots so as to
avoid violation of hard constraints. However, the
algorithm implies that it is possible to have one exam
belonging to more than one conflict chain (albeit the
algorithm will ensure that the allocation of this exam to
time slot is consistent in both chains). For this reason
we perform additional step of merging these conflict
chains, which happen to have common exams. The
merged conflict chains represent independent subsets of
the examination set that can be dealt with one-at-a-
time.

It is worth noting that the length of the conflict chain,
measured as the number of necessary time slots to
schedule the exams in this chain, provides an
immediate indication of the difficulty of the specific
timetabling task. If the number of available time slots
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is equal or only slightly greater than the length of the
longest conflict chain than the problem is heavily
constrained and we might expect that the quality of the
resulting timetable, measured by the cost function, will
be low. On the other hand, if the number of the
available time slots is significantly greater than the
length of the longest conflict chain than we can expect
high quality (low cost) solutions. Of course, if the
number of available time slots is less than the length of
the conflict chain then the timetabling problem is
infeasible.

Consequently, the information granule of conflict chain
provides a useful insight into the timetabling problem
from a more general perspective compared to the one
afforded by considering individual exams.
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Figure 1: Conflict Chains Before Merging

Figure 1 illustrates a representative section of the
output of the conflict chain generation algorithm. The
chain label is given in the first row and the exam
number is indicated in the first column. It can be seen
that conflict chains 1, 3 and 7 share some of the exams
between themselves. For example, exam 309 is shared
between conflict chain 1 and 3, exam 311 is shared
between conflict chain 1 and 5 and exam 440 is shared
between conflict chains 1 and 7. This means that

conflict chains 1, 3 and 7 can be justifiably merged
into one conflict chain. It is worth noting that merging
conflict chains 1 and 7 implies that the merged conflict
chain will include also exams 317 and 321 even if they
appeared only in conflict chain 7.

Figure 2, illustrates the resulting merged conflict chain
under the chain label 1. Conflict chains 2, 4 and 6 are
unaffected by this post processing as they happen not
to have any common exams with those from chain 1.
In particular, it is worth noting that the exam 323 is
assigned to time slot 8 in conflict chain 6 but, since it
is not in conflict with any of the exams in chain 1, it
has label 0 in the merged conflict chain 1.
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Figure 2: Conflict Chains After Merging

Besides generating the independent conflict chains, as
outlined above, we evaluate the number of students
who take exams allocated to time slots that are 1, 2, ..,
5 time slots apart. Since we are dealing with
information granules that represent a potential conflict
between all exams in one time slot and all exams in
another time slot, regardless of what are the actual
time slot numbers, we create a framework for efficient
optimization of the cost function (quality of the
timetable). In what follows we will describe the
proposed scheme for re-numbering of the time slots
using the background knowledge about the structure of



the cost function. We refer to this optimization stage as
maximizing the spread of examinations.

The spread information is represented as an [sxs]
matrix, where s is a number of time slots in the given
timetabling problem. Figure 3 illustrates a section,
representing the first six time slots, of the spread
matrix evaluated for the Nottingham Dataset. We can
observe that there are 1454 students who take an exam
in time slot 1 and 2, 1360 students taking exams in
time slot 1 and 3, etc. Clearly, the spread matrix is
symmetrical with diagonal elements being omitted
from the calculation.

Taking into account the format of the cost function that
assigns the weight “16” to the exam spread of 1 (i.e.
entries in the spread matrix (1,2), (2,3), (3,4) etc.) and
assigns weight “8” to the exam spread of 2 (i.e. entries
in the spread matrix (1,3), (2,4), (3,5), etc.), and so
on, we can reformulate the task of optimization of the
exam spread as a task of re-arranging the time slots so
as to achieve the smallest sum of elements on the first
minor diagonal in the re-arranged spread matrix.
Taking this method to a logical conclusion we aim at
making sure that some particularly large numbers in
the spread matrix are shifted to minor diagonals that
are of order 6 or above (thus not imposing penalties in
the cost function). Of course, re-numbering of time
slots is subject to strong mutual dependencies so one
needs to define some compromise strategies.

Method 2

The second method takes another approach of
identifying the smallest elements in both rows and
columns and shifting them towards the first minor
diagonal. This corresponds to arranging simultaneously
from the first slot and from the last slot towards the
middle one. It turns out that by taking this approach a
more balanced re-numbering is achieved that attempts
to minimize the sum of higher minor diagonals.

The first six rows-columns of the re-numbered spread
matrix using Method 1 and 2 are shown in Figure 4
and Figure 5 respectively. However, one needs to
remember that some of the rows-columns represented
in Figures 4 and 5 do not appear in Figure 6 because
they had their corresponding time slot number greater
than 6. Nevertheless the sample spread matrices serve
to illustrate the main characteristics of the two
methods.

1 2 3 4 5 6

0 1006 | 1360 | 1276 | 1454 | 1717

1006 0 947 | 1120 | 997 | 1446

1360 | 947 0 1158 | 1355 | 1392

1276 | 1120 | 1158 0 1085 | 1529

1454 | 997 | 1355 | 1085 0 1634

OO |WIN|F-

1717 | 1446 | 1392 | 1529 | 1634 0

1 2 3 4 5 6

0 1454 | 1360 | 1717 | 1276 | 1006

1454 0 1355 | 1634 | 1085 | 997

1360 | 1355 0 1392 | 1158 | 947

1717 | 1634 | 1392 0 1529 | 1446

1276 | 1085 | 1158 | 1529 0 1120

Figure 4: The New Arrangements of the Initial
Ordering of the Spread Matrix after Applying Method
1
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Figure 3: Initial Ordering of the Spread Matrix for the
First 6 Slots from the Nottingham Dataset Based on the
Largest Degree (LD) Decreasing Ordering

We propose here two strategies for optimization of the
exam spread named as Method 1 and Method 2. A
brief explanation of each method is given below:

Method 1

The first method is focused on extracting the smallest
element in each row of the original spread matrix and
re-numbering the relevant time slots so as to place the
smallest element on the first minor diagonal. While
implementing such re-numbering it is possible that
higher order minor diagonals will have some greater
elements associated with them. However, if the
primary concern is to minimize the number of adjacent
exams the method provides the optimum solution.

0 1006 | 1717 | 1360 | 1454 | 1276

1006 0 1446 | 947 | 997 | 1120

1717 | 1446 0 1392 | 1634 | 1529

1360 | 947 | 1392 0 1355 | 1158

1454 | 997 | 1634 | 1355 0 1085

OO |W[(N |-

1276 | 1120 | 1529 | 1158 | 1085 0

Figure 5: The New Arrangements of the Initial
Ordering of the Spread Matrix after Applying Method
2

It is worth highlighting here that our proposed solution
to the timetabling problem is fundamentally different
from the previous solutions based on consideration of
one-exam-at-a-time (Lewis, 2008). By pre-processing
the original data into suitable information granules we
were able to re-formulate the problem as an
optimization of minor traces of the spread matrix.




COMPUTATIONAL RESULTS

The proposed method has been evaluated on a real-life
dataset representing examinations at the University of
Nottingham scheduled during the 1994-5 autumn
semester (Table 1).

Table 1: University of Nottingham Dataset (Nott),
Semester 1, 1994-1995 Used in Our Experiment

Number | Number Number Conflict
Dataset of of of density
students exams | enrollments
Nott 7896 800 33997 0.03

An adternative version of the Nottingham exam-
scheduling problem involves on one hand a relaxation
of the constraint on the number of time slots from 18 to
23 and the introduction of an additional constraint on
the number of students taking exams in any of the time
slots (maximum number 1550). Using the same cost
function (1) and evaluating the results for the original
ordering of time slots and the optimized ordering using
Method 1 and 2 we obtain results reported in Table 3.

Table 3: Cost Functions Before and After Considering
the Spread Information for the Capacitated Nott

In order to ensure that the conflict chains are produced
as efficiently as possible, we have pre-ordered the
exams using the Largest Degree (LD) method (i.e.
gave priority to the exams that have the largest number
of conflicting exams). The granulation of this data set
into conflict chains resulted in the identification of 18
time slots as the minimum number required for the
satisfaction of hard constraints. The cost function (1)
evaluated on the merged conflict chains without- and
with the optimization of the exam spread using Method
1 and Method 2 are presented in Table 2:

Table 2: Cost Functions Before and After Considering
the Spread Information for the Uncapacitated Nott

Dataset.
No of slots 18
Cost Function with original ordering of time | 43.91
slots
Cost Function After Rearrangement of slots
using Method 1 29.03
Improvement Percentage (%) 33.89
Cost Function After Rearrangement of slots
using Method 2 24.18
Improvement Percentage (%) 44.93

It is clear that the optimization of the spread matrix by
re-numbering of the exam slots leads to a significant
improvement of the cost function. It is worth noting
here that we are considering the smallest number of
time slots that allows generation of the feasible
schedule. As such, the cost function is necessarily
large because there is little room for maneuver with
moving time slots around.

Dataset.
No of slots 23
Cost Function with original ordering of time | 22.51
slots
Cost Function After Rearrangement of slots
using Method 1 21.29

Improvement Percentage (%) 5.42

Cost Function After Rearrangement of slots

using Method 2 19.61

12.88

Improvement Percentage (%)

The inspection of the spread matrix generated by both
methods reveals that the first method tends to over-
emphasise the selection of small spread values on the
first minor diagonal and by the time the optimisation
gets to dealing with few remaining time slots the
capacity constraints forces it to leave the high spread
values on the bottom-right section of the first minor
diagonal. By contrast the Method 2 takes a more
balanced approach to optimizing the spread values and,
in doing so, is less affected by the capacity constraint,
thus producing lower overall cost.

The capacitated Nottingham exam-scheduling problem
has been also evaluated using an alternative cost
function as proposed in (Qu et al, 2006). In this
version of the problem the objective is to minimize
adjacent exams on the same day and overnight. By
extracting information from the spread matrix, the
values obtained are 3565 for adjacent periods and 1536
for overnights, in the original ordering of time slots. If
we quantify this result using a function similar to (1)
but defined only on the adjacent time slots we have:
(3565 + 1536) * 16 / 7896, which equals to 10.34.
Performing similar evaluation for the re-numbered
time slots generated using Method 1 and 2 we obtain
6.13 and 11.60 respectively, as reported in Table 4:

Table 4: Cost Functions For Nott Dataset Based on
Nott94b Evaluation.

Penalty
(Violations
of the first
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Method Adjacent | Overnights constraint
Periods Using

Carter et

al, 1996)
Initial 3565 1536 10.34

Ordering

Method 1 1729 1298 6.13
Method 2 3260 2465 11.60

The results reported in Table 4 are consistent with the
nature of the Method 1 and 2. Since the cost function
penalizes only the adjacent examinations the
optimization implemented by Method 1 provides an
optimal choice (resulting in the overall cost of 6.13).
The more balanced approach to the optimization of the
spread afforded by Method 2 does not produce any
advantage here since it does not reflect the narrow
focus of the cost function. Consequently the cost
associated with Method 2 is not only worse than the
one obtained with Method 1 but also is worse than the
one for the original ordering.

In order to enable a cross-comparison of the results
generated by granular modeling with those produced
using alternative approaches, we have archived
complete  solutions reported here at URL
http://www.intelligentmodelling.org.uk/UNMC/timeta
bling.html.

CONCLUSION

Information granulation is a powerful methodological
approach to emphasizing the relevant information
embedded implicitly in the raw data. Granular models
of the problem that are built on such aggregated
(granular) data can be much simpler in terms of
computational complexity and indeed can lead to smple
analytical or combinatorial optimization.

We have shown that by capturing the persistent feature
of potential conflicts (as opposed to actua) in the
conflict chain information granule one can construct a
much simpler model of the exam-scheduling task. Such
a granular model is then amenable to optimization by
minimization of the trace of minor diagonals of the
exam spread matrix.

Numerical experiments conducted on the Nottingham
Dataset confirmed the insights about the potential of
granular modeling of the exam scheduling problem and
have delivered very competitive exam schedules.
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