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Abstract

Portfolio optimization involves the optimal assignment of limited capital to different available financial
assets to achieve a reasonable trade-off between profit and risk. We consider an alternative Markowitz’s
mean-variance model in which the variance is replaced with an industry standard risk measure, Value-at-
Risk (VaR), in order to better assess market risk exposure associated with financial and commodity asset
price fluctuations. Realistic portfolio optimization in the mean-VaR framework is a challenging problem
since it leads to a non-convex NP-hard problem which is computationally intractable. In this work, an
efficient learning-guided hybrid multi-objective evolutionary algorithm (MODE-GL) is proposed to solve
mean-VaR portfolio optimization problems with real-world constraints such as cardinality, quantity, pre-
assignment, round-lot and class constraints. A learning-guided solution generation strategy is incorporated
into the multi-objective optimization process to promote efficient convergence by guiding the evolutionary
search towards promising regions of the search space. The proposed algorithm is compared with the Non-
dominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2).
Experimental results using historical daily financial market data from S &P 100 and S & P 500 indices are
presented. The results shows that MODE-GL outperforms two existing techniques for this important class
of portfolio investment problems in terms of solution quality and computational time. The results highlight
that the proposed algorithm is able to solve the complex portfolio optimization without simplifications while
obtaining good solutions in reasonable time and has significant potential for use in practice.

Keywords: Evolutionary computations, Multi-objective Constrained Portfolio Optimization, Value at
Risk, Nonparametric Historical Simulation

1. Introduction

Portfolio optimization is concerned with the optimal allocation of limited capital to available financial
assets to achieve a trade-off between reward and risk. The classical mean-variance (MV) model (Markowitz,
1952, 1959) formulates the portfolio selection problem as a bi-criteria optimization problem with a tradeoff
between minimum risk and maximum expected return. In the MV model, risk is defined by a dispersion
parameter and it is assumed that returns are normally or elliptically distributed. However, the distributions
of returns are asymmetric and usually have excess kurtosis in practice (Bakshi et al., 2003; Cont, 2001; Fama,
1965; Kon, 1984; Prakash et al., 2003). Variance as a risk measure has thus been widely criticized by prac-
titioners due to its symmetrical measure which equally weights desirable positive returns and undesirable
negative ones. In fact, Markowitz recognized the inefficiencies embedded in the mean-variance approach and

∗Corresponding author. Address: Anglia Ruskin IT Research Institute, Faculty of Science and Technology, Anglia Ruskin
University, Chelmsford, CM11SQ, UK

Email addresses: khin.lwin@anglia.ac.uk (Khin T. Lwin ), rxq@cs.nott.ac.uk (Rong Qu),
bart.maccarthy@nottingham.ac.uk (Bart L. MacCarthy)

In Press, EJOR, DOI:http: // dx. doi. org/ 10. 1016/ j. ejor. 2017. 01. 005 February 3, 2017

http://dx.doi.org/10.1016/j.ejor.2017.01.005


suggested the semi-variance risk measure (Markowitz, 1959) in order to measure the variability of returns
below the mean. In practice, many rational investors are more concerned with under-performance rather
than over-performance in a portfolio.

These limitations have led to research directions where realistic risk measures are used to separate
undesirable downside movements from desirable upside movements (Biglova et al., 2004). Among those var-
ious risk measures, Value-at-Risk (VaR) (Morgan, 1996) and expected shortfall or conditional value-at-risk
(CVAR) (Rockafellar and Uryasev, 2000) are the widely accepted popular risk measures. Rockafellar and
Uryasev (2002) presented thorough discussions on VAR and CVaR with regular distributions. The choice
between these two risk measures is based on many factors such as the differences in mathematical properties,
stability of statistical estimation, simplicity of optimization procedures, and importantly, acceptance by the
financial industry and regulators (Sarykalin et al., 2008). Despite its acknowledged limitations (Rockafellar
and Uryasev, 2002), VaR has been widely adopted in the financial industry (Basel Committee on Banking
Supervision, 1996, 2004, 2010; Gaivoronski and Pflug, 2005; Jorion, 2006; Pérignon and Smith, 2010) but its
non-linear and non-tractable properties (Natarajan et al., 2008) make it very challenging computationally for
portfolio optimization problems with real world constraints. This paper presents an alternative bi-criterion
Markowitz portfolio optimization model, in which the variance has been replaced with the VaR.

From a practical point of view, investors commonly face many real-world trading restrictions, which
requires that the constructed portfolios have to meet trading constraints. As a result, several extensions
and modifications of the basic Markowitz model reflecting real-world constraints have been developed. Since
the additional trading constraints representing relevant practical issues lead to sets of discrete variables and
constraints, the resulting optimization problem becomes very complex. In this work, we consider a single
period multi-objective portfolio optimization problem with practical trading constraints, namely, cardinality,
quantity, pre-assignment, round lot, class and class limit constraints. Value-at-Risk (VaR) is used as a risk
measure and a nonparametric historical simulation approach is adopted to calculate VaR.

Minimizing a nonparametric VaR measure is a complex task due to the non-smooth objective func-
tion landscape with many local minima. Figure-1 shows the surface and contour plots of the Value-at-Risk
(VaR) of feasible portfolios in a three assets universe, displaying the existence of non-smooth and non-convex
surface with several local minima. In practice, portfolios are composed of markets with potentially hundreds
to thousands of available assets, and the calculation of risk measures grows quickly in relation to the number
of assets. When more dimensions and trading constraints are added to the problem, the complexity of the
problem increases. Optimal exponential algorithms for reasonable problem dimensions are still not available.
Approximation approaches such as smoothing (Gaivoronski and Pflug, 2005) and meta-heuristics are the
known alternatives to find optimal or near-optimal portfolios in a reasonable amount of time.

In this work, we present a new learning-guided multi-objective evolutionary algorithm (MODE-GL)
for mean-VaR portfolio optimization problems with practical investment constraints. A learning-guided so-
lution generation strategy is incorporated into the multi-objective optimization process to promote efficient
convergence by guiding the evolutionary search towards promising regions of the search space. The perfor-
mance of the proposed algorithm is compared against two existing well-known multi-objective evolutionary
algorithms, the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002) and the Strength
Pareto Evolutionary Algorithm (SPEA2) (Zitzler et al., 2001). Moreover, the proposed learning-guided
solution generation mechanism is incorporated in NSGA-II and SPEA2 to investigate its effectiveness. The
performances of the algorithms are tested on two real datasets retrieved from the S & P 100 and S & P
500 indices. Experimental results show that the proposed algorithm is able to solve the complex portfolio
optimization without simplifications while obtaining acceptable solutions in a reasonable time. Moreover,
results show that the learning-guided solution generation strategy contributes to enhancing the efficient
convergence of the search algorithm by concentrating on the most promising areas of the search space.

The rest of the paper is organized as follows. Section 2 presents a brief introduction to the Value-
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(a) Surface plot

(b) Contour plot

Figure 1: The historical VaR of feasible portfolios comprising of Coca-Cola Co., 3M Co. and Halliburton Co. with 3 years
of data. w1 is the proportion of investment in Coca-Cola, w2 is the proportion of investment in Halliburton. The amount of
investment in 3M is equal to 1 − w1 − w2. Short selling is not allowed for any of the assets.
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at-Risk risk measure and a selective review of literature on mean-VaR portfolio optimization. Section 3
describes the generic multi-objective portfolio optimization, followed by the mean-VaR model considering
cardinality, quantity, pre-assignment, round lot, class and class limit constraints. Section 4 introduces a
new algorithm (MODE-GL) to address highly constrained portfolio optimization problems, highlighting the
main differences from existing approaches and presenting the detailed structure of the algorithm. Section
5 applies the new approach to datasets generated from real market data and discusses the performance of
the proposed algorithm in comparison to existing evolutionary optimization approaches. Finally conclusions
and future work are presented in Section 6.

2. Value-at-Risk: An Overview

In the literature, researchers and practitioners replace variance by introducing various downside risk
measures (Harlow, 1991; Krokhmal et al., 2011) in order to capture realistic market risk exposure by focus-
ing on return dispersions below a specified target. The Safety-First principle introduced by Roy (1952) is
considered to be fundamental in the development of downside risk measures in the finance literature. Roy’s
Safety-First criterion suggests selecting a portfolio which minimizes probability of returns falling below some
predefined disaster level. Consequently, a growing number of downside risk measures based on lower partial
moments have been proposed by academics and practitioners (Bawa, 1975; Bawa and Lindenberg, 1977;
Fishburn, 1977).

The most popularly embraced technique for measuring downside risk among financial institutions is
Value-at-Risk (VaR) (Duffie and Pan, 1997; Feng et al., 2015; Jorion, 2006; Linsmeier and Pearson, 2000).
VaR measures the maximum likely loss of a portfolio from market risk with a given confidence level (1 -
α) over a fixed horizon. For instance, if a daily VaR is valued as 100,000 with 95% confidence level, this
means that during the next trading day there is only a 5% chance that the loss will be greater than 100,000.
The higher the confidence level, the better the chances that the actual loss will be within the VaR measure.
Therefore, the confidence level (1 - α) is usually high, typically 95% or 99%.

There are three main techniques commonly employed to measure VaR: the parametric approach (variance-
covariance), the nonparametric approach (historical simulation) and Monte Carlo simulation methods (Jo-
rion, 2006; Linsmeier and Pearson, 2000). The choice of the VaR method is critical since the results yielded
from each method can be different from each other (Manganelli and Engle, 2001; Pritsker, 1997). Each
method has its own strengths and weaknesses. The parametric method assumes financial returns follow a
normal or known distribution function whereas the nonparametric (historical simulation) method makes no
assumption regarding the distribution. Monte Carlo method simulates several random scenarios, which can
be computationally challenging. The analysis conducted by Pérignon and Smith (2010) shows that the most
commonly used approach for computing VaR among investment firms that disclose their methodology is
historical simulation.

VaR has been widely recognized by financial regulators and investment practitioners. The Basel Com-
mittee for Banking Supervision of the Bank of International Settlements (Basel Committee on Banking
Supervision, 1996, 2004, 2010; Jackson et al., 1997) allows financial institutions to use VaR models to set
aside regulatory capital amounts that would cover potential operational losses. In addition, the Securities
and Exchange Commission (SEC) requires financial service firms to provide quantitative information about
market risk using the VaR measure (Alexander and Baptista, 2002). It is clear that computationally effective
and efficient methods for portfolio optimization based on VaR remain an important area of study with many
remaining open research questions. Cont et al. (2010) shows that nonparametric VaR has better robustness
than CVaR, expected shortfall and Sharpe ratio. Rossello (2015) also shows that nonparametric VaR is less
sensitive to outliners than Sharpe ratio and Gain-Loss ratio.

Despite its wide adoption, VaR has limitations. When VaR is used as the objective function, it leads
to a non-convex and non-differential risk-return portfolio optimization problem where the number of local
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optima increases exponentially with the number of assets (Dańıelsson et al., 2008; Gaivoronski and Pflug,
2005; Kolm et al., 2014; Wozabal et al., 2010). In fact, Benati and Rizzi (2007) show that optimization
of the mean-VaR portfolio problem leads to a non-convex NP-hard problem which is computationally in-
tractable. Moreover, the non-convexity of VaR discourages diversification. In other words, the VaR of a
portfolio with two securities may be greater than the combination of VaRs of each security in the portfolio.
Artzner et al. (1999) show that VaR fails to satisfy the subadditivity property for some distributions of
asset returns. Many studies have applied alternative subadditive risk measures such as Conditional Value
at Risk (CVaR) (Rockafellar and Uryasev, 2000) and Partitioned Value-at-Risk (PVaR) (Goh et al., 2012)
with corresponding operational consequences.

However, given that VaR is the predominantly used quantile-based, industry-standard risk measure,
there is a need for efficient algorithms that minimize VaR while obtaining maximum return. In the lit-
erature, there are different approaches to measure VaR to investigate portfolio optimization (Charpentier
and Oulidi, 2009; Ghaoui et al., 2003; Goh et al., 2012; Natarajan et al., 2008). Although there has been
considerable work related to portfolio optimization with various risk measures (Balbás et al., 2010; Kolm
et al., 2014; Krokhmal et al., 2011; Mansini et al., 2007), it is noticeable that the number of studies of
non-parametric historical VaR in the context of mean-VaR remains relatively small. Gilli and Këllezi (2001)
and Gilli et al. (2006) propose a threshold accepting method to maximize a portfolio’s return under VaR
and expected shortfall constraints. Dallagnol et al. (2009) employ a genetic algorithm (GA) and particle
swarm optimization (PSO) for a mean-VaR portfolio selection problem using historical simulation calcula-
tion. Alfaro-Cid et al. (2011) conduct a comparison between mean-variance and mean-VaR approach using a
multi-objective genetic algorithm. However, these models have often simplified the problem where practical
constraints are not taken into account.

Baixauli-Soler et al. (2011) present a multi-objective GA for the mean-VaR portfolio optimization prob-
lem with minimum transaction units and transaction costs. Jevne et al. (2012) also study the mean-VaR
portfolio optimization problem with minimum transaction units and transaction costs and investigate the
effect of the initialization scheme on the results with multi-objective differential evolution and NSGA-II. Ex-
perimental results show that the refined initialization scheme improves the convergence of both algorithms.
Anagnostopoulos and Mamanis (2011) replace the variance risk measure with VaR and expected shortfall
(ES). Three multi-objective evolutionary algorithms are compared against exact methods to evaluate the
portfolio selection problem with cardinality, quantity and class constraints.

3. Multi-objective Portfolio Optimization Problems

Multi-objective optimization generally involves balancing all conflicting objectives and searches for a set
of compromise solutions between the objectives while satisfying various constraints. In such contexts, this
set of solutions is known as the set of Pareto-optimal solutions (Deb, 2001). In the multi-objective variant
of the portfolio optimization problem, the objective is to find a set of efficient portfolios that minimize risk
and maximize return simultaneously:

min f1 = ψ(w)

max f2 = µ(w)

s.t w ∈W.
(1)

In a two-dimensional space of risk and return, a solution a is said to be efficient (i.e., Pareto-optimal or
non-dominated) if no solution b exists such that b dominates a (Fonseca and Fleming, 1995). Solution a is
considered to dominate solution b if and only if C1 or C2 hold:
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C1 : f1(a) ≤ f1(b) ∧ f2(a) > f2(b)

C2 : f2(a) ≥ f2(b) ∧ f1(a) < f1(b)
(2)

The set of efficient portfolios forms the efficient frontier representing the best tradeoffs between return and
risk.

3.1. Mean-VaR Portfolio Optimization Problem

The mean-VaR model is based on Markowitz’s MV model (Markowitz, 1952, 1959). It is obtained by
replacing variance with VaR as a risk measure and is formulated as a multi-objective optimization problem
where expected return is maximized and VaR is minimized. In this work, we compute VaR using a historical
simulation (nonparametric) method. This method calculates VaR from the α quantile of the empirical distri-
bution of the historical data and therefore it does not assume that returns follow any particular distribution.

Let rit be the observed return of asset i at time t using historical data over the time horizon T . Let wi
be the proportion of the budget invested in asset i. Given a set of N assets, the portfolio’s return under
scenario t is estimated by:

κt(w) =

N∑
i=1

ritwi, t = 1, . . . , T. (3)

Let ρt be the probability of scenario occurrence and assume all scenarios are considered to have equal
probability: ρt = 1/T . The expected return of the portfolio over time T is obtained by:

µ(w) =

T∑
t=1

κt(w)ρt (4)

The VaR at a given confidence level (1- α) is the maximum expected loss that the portfolio cannot exceed
with a probability α.

ψ(w) = V aRα(w) = −inf

{
κt(w) |

T∑
t=1

ρt ≥ α

}
(5)

where returns κt(w) are placed in an ascending order such that κ1(w) ≤ κ2(w) ≤ ... ≤ κT (w) (Anagnos-
topoulos and Mamanis, 2011). The mean-VaR portfolio selection problem is summarized as follows:

min ψ(w) (6)

max µ(w) (7)

s.t

N∑
i=1

wi = 1, 0 ≤ wi ≤ 1 (8)

where N is the number of available assets and wi (0 ≤ wi ≤ 1) is the decision variable representing the
proportion held of asset i. Eq(8) defines the budget constraint (all the money available should be invested)
for a feasible portfolio and the non-negative property of wi denotes that no short sales are allowed.
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3.2. Practical Constraints

The basic model assumes a perfect market where securities are traded in any (non-negative) fractions,
there is no limitation on the number of assets in the portfolio, investors have no preference over assets and
they do not care about different asset types in their portfolios (Lwin and Qu, 2013; Markowitz, 1959). In
practice, however, these assumptions are unrealistic. As a result, several extensions and modifications have
been proposed to address the real-world constraints (Lwin et al., 2014; Valle et al., 2014; Woodside-Oriakhi
et al., 2013). The basic model can be extended (not exhaustively) with a number of real-world constraints
to better reflect practical portfolio optimization:

Cardinality Constraint

Cardinality constraints limit the number of assets (K) that compose the portfolio. Very often in
practice, investors prefer to have a limited number of assets in their portfolio since the management
of many assets in a portfolio is tedious and may be hard to monitor. They may also seek to reduce
transaction costs and/or to assure a certain degree of diversification by limiting the maximum number
of assets in their portfolios.

Floor and Ceiling Constraints

The floor and ceiling constraints specify the minimum and maximum limits on the proportion of
each asset that can be held in a portfolio. In practice, investors prefer to avoid excessive adminis-
trative costs for very small holding of assets in the portfolio and/or some institutional policies may
stipulate lower and upper bounds of some or each asset in the portfolio. These are also referred to as
bounding or quantity constraints.

Pre-assignment Constraint

The pre-assignment constraint is usually used to model the investor’s subjective preferences. An
investor may intuitively prefer a specific set of securities (Z) to be included in the portfolio, with its
proportion either fixed or to be determined.

Round Lot Constraints

Round lot constraints require the amount of any assets in the portfolio to be in exact multiples
of defined normal trading lots. In practice, market securities are often traded as multiples of minimum
lots.

Class Constraints

In practice, investors may ideally want to partition the available assets into mutually exclusive sets
(classes). Each set may be grouped with common features or types such as health care assets, energy
assets, etc. or grouped by an investor’s own intuition or preference. Investors may prefer to select at
least one asset from each class to construct a diversified and safe portfolio. Class constraints were first
introduced by Chang et al. (2000) and Anagnostopoulos and Mamanis (2011) later considered class
constraints in their work.

Class Limit Constraints

In practice, investors may also want to restrict the total proportion invested in each class to a defined
class limit.
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3.3. Practical Mean-VaR Portfolio Optimization Problem

The constraints described in Section-3.2 are hard in the sense that they have to be satisfied at any time.
The extended mean-VaR model may then be formulated as follows:

min ψ(w) (9)

max µ(w) (10)

subject to

N∑
i=1

wi = 1, 0 ≤ wi ≤ 1 (11)

N∑
i=1

si = K, (12)

wi = yi.υi, i = 1, ..., N, yi ∈ Z+ (13)

εisi ≤ wi ≤ δisi, 0 ≤ εi ≤ δi ≤ 1, i = 1, ..., N (14)

Lm ≤
∑

si ∈ Cm

wi ≤ Um, m = 1, ....M, (15)

si ≥ zi, i = 1, ..., N (16)

si, zi ∈ {0, 1} , {zi ∈ Z | zi == 1}, i = 1, ..., N (17)

The additional constraints are described through Eqs (12 - 17). Eq-(12) defines the cardinality constraint
where K is the number of invested assets in the portfolio and the binary variable si denotes whether asset
i is invested or not. Eq-(14) defines the quantity constraint. If asset i is invested, the proportion of capital
wi lies in [εi, δi].

Eq-(16) defines the pre-assignment constraint to fulfil the investor’s subjective requirements where the
binary vector zi denotes if asset i is in the pre-assigned set Z that has to be included in the portfolio or not.
Eq-(13) defines the round lot constraint where yi is a positive integer variable and υi is the minimum lot that
can be purchased for each asset. Eq-(15) defines class and class limit constraints where Cm,m = 1, . . . ,M ,
represents M mutually exclusive sets of assets and Lm and Um are the lower and upper proportion limit for
class m. In this work, it is assumed that Lm > 0 for every class Cm and K ≥M+ | Z | − | Zcl | where Zcl

is the set of classes represented by the preassigned set Z (i.e., Zcl = {m : zi ∈ Cm}, zi ∈ Z).

4. A Learning-guided Multi-objective Evolutionary Algorithm

The portfolio optimization problem becomes too complex to solve by conventional optimization ap-
proaches as it typically exhibits multiple local extrema and discontinuities especially when variance is re-
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placed by the VaR risk measure (see Figure-1) and constraints reflecting investor’s preferences and/or insti-
tutional trading rules are considered. Meta-hueristics and hybrid algorithms provide alternatives for finding
optimal or near-optimal solutions in a reasonable amount of time. Over the last two decades, multi-objective
evolutionary algorithms (MOEAs) have received a significant amount of attention and demonstrated their
effectiveness and efficiency in approximating the Pareto-optimal front (Coello, 2006) for a wide range of
problems (Maio et al., 2014; Zhao et al., 2012).

Robič and Filipič (2005) develop DEMO, one of the recent algorithms which combines the advantages
of Differential Evolution (DE) (Storn and Price, 1995) with the mechanisms of Pareto-based sorting and
crowding distance sorting (Deb et al., 2002). It has been successfully tested on the carefully designed test
functions (ZDT) introduced in (Zitzler et al., 2000). The procedure of the DEMO is described in Algorithm
1. DEMO maintains a population of individuals, where each represents a potential solution to the optimiza-
tion problem. During the evolution, it allows its population capacity to expand in order to add newly found
non-dominated solutions (see Algorithm 1, line 3-11). Hence, it enables the newly found non-dominated
solutions to immediately take part in the generation of the subsequent candidate solutions. This feature of
DEMO promotes fast convergence towards the true Pareto front.

In each generation, if the population exceeds the size limit, it is sorted based on the non-domination
and crowding distance metrics in order to identify those individuals to be truncated. The crowding distance
value of a solution is an estimate of the density of solutions surrounding that solution (Deb et al., 2002).
It is estimated by calculating the average distance of two nearest neighbors on either side of a particular
solution along each of the objectives. If solutions are non-dominated then the one with a larger crowding
distance is preferred. It thus aims to maintain a good distribution of non-dominated portfolios.

Algorithm 1: Procedure of DEMO (Robič and Filipič, 2005)

1 evaluate the initial population P of random individuals ;
2 while stopping criterion not met do
3 for each individual pi(i = 1, . . . , Psize) do
4 create a candidate p′ from parent pi ;
5 evaluate p′ ;
6 if p′ dominates pi then
7 p′ replaces pi
8 else if pi dominates p′ then
9 discard p′

10 else
11 add p′ to P

12 if | P | ≥ Psize then
13 truncate P

14 randomly enumerate the individuals in P

In this work, we propose a learning-guided multi-objective evolutionary algorithm (MODE-GL) for con-
strained portfolio optimization. The proposed algorithm adopts a new approach to extend the generic DEMO
scheme to solve the constrained portfolio optimization problem. The main differences of our approach with
respect to the DEMO scheme are:

1. A secondary population (i.e. an external archive) is introduced to store the well spread non-dominated
solutions found throughout the evolution (see Section-4.1.8).

2. A learning mechanism is proposed to extract the important features from the efficient solutions found

In Press, please cite this article as K. Lwin et al., Mean-VaR portfolio optimization: A nonparametric
approach, European Journal of Operational Research (2017),
DOI:http://dx.doi.org/10.1016/j.ejor.2017.01.005

9

http://dx.doi.org/10.1016/j.ejor.2017.01.005


throughout the evolution (see Section-4.1.3).

3. Two extended variants of differential evolution mutation schemes are proposed (see Section-4.1.4).

4. An efficient solution generation scheme that utilizes the learning mechanism, problem specific heuris-
tics and effective differential evolution mutation schemes is proposed to guide the search towards the
promising regions of the search space (see Section-4.1.4).

The proposed MODE-GL extracts the important features of non-dominated solutions throughout the
evolution. Incorporating a learning mechanism and prior problem-specific knowledge exploitation in the
evolution process allows MODE-GL to generate promising offspring solutions. The approach thus aims to
promote convergence by concentrating on the promising regions of the search space. On the other hand,
adopting the two extended variants of differential evolution mutation schemes promotes the exploration of
the search towards the least crowded region of the solution space.

The pseudocode of the proposed algorithm is described in Algorithm 2.

Algorithm 2: Procedure of MODE-GL

Input:
Amax = the size of the archive A ;
Dmax = the size of the archive D ;
NP = the number of individuals in the population P ;

1 randomly create an initial population P ; // Initialization

2 while stopping criterion not met do
3 maintain the archive A with non-dominated solutions from P ;
4 if | A | ≥ Amax then
5 maintain archive A with Amax least crowded non-dominated solutions ;

6 maintain archive D with Dmax least crowded solutions from P ;
7 learn from the archive A to identify the promising asset(s) ;
8 for each individual pi(i = 1, . . . , N) ∈ P do
9 create new candidate p′ ; // see Algorithm 3

10 if constraints are violated then
11 repair p′

12 evaluate p′ by f1 and f2 ; // see Eq 4, 5

13 if p′ dominates pi then
14 p′ replaces pi;
15 else if pi dominates p′ then
16 discard p′

17 else
18 add p′ to the current population P

19 if | P | ≥ NP then
20 maintain P with the best NP solutions, ranked by non-domination and crowding distance

metrics ;

21 randomly enumerate the individuals in P

Output: archive A
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4.1. The proposed MODE-GL

4.1.1. Solution Representation and Encoding

Assume an array Γ consists of M real values each one representing the total proportion invested in each
class; an array S contains K integer numbers, each representing a selected asset in the portfolio; and an array
W includes K real values, representing the allocation of each selected asset in the portfolio. We present the
following representation scheme to handle several considered constraints:

Γ ={θ1, . . . , θM}, 0 ≤ θm ≤ 1, m = 1, . . . ,M

S ={s1, . . . , sM , . . . , sQ, sQ+1, . . . , sK},
Q = M+ | Z | − | Zcl |,
sb ∈ C + Z, sj ∈ {1, . . . , N} − {s1, . . . , sQ}
b = 1, . . . , Q, j = Q+ 1, . . . ,K

W ={wi, . . . , wK}, 0 ≤ wi ≤ 1, i = 1, . . . ,K.

With this solution representation, the cardinality constraint is satisfied by array S which has a specified
size K. The preassignment constraint is satisfied by including all preassigned assets in S. The class rep-
resented by the preassigned assets in Z is identified and denoted by Zcl. We then ensure that M− | Zcl |
assets are selected from each remaining class. As stated in Section-3.3, in this work, it is assumed that
K ≥M+ | Z | − | Zcl. If K > Q, then the remaining K−Q assets are randomly selected from the available
unselected assets. In the literature, Anagnostopoulos and Mamanis (2011) use a similar encoding scheme
but their model does not consider either pre-assignment or round lot constraints.

To understand the way the problem is structured, consider an illustrative portfolio problem where N =
94, M = 6, C1 ∈ {1, . . . , 15}, C2 ∈ {16, . . . , 30}, C3 ∈ {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75}
and C6 ∈ {76, . . . , 94}. An example portfolio with K = 10 would be represented as:

Z ={30}, Zcl = {C2}, | Zcl = 1,

Γ ={0.05, 0.05, 0.05, 0.05, 0.05, 0.05},
S ={8, 17, 30, 47, 62, 85, 31, 92, 37, 69},
W ={w8 = 0.112, w17 = 0.048, w30 = 0.024, w47 = 0.376, w62 = 0.024,

w85 = 0.136, w31 = 0.12, w92 = 0.064, w37 = 0.064, w69 = 0.032}.

4.1.2. Initial Population Generation

To generate an initial population, all assets in the pre-assignment set Z are included first and the
remaining K− | Z | are randomly selected by making sure at least one asset from each class of M is
included. The proportions (with exact lots) are assigned to those K selected assets randomly. If the
generated portfolio violates the budget, quantity and/or class limit constraints, such a solution is repaired
by the constraint handling techniques detailed in Section-4.1.5. This ensures that all generated solutions in
the population are feasible.

4.1.3. Learning Mechanism

At each generation, the distribution of assets from non-dominated solutions in the external archive is
observed to identify promising assets. The concentration score of each asset ci is calculated by counting its
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occurrences in the archive A divided by the archive size.

ci =

|A|∑
j=1

si,j

| A |
.

The new solutions to be generated are encouraged to compose with those assets by exploiting the knowl-
edge obtained throughout the evolution to direct the search towards the most promising regions of the search
space. The larger the concentration scores, the higher its chances are to be included in the new generated
solution (see Section-4.1.4). The proposed learning mechanism is computationally cheap as it only uses a
single update at each generation.

4.1.4. Candidate Generation

One of the factors to consider in designing the portfolio model in MODE-GL is to find an effective
way to generate offsprings. In this section, an effective and efficient candidate generation scheme with a
good balance between exploitation and exploration is proposed. A new solution is generated in two phases:
the selection of assets from the N available assets and the allocation of capital to those selected assets.
In the first phase, learning mechanism (see Section-4.1.3) together with problem specific heuristics (S1 -
S4) described below are exploited to identify promising assets while directing the search towards the most
promising regions of the search space.

In order to generate a new candidate solution, the | Z | pre-assigned assets are first selected. By
taking into account the above stated intuitive learning, in this work, MODE-GL randomly uses the follow-
ing selection schemes until the remaining assets (K− | Z |) have been selected, while making sure at least
one asset from each class of M is included. By adopting the selection schemes stated below, it is ensured
that the new candidate solution satisfies the pre-assignment, class and cardinality constraints.

S1: Roulette wheel selection based on the concentration score ci.

S2: Select asset with the highest concentration score ci.

S3: Select asset with the highest mean return values.

S4: Select asset with the least standard deviation of return values.

In the second phase, the proportions of those selected assets for the new candidate solution are assigned
by using two extended variants of DE mutation schemes as follows:

W1: w′i := besti + r[0, 1]× (w1i − w2i)

W2: w′i := wi + F × (besti − wi) + F × (w1i − w2i)

where F is the scaling factor for differential evolution. The two portfolios with w1i and w2i allocations are
randomly selected from the least crowded portfolio archive D and best is the best solution randomly selected
from the best 10% of archive A. These two DE mutation schemes are extended from similar variants of
DE/best/1 (Das and Suganthan, 2011) and DE/current-to-pbest/1 (Zhang and Sanderson, 2009). In our
extended version, the difference is that w1i and w2i are randomly selected portfolios from archive D to direct
the search towards promising unexplored directions. The detailed procedure of the candidate generation
is provided in Algorithm-3. The proposed candidate generation mechanism intends to guide the search
towards promising directions by learning from the best found solutions from archive A. In this way, the
proposed algorithm converges efficiently. The new candidate portfolio is repaired if the quantity and round
lot constraints are violated (see the repair mechanism in Section-4.1.5).
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Algorithm 3: Procedure to Generate a Candidate Solution.

Input: concentration scores of assets ci(i = 1, . . . , N) and p̄ ∈ P
1 select | Z | assets from preassigned set Z and randomly select K− | Z | assets by S1, S2, S3 and/or
S4 while ensuring class constraint;

2 randomly select three different portfolios: p1, p2, p3 ∈ {P \ p̄};
3 randomly select an index i from those K assets and assign i to j and γ ;
4 for each selected asset do
5 if r(0, 1) < CR or j == γ then
6 allocate weight w′ by W1 or W2;
7 else
8 assign weight w′ with corresponding w̄ of parent portfolio p̄;

9 randomly select an index i from those K selected and assign i to j;

Output: candidate solution p′

4.1.5. Constraint Handling

When using an evolutionary algorithm to solve constrained optimization problems, various methods
have been proposed in the literature for handling constraints, such as penalty function methods, special
representation and operator methods, repair methods, separation of objective and constraint methods, and
hybrid methods (Coello Coello, 2002). Among those methods, the repair method is one of the commonly
adopted approaches to locate feasible solutions for combinatorial optimization problems (Coello Coello,
2002; Salcedo-Sanz, 2009).

During the population sampling, each constructed individual portfolio is repaired if it does not sat-
isfy all considered constraints. As described in Section-4.1.4, the new solution generated by MODE-GL
already satisfies the cardinality, class and pre-assignment constraints. Hence, the following repair mecha-
nism described in Skolpadungket et al. (2007) and Streichert et al. (2004) is applied:

1. All weights of the selected assets in the candidate solution are adjusted by setting:

w′i = ψi +
w′

i−ψi∑
(w′

i−ψi)

where the smallest divisible lot ψi = inf {xi : xi%υi == 0 and xi ≥ εi}.

2. The weights are then adjusted to the nearest round lot level by setting w′i = w′i − (w′i mod υi). The
remaining amount of capital is redistributed in such a way that the largest amount of (w′i mod υi)
is added in multiples of υi until all the capital is spent.

3. The weights are then adjusted (if the class limit constraints are violated). If θm < Lm, insert
y := Lm − θm to the underflow class and subtract υi from those classes where Lm′ + υi ≤ θm′ ≤ Um′

until
∑
υi ≥ y. Similarly, the same for the overflow class. This process is repeated until all limits are

satisfied.

4.1.6. Selection Scheme

MODE-GL applies an elitist selection scheme based on Pareto optimality (see Algorithm 2, line 13-
18). During the evolution, the population is extended by adding the newly found non-dominated solutions.
Hence, at each generation, the number of portfolios in the current population will be between NP and 2NP.

4.1.7. Truncate Population

In each generation, if the number of portfolios in the current population exceeds its limit NP, the
individuals in the population are sorted based on the non-dominance and crowding distance metrics (Deb
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et al., 2002). The current population is then truncated by keeping the best NP individuals for the next
generation.

4.1.8. Maintaining Archives

The main objective of the external archive A is to maintain the well-spread non-dominated solutions
encountered during the search. In each generation, archive A is updated with the non-dominated solutions
from the trial population. The computational time to maintain the archive increases with the archive size
(Coello et al., 2004; Knowles and Corne, 2000; Zitzler et al., 2001). The size of the archive is therefore
restricted to a pre-specified value. When the external archive has reached its maximum capacity Amax, the
most crowded non-dominated members are identified and discarded.

In addition, in each generation, a small number of the least crowded solutions are maintained in archive
D and they are not required to be efficient. As noted, mean-VaR objective function landscapes are inclined
to have many local minima (see Figure-1) and therefore the search needs to cover sufficient solution space
to maximize the probability of discovering the global optimium. The least crowded solutions from archive
D are exploited to promote the exploration of the search towards the least explored region of the solution
space in order to achieve well-spread efficient solutions.

5. Performance Evaluation

In this section, we first introduce publicly available real datasets and performance metrics used for
evaluating multi-objective evolutionary algorithms. We examine the performance of the new MODE-GL
algorithm for constrained portfolio optimization with the mean-VaR criterion in the following way. The
performance of MODE-GL is compared with four other multi-objective evolutionary algorithms. Two well-
known evolutionary algorithms from the literature are selected for comparison (NSGA-II and SPEA2).
Comparisons are also made with each of these algorithms when they are also augmented with guided learning
(NSGA-II-GL and SPEA2-GL). Two different real historical financial datasets are selected for computational
experimentation. As the constrained mean-VaR portfolio problem is a non-convex, NP-hard computationally
intractable problem, the optimal efficient frontier is not known for the tested datasets. The best estimated
efficient frontier is obtained by collecting all the non-dominated portfolios produced from all the tested
algorithms. In this study, we use two performance evaluation metrics that are widely adopted for problems
of this type to evaluate the optimization performance of the five algorithms - the inverted generational
distance (IGD) and the hypervolume metric (HV). We discuss each of these aspects further in the following
sub-sections.

5.1. Datasets

For the empirical part of this work, two datasets based on historical daily financial market data have
been retrieved from Yahoo! Finance (Yahoo, 2014). It was observed that historical time series downloaded
from this site had some missing data points and hence those assets with missing data points were discarded.
The first dataset (DS1) consists of 94 securities from the S & P 100 and covers daily financial time series data
over a period of three years from 01/03/2005 to 20/02/2008, totalling 750 trading days. The second dataset
(DS2) is composed of 475 securities from the S & P 500 and covers daily financial time series data over a
period of one year from 11/04/2013 to 04/04/2014, totalling 250 trading days. The datasets are available to
access online at http://www.cs.nott.ac.uk/~pszrq/benchmarks.htm These datasets have been used for
portfolio optimization with cardinality, quantity, pre-assignment, round lot, class and class limit constraints
in order to study the performance of the evolutionary algorithms considered in this work. We also provide
this set of new problems as benchmark problem instances to the literature for further analysis and testing
of optimization methods and techniques. All considered algorithms have been implemented in C# and run
on a personal computer Intel(R) Core(TM)2 Duo CPU E8400 3.16GHz. The experimental results obtained
for each algorithm are the average of 30 runs.
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5.2. Quality Indicators

To evaluate the performance of the multi-objective evolutionary algorithms from various aspects, several
performance metrics have been proposed in the literature (Knowles and Corne, 2002; Van Veldhuizen and
Lamont, 2000; Zitzler et al., 2003), mainly defined by how close the obtained solutions are to the Pareto
front and how evenly the solutions are distributed along the frontier (Zhou et al., 2011; Zitzler et al., 2000).
In this study we use two widely adopted performance evaluation metrics, namely the inverted generational
distance and the hypervolume metric.

5.2.1. Inverted Generational Distance (IGD)

The inverted generational distance (Sierra and Coello, 2005) uses the true Pareto front as a reference
and measures the distance of each of its elements from the true Pareto front to the non-dominated front
obtained by an algorithm. It is defined as:

IGD =

√
Q∑
i=1

d2i

Q
(18)

where Q is the number of solutions in the true Pareto front and di is the Euclidean distance between each of
the solution and the nearest member from the set of non-dominated solutions found by the algorithm. This
metric measures both the diversity and the convergence of an obtained non-dominated solution set. The
smaller the value of this metric, the closer the obtained front is to the true Pareto front. A value of IGD equal
to zero indicates that all obtained solutions lie on the true Pareto front and have the best possible spread.
Figure 2, for example, shows that Q∗ = 5, d1 =

√
(1.5− 2.5)2 + (10− 9)2, d2 =

√
(2− 2.5)2 + (8− 9)2,

d3 =
√

(3− 3)2 + (6− 6)2, d4 =
√

(4− 5)2 + (4− 4)2, d5 =
√

(6− 5)2 + (2− 4)2 and IGD = 0.6.

Figure 2: Example illustration of the inverted generational distance (IGD) metric.
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The true Pareto front for the highly constrained multi-objective portfolio optimization problem consid-
ered in this work is unknown. In this study, we use the best known efficient frontier obtained from all
considered algorithms as the estimated Pareto front reference set.

5.2.2. The Hypervolume(HV) Metric

The hypervolume metric (Zitzler and Thiele, 1999), also known as S-metric or Lebesgue measure, is
widely recognized as a unary value which is able to measure both closeness of the solutions to the optimal
set and diversity of the obtained solutions. The hypervolume metric calculates the volume of the objective
space covered by members of an obtained Pareto set Pknown bounded by a reference point r. The reference
point r is found by constructing a vector of worst objective function values.

Let Q̂ be the set of non-dominated solutions obtained by an algorithm. For each solution p ∈ Q̂, a hypercube
vp from solution p and the reference point r are measured. The hypervolume (HV) value is calculated by
summing all hypercubes vi. The hypervolume (HV) is mathematically described as follows:

HV = volume(

|Q̂|⋃
p=1

vp)

When comparing two sets of non-dominated solutions, the set which conveys a larger HV value is considered
to be better in terms of both proximity and diversity. The main advantage of the hypervolume metric is
that it does not depend on the prior knowledge of the true Pareto front.

Figure 3 shows the graphical representation of the hypervolume metric for the minimization of two ob-
jectives: f1 and f2. In this example, the hypervolume is represented by the grey area delimited by the
non-dominated solutions (Q̂ = {p1, p2, p3, p4, p5}) and the reference point r.
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Figure 3: Graphical illustration of the hypervolume (HV) metric for a bi-objective minimization problem.

An accurate calculation of the hypervolume (HV) metric requires a normalized objective space and we use
the linear normalization technique proposed by Knowles et al. (2006) as follows:

fi =
fi − fmini

fmaxi − fmini

where fmini and fmaxi are the minimum and maximum value of the ith objective. The value of fmini and
fmaxi are set as the minimum and maximum value obtained from running all algorithms considered in this
work.

5.3. Studied Approaches

In order to evaluate the overall performance of MODE-GL, we compare it with two well-known multi-
objective evolutionary algorithms in the literature, namely NSGA-II and SPEA2. Moreover, learning-guided
solution generation mechanism (see Section-4.1.3) has been incorporated into NSGA-II and SPEA2 in order
to investigate the impact of the mechanism.

• NSGA-II: the Non-dominated Sorting Genetic Algorithm II was proposed by Deb et al. (2002). The
algorithm uses binary tournament selection based on the crowding distance. It performs crossover and
mutation by simulated binary crossover and polynomial mutation operators.

• SPEA2: the Strength Pareto Evolutionary Algorithm was proposed by Zitzler et al. (2001). The
algorithm employs fine-grained fitness assignment, density estimation techniques and archive trunca-
tion methods. Like NSGA-II, it uses binary tournament selection, simulated binary crossover and
polynomial mutation evolutionary operators.

• NSGA-II-GL: A learning mechanism is incorporated into the binary crossover scheme of NSGA-II.
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• SPEA2-GL: A learning mechanism is incorporated into the binary crossover scheme of SPEA2.

Parameters MODE-GL NSGA-II SPEA2 NSGA-II-GL SPEA2-GL
Number of Population (NP ) 100 100 100 100 100
Number of Generation 5,000N 5,000N 5,000N 5,000N 5,000N
Scaling Factor (F ) 0.3 - - - -
Crossover Probability (CR) 0.9 0.9 0.9 0.9 0.9
Crossover Distribution Index - 20 20 20 20
Mutation Probability - 1/N 1/N 1/N 1/N
Mutation Distribution Index - 20 20 20 20
Tournament Round - - 1 - 1
Amax 100 - 100 - 100
Dmax 10 - - - -

Table 1: Parameter Setting of the Algorithms.

To conduct a fair comparison, we use the same population size and archive size (if applicable) for all the
algorithms tested in this work. We have chosen to run all the algorithms with the same stopping criteria (i.e.
the same number of evaluations) to generate the Pareto front. Each algorithm also uses the same encodings
(see Section-4.1.1) and repair mechanism (see Section-4.1.5) when a newly constructed portfolio violates the
considered constraints. Before the experiments were performed, parameters were tuned for all algorithms
using DS1. Table-1 shows the best parameter settings used for each of the algorithms.

5.4. Comparisons of the algorithms

In this section, we perform a set of experiments to investigate the performance of MODE-GL for multi-
objective constrained portfolio optimization problems and compare it with four other algorithms, NSGA-II,
SPEA2, NSGA-II-GL and SPEA2-GL.

The results for IGD, HV and running time of the five algorithms performed on the first dataset (DS1) are
shown in Figure-4. These results are obtained for the constrained portfolio optimization problem with car-
dinality K = 10, floor εi = 0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot υi = 0.008,
class M = 6 with 15, 15, 15, 15, 15, 19 assets in each class (i.e., C1 ∈ {1, . . . , 15}, C2 ∈ {16, . . . , 30},
C3 = {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75}, C6 ∈ {76, . . . , 94} and Lm = 0.05 for each
m = 1, . . . , 6. Given that the lower bound of 5% as class limit specifies an upper bound of 75% of in-
vestment in each class/category, no upper limits have been specified.
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Figure 4: Performance of algorithms in terms of IGD, HV and computational time for S & P 100.

The results show that the proposed MODE-GL obtains the smallest mean values for inverted gener-
ational distance (IGD) and the largest mean value for hypervolume (HV), compared with the other four
algorithms, demonstrating the best performance among the five algorithms. NSGA-II and SPEA2 have sim-
ilar performance and both have slow convergence compared to MODE-GL. SPEA2 and SPEA2-GL are the
most computationally expensive algorithms in terms of CPU time. When the learning-guided solution gen-
eration mechanism is incorporated into NSGA-II and SPEA2, the performance of these algorithms improves
significantly. Therefore, we conclude that the learning-guided solution generation mechanism promotes the
effective convergence of the search.
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Figure 5: S & P 100: Comparison of efficient frontiers of each algorithm together with the best known optimal front obtained
from all tested algorithms.
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Figure 6: S & P 100: Transaction map for portfolio risk.

As noted, the optimal efficient frontier of the constrained portfolio optimization is not known for the
tested datasets. The best estimated efficient frontier is thus obtained by collecting all the non-dominated
portfolios produced from all the tested algorithms. For illustrative purpose, the obtained efficient frontiers
of the tested algorithms for DS1 compared with the best known estimated efficient frontier are provided in
Figure-5. The horizontal axis describes the loss that might be incurred with a probability α = 0.01. Figure-
5 shows that MODE-GL, NSGA-II-GL and SPEA2-GL provide a very good approximation of the efficient
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frontier. The performance of both NSGA-II and SPEA2 improves significantly when the learning-guided
solution generation scheme is incorporated.

Figure-6 shows how the composition of the securities varies over the range of portfolio risk for the
dataset DS1. The results are generated from efficient solutions obtained from a single run of each algorithm
and it shows that allocation to all asset classes is present and the preassigned constraint is also satisfied.
In each case, the figure depicts how the obtained portfolio is allocated for an obtained level of risk. Each
colour represents one of the assets selected in the obtained pareto set. A vertical strip through the bands
(without white space) indicates the obtained portfolio allocations at that risk level. A vertical strip through
the bands (with white space) indicates that no feasible solution can be found for a specific risk level. This
discontinuity can also be seen in the obtained efficient frontier as depicted in Figure 5 of DS1 dataset. When
the learning mechanism is adopted, the obtained results indicate that the composition of the assets changes
smoothly from one risk level to another.

The results for IGD, HV and running time of the five algorithms performed on the second dataset
(DS2) are shown in Figure-7. These results are obtained for the constrained portfolio optimization problem
with cardinality K = 20, floor εi = 0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot υi = 0.008,
class M = 19 with 25 assets in each class and Lm = 0.05 for each m = 1, . . . , 19. Given that the lower
bound of 5% as class limit specifies an upper bound of 10% of investment in each class/category, no upper
limits have been specified.

Figure-8 provides the obtained efficient frontiers of the tested algorithms for DS2 compared with the
best known estimated efficient frontier extracted from all considered algorithms. The horizontal axis de-
scribes the loss that might be incurred with a probability α = 0.05. The results for DS2 are a little different
but show the effectiveness of the incorporation of the learning mechanism in promoting solution quality.
MODE-GL, NSGA-II-GL and SPEA2-GL all have similar quality on average. In terms of computational
time, SPEA2-GL is the most computationally expensive algorithm in terms of CPU time whereas MODE-GL
is the fastest.
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Figure 7: Performance of algorithms in terms of IGD, HV and computational time for S & P 500.
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Figure 8: S & P 500: Comparison of efficient frontiers of each algorithm together with the best known optimal front from all
tested algorithms.

We compare the IGD and HV values of the tested algorithms by using Student’s t-test (Walpole et al.,
1998). The statistical results obtained by a two-tailed t-test with 58 degrees of freedom at a 0.05 level
of significance are given in Table-2 and Table-3. The results for Algorithm-1↔ Algorithm-2 are shown as
”+” , ”−”, or ”∼” when Algorithm-1 is significantly better than, significantly worse than, or statistically
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equivalent to Algorithm-2, respectively. The statistical results reconfirm the effectiveness of the proposed
algorithm MODE-GL both in terms of solution quality and computational time. Moreover, the results also
show that the performance of the NSGA-II and SPEA2 improves significantly when the learning-guided
solution generations scheme is incorporated. Figure-9 plots the IGD metric over generation on the S & P
100 dataset. The results confirm that all the algorithms considered are able to converge.

Algorithm1 ↔ Algorithm2 IGD HV
MODE-GL ↔ NSGA-II + +
MODE-GL ↔ NSGA-II-GL + +
MODE-GL↔ SPEA2 + +
MODE-GL ↔ SPEA2-GL + +
NSGA-II↔ NSGA-II-GL − −
NSGA-II ↔ SPEA2 ∼ ∼
NSGA-II↔ SPEA2-GL − −
NSGA-II-GL ↔ SPEA2 + +
NSGA-II-GL↔ SPEA2-GL ∼ ∼
SPEA2 ↔ SPEA2-GL − −

Table 2: Student’s t-Test Results of Different Algorithms on S & P100 dataset.

Algorithm1 ↔ Algorithm2 IGD HV
MODE-GL↔ NSGA-II + +
MODE-GL ↔ NSGA-II-GL ∼ ∼
MODE-GL ↔ SPEA2 + +
MODE-GL↔ SPEA2-GL ∼ ∼
NSGA-II ↔ NSGA-II-GL − −
NSGA-II ↔ SPEA2 ∼ ∼
NSGA-II ↔ SPEA2-GL − −
NSGA-II-GL ↔ SPEA2 + +
NSGA-II-GL ↔ SPEA2-GL ∼ ∼
SPEA2 ↔ SPEA2-GL − −

Table 3: Student’s t-Test Results of Different Algorithms on S & P 500 dataset.
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Figure 9: Comparison of convergence of algorithms for S & P 100.

6. Conclusions

In this work, we have investigated the portfolio optimization problem with six practical constraints
widely used in real life trading scenarios. This work focuses on downside risk as an alternative risk measure
in financial markets and adopts a realistic framework for portfolio optimization that moves away from most
widely considered mean-variance approach. Value-at-Risk (VaR) is used as a risk measure and a historical
simulation approach is adopted to calculate VaR. This technique is nonparametric and does not require any
distributional assumptions.

The portfolio optimization in the VaR context involves additional complexities since VaR is non-linear,
non-convex and non-differentiable, and typically exhibits multiple local extrema and discontinuities espe-
cially when real-world trading constraints are incorporated (Gaivoronski and Pflug, 2005). A new efficient
learning-guided hybrid multi-objective evolutionary algorithm (MODE-GL) has been developed to solve
mean-VaR portfolio optimization problems with practical trading constraints. The MODE-GL approach ex-
tracts the important features of non-dominated solutions throughout the evolution. Incorporating a learning
mechanism and prior problem-specific knowledge exploitation in the evolution process allows the approach
to generate promising offspring solutions. The new MODE-GL approach introduced here thus aims to pro-
mote convergence by concentrating on the promising regions of the search space. Two extended variants of
differential evolution mutation schemes promote exploration of the search in order to explore the solution
space to maximize the probability of obtaining the global optimum.

We have demonstrated that maintaining a secondary population of solution sets in combination with
a learning-guided candidate solution generation scheme contributes to better performance over existing
state-of-the-art multi-objective evolutionary algorithms, NSGAII and SPEA2. The experimental results us-
ing real datasets show that the quality of the generated Pareto set approximations significantly improved for
MODE-GL while the efficiency is mainly because the proposed algorithm is computationally cheap as it only
uses a single update at each generation. Moreover, the results also show that the performance of the NSGA-
II and SPEA2 improves significantly when the learning-guided solution generation scheme is incorporated.
In this work, we consider up to six practical trading constraints. However, it does not reflect all factors that
may occur in some market trading scenarios. In some financial markets, buying and selling assets may entail
brokerage fees and taxes imposed on investors. Transaction cost is one of the additional factors that may be
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a concern for portfolio managers. Therefore, it is important to extend the portfolio optimization model with
transaction cost constraint as a direction for future work. The MODE-GL approach shows great promise in
tackling an important class of portfolio investment problems using realistic constraints in an efficient way
and thus has significant potential for adoption in practice.
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