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Abstract: This paper presents a hybrid multi-objective model that combines Integer
Programming (IP) and Variable Neighbourhood Search (VNS) to deal with highly constrained
nurse rostering problems in modern hospital environments. An IP is first used to solve the
subproblem which includes the full set of hard constraints and a subset of soft constrains. A basic
VNS then follows as a postprocessing procedure to further improve the IP’s resulting solutions,
and the satisfaction of the excluded constraints from the preceding IP model is the VNS’s major
concern in its search. Very promising results are reported compared with a commercial genetic
algorithm and a hybrid VNS approach on real instances arising in a Dutch hospital. The
comparison results demonstrate that our hybrid approach does combine advantages of both the IP
and the VNS to beat pure metaheuristics in solving this type of problems. We also believe that the
proposed approach can be applied to other resource allocation problems with a large number of
constraints.
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1 Introduction

Employee scheduling has been extensively studied by operations researchers and computer
scientists for more than 40 years (see survey papers in [8, 11, 28]). It can be thought of as the
problem of assigning employees to shifts or duties over a scheduling period so that certain
constraints (organizational and personal) are satisfied. In the field of hospital nurse rostering, this
is particularly challenging due to the presence of different nurse requirements on different days
and shifts. Unlike most other organizations, hospitals and medical institutes work around the
clock, and thus irregular shift work has an effect on the nurses’ well being and job satisfaction
[36]. The development of robust and powerful nurse rostering systems that can handle a wide
range of requirements and constraints would provide significant benefits for hospital
administrators and staff.

Nurse rostering is a type of resource allocation problem, in which the workload needs to be
assigned to nurses periodically, taking into account a number of constraints and requirements.
Hard constraints are those that must be satisfied in order to have a feasible schedule. They are
often generated by physical resource restrictions and legislation. When requirements are desirable
but not obligatory they are referred to as soft constraints. Such constraints are often used to
evaluate the quality of feasible schedules. In nurse rostering, there are a large number of
variations on legal regulations and individual preferences, depending on different countries and
institutions. Typical issues concern coverage demand, day-off requirements, weekend-off
requirements, minimum and maximum workforce, etc [18].
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Most nurse rostering problems in the real world are NP-hard [30] and were regarded as being
more complex than the travelling salesman problem by [37]. Over the years, a wide variety of
methodologies and models have been developed to deal with them. The survey papers [15, 21,
39] give an overview of the area. The available techniques can roughly be classified into two
main categories: exact algorithms and (meta)heuristics. Mathematical programming is the
traditional exact method [6, 7, 9, 41], which guarantees to find an optimal solution and to prove
its optimality for every instance of a problem. However, computational difficulties exist with this
approach due to the enormous size of the search spaces that are generated. To reduce complexity,
some researchers have restricted the problem dimensions and developed simplified models.
However, this leads to solutions that are not applicable to real hospital situations.

The above observations have led to attempts to solve the real problems by investigating
heuristics. In this case, the guarantee of finding optimal solutions is sacrificed for the sake of
getting good solutions within a reasonable amount of time. Early heuristic approaches [10, 40]
were investigated with some success and metaheuristics have attracted significant attention since
the 1990’s. Genetic algorithms form an important class of metaheuristics that have been
extensively applied in nurse rostering [2, 3, 26, 31]. A number of attempts have also been made
by using other metaheuristics, such as simulated annealing [13], tabu search [14], variable
neighbourhood search [17, 18], memetic algorithms [16] and estimation of distribution algorithms
[4].

However, the major drawback of these metaheuristics is they can not provably produce optimal
solutions nor can they provably reduce the search space. Also, they usually do not have well
defined stopping criteria. Moreover, as most nurse rostering problems are highly constrained
problems which mean the feasible regions of their solution space are disconnected (i.e. separated
by the infeasible area), metaheuristics generally have difficulty in dealing with the situation.
Considering the advantages and disadvantages for both categories of approaches, this research is
therefore looking at new attempts for an appropriate integration. The long-term aim of this
research is to investigate efficient ways of decomposing real world personnel scheduling
problems into tractable subproblems, without losing much optimality.

In the field of nurse rostering, some decomposition techniques have been investigated over recent
years. Aickelin and Dowsland [3] developed a genetic algorithm with an indirect representation.
Different heuristic decoders (i.e. decomposers) were employed to construct the schedule, taking
care of coverage and nurses’ preferences from different aspects. Ikegami and Niwa [3] grouped
the constraints into shift constraints and nurse constraints, based on which the problems were
decomposed into subproblems and solved repeatedly by tabu search. Brucker et al [12]
implemented decomposition by cyclically assigning predefined blocks of shifts to groups of
nurses. The rest of the shifts were then assigned by hand and the resulting schedule was improved
by local search.

In this paper, we present a new decomposition technique by combining Integer Programming (IP)
and Variable Neighbourhood Search (VNS) to deal with constraints and requirements. More
details about these techniques can be seen in [19]. The IP is first used to solve a subproblem
including all hard constraints and a subset of soft constraints. When determining if a soft
constraint should be included in the subset, we give more priority to the constraints that have the
following characteristics: low complexity (i.e. the number of variables and constraints it may add
in the IP model), high importance (i.e. the degree to which the constraint is considered to be
desirable by the hospital), or a trade-off between complexity and importance. The VNS is then
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used as a postprocessing procedure to make the improvement, and the satisfaction of the
constraints that are not included in the subset would be the major concern in designing the VNS’s
neighbourhood structures. Note that in the first IP phase, it is not necessary to solve the
subproblem to optimality because, under most circumstances, this process would still take an
extremely long time to finish. We can obtain an intermediate solution by setting up a stopping
condition (e.g. maximum runtime or acceptable solution quality) to the IP.

The rest of the paper is organized as follows. We first describe the nurse rostering problem to be
addressed and formulate its full multi-objective IP model by taking into account all the
constraints. We then formulate an alternative heuristic model and propose a basic VNS approach
to deal with it. Later, we carry out the experiments on twelve real instances arising in a Dutch
hospital and demonstrate how the proposed IP and the VNS are not capable of solving the
problem in their own right, and how the suggested combination can well achieve the
optimization. Finally, we give concluding remarks and possible future research directions.

2 Problem Description

The nurse rostering problem we are tackling is provided by ORTEC, an international consultancy
company specializing in planning, optimization and decision support solutions. The problem is
based on the situation of intensive care units in a Dutch hospital, which involves assigning four
types of shifts (i.e. shifts of early, day, late and night) within a scheduling period of 5 weeks to 16
nurses of different working contracts in a ward. The problem has the following key
characteristics:

1. Dutch national legislation and the collective labour agreements in force in hospitals must
be complied with. They are translated to a shorter period to be meaningful for a situation
without (much) history;

2. The nurses’ requests are very important and should be met as much as possible;
3. It is not necessary to consider qualifications as all nurses are highly qualified. Nurses still

in training are not considered in the original planning and are added by hand afterwards.

In brief, the problem has the following hard constraints which must be met under any
circumstances, otherwise the schedule is considered to be infeasible and unacceptable:

 HC1: Daily coverage requirement of each shift type
 HC2: For each day, a nurse may not start more than one shift
 HC3: Maximum number of total working days during the scheduling period
 HC4: Maximum number of on-duty weekends during the scheduling period
 HC5: Maximum number of night shifts during the scheduling period
 HC6: No stand-alone night shift (i.e. no night shift between two non-night shifts)
 HC7: Minimum two free days after a series of night shifts
 HC8: Maximum number of consecutive night shifts
 HC9: Maximum number of consecutive working days
 HC10: No late shifts for one particular nurse

In addition, the problem has the following soft constraints which should be satisfied as much as
possible although in real world circumstances it is usually unavoidable to violate some of them:

 SC1: Complete weekends (i.e. either no shifts or two shifts in weekends)
 SC2: Avoiding any stand-alone shift (i.e. a single day between two days off)
 SC3: Minimum number of free days after a series of shifts
 SC4: Maximum / minimum number of consecutive assignments of early and late shifts
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 SC5: Maximum / minimum number of weekly working days
 SC6: Maximum number of consecutive working days for part-time nurses
 SC7: Avoiding certain shift type successions (e.g. a day shift followed by an early one, etc)

3 A Multi-objective Mathematical Model

To specify the above problem, slack and surplus variables can be introduced into the soft
constraints, and the objectives are to minimize the values of individual variables. We formulate
the entire problem associated with a 5-week scheduling period as the following IP model, which
can be relatively altered to adapt to other problems with different constraints.

Parameters:
I = Set of nurses available;

 }3,2,1{| tI t Subset of nurses that work 20, 32, 36 hours per week respectively, I = I1 + I2 + I3;

J = Set of indices of the last day of each week within the scheduling period = {7, 14, 21, 28, 35};
K = Set of shift types = {1(early), 2(day), 3(late), 4(night)};
K = Set of undesirable shift type successions = {(2,1), (3,1), (3,2), (1,4)};

djk = Coverage requirement of shift type k on day j, }7,...,1{ Jj ;

mi = Maximum number of working days for nurse i within the scheduling period;
n1 = Maximum number of consecutive night shifts within the scheduling period;
n2 = Maximum number of consecutive working days within the scheduling period;
ck = Desirable upper bound of consecutive assignments of shift type k;
gt = Desirable upper bound of weekly working days for the t-th subset of nurses;
ht = Desirable lower bound of weekly working days for the t-th subset of nurses.

Decision variable xijk is 1 if nurse i is assigned shift type k for day j, 0 otherwise, defined as:

KkJjIixijk  },7,...,1{,,1or0 (1)

Slack/surplus variables are the positive/negative deviations from individual goals, defined as:

JjIiss ijij  ,,0,0 21 (2)

}17,...,2{,,0,0 43  JjIiss ijij (3)

}3,1{},37,...,1{,,05  kJrIisirk (4)

}3,1{},17,...,2{,,06  kJjIisijk (5)

},...,1{,},3,2,1{,0,0 87 JwIitss ttiwtiw  (6)

}37,...,1{,,0 1

9  JrIisir (7)

KkkkJjIis kij
 ),(},17,...,1{,,0 21

10 (8)

Target function:

Min TTTTTTTT xfxfxfxfxfxfxfxF ])(,)(,)(,)(,)(,)(,)([)( 7654321 , (9)

where the vector functions },7,...,1{),( ixf i are defined as

JjIissxf T

ijij  ,,],[)( 21

1 (10)

}17,...,2{,,],[)( 43

2  JjIissxf T

ijij (11)

}3,1{},37,...,1{,,][)( 5

3  kJrIisxf T

irk (12)
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}3,1{},17,...,2{,,][)( 6

4  kJjIisxf T

ijk (13)

},...,1{,},3,2,1{,],[)( 87

5 JwIitssxf t

T

tiwtiw  (14)

}37,...,1{,,][)( 1

9

6  JrIisxf T

ir (15)

KkkkJjIisxf T

kij
  ),(},17,...,1{,,][)( 21

10

7 (16)

Subject to:

HC1 KkJjdx
Ii

jkijk 


},7,...,1{, (17)

HC2 }7,...,1{,,1



Kk

ijk JjIix (18)

HC3 Iimx
J

j Kk

iijk 
 

,
7

1

(19)

HC4 
 


Jj Kk

ijk Iix ,3 (20)

HC5 Iix
J

j

ij 


,3
7

1

4 (21)

HC6 }17,...,2{,,04)1(44)1(   JjIixxx jiijji (22)

HC7 is equivalent to the following three sub-constraints which rule out the sequences of ‘N01’,
‘N10’ and ‘N11’ respectively, where ‘N’ denotes a night shift, ‘0’ a off-duty day and ‘1’ a on-
duty day:

}17,...,2{,,1
3

1
)1(

3

1
4)1(  





 JjIixxx

k
kji

k
ijkji (23)

}17,...,2{,,1
3

1
)1(

3

1
4)1(  





 JjIixxx

k
kji

k
ijkji (24)

}17,...,2{,,2
3

1
)1(

3

1
4)1(  





 JjIixxx

k
kji

k
ijkji (25)

HC8 





1

1
}7,...,1{,,14

nr

rj

ij nJrIinx (26)

HC9 


 


2

}7,...,1{,, 22

nr

rj Kk

ijk nJrIinx (27)

HC10 }7,...,1{,03)(16 Jjx j  (28)

SC1 


 
Kk

ijijijkkji JjIissxx ,,0][ 21

)1( (29)

SC2 


 
Kk

ijkjiijkkji JjIisxxx }17,...,2{,,0][ 3

)1()1( (30)

SC3 


 
Kk

ijkjiijkkji JjIisxxx }17,...,2{,,1][ 4

)1()1( (31)

SC4 }3,1{,}37,...,1{,,
3

5 




kJrIicsx
r

rj
kirkijk (32)

}3,1{},17,...,2{,,06

)1()1(   kJjIisxxx ijkkjiijkkji (33)
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SC5 },...,1{,},3,2,1{,7
7

67

JwIitgsx tttiw

w

wj Kk

ijk  
 

(34)

},...,1{,},3,2,1{,8
7

67

JwIithsx tttiw

w

wj Kk

ijk  
 

(35)

SC6 


 


3

1

9 }37,...,1{,,3
r

rj
ir

Kk
ijk JrIisx (36)

SC7 KkkkJjIisxx kijkjiijk
  ),(},17,...,1{,,2 21

10

)1( 21
(37)

The number of objectives in the above model could be reduced by summing up the slack/surplus
variables that are associated with soft constraints of the same type and also have the same
domains. Hence, the target function F(x) in (9) can be replaced by G(x) which only consists of the
following seven sub-functions (i.e. objectives)

)](),(),(),(),(),(),(),([)( 87654321 xgxgxgxgxgxgxgxgxG  , (38)

where

)()( 21

1 ijij

Ii Jj

ssxg 
 

, (39)









Ii

J

j
ijsxg

1||7

2

3

2 )( , (40)









Ii

J

j
ijsxg

1||7

2

4

3 )( , (41)

 




 


Ii

J

r k
ijksxg

3||7

1 }3,1{

5

4 )( , (42)

  




 


Ii

J

j k
kijsxg

1||7

2 }3,1{

6
5 )( , (43)

)()( 87
3

1

||

1
6 tiwtiw

t Ii

J

w

ssxg
t


  

, (44)









1

3||7

1

9

7 )(
Ii

J

r

irsxg , (45)






 


Ii

J

j Kk
kijsxg

1||7

1

10

8 )( . (46)

This is a multi-objective problem, and its goal is to find or to approximate the set of Pareto-
optimal solutions. The traditional approach for this type of problem is the weighted-sum approach
which combines the multiple objectives into one scalar objective [20, 27]. Over the recent years,
researchers have proposed a number of evolutionary multi-objective optimization approaches,
such as the neighbourhood constraint GA in [34], the Pareto envelope based selection algorithms
in [23], the strength Pareto-EA in [42], the non-dominant sorting GA in [25] and the differential
evolution based EMO in [5]. A wider range of other evolutionary approaches can be found in the
survey paper [22].

4 A Multi-objective Heuristic Model and Variable Neighbourhood Search (VNS)
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This section presents an alternative heuristic model and a VNS metaheuristic to deal with the
problem.

4.1 Model Formulation

Compared with the IP model in Section 3, the multi-objective heuristic model satisfies the hard
constraints (i.e. HC1 – HC10) by heuristic search method and formulates all the soft constraints
(i.e. SC1 – SC7) as non-linear objective functions which measure derivations from the most
desirable goals defined by these soft constraints. Hence, the alternative heuristic model has the
advantage of including fewer constraints.

More specifically, the above problem can be modelled as

Min )](),(),(),(),(),(),(),([)( 87654321 xgxgxgxgxgxgxgxgxG  . (47)

Subject to constraints (1), (17) – (28) in Section 3, where


  

 
Ii Jj Kk

ijkkji xxxg ][)( )1(1 (48)

 




 












Ii

J

j Kk

kjiijkkji xxxxg
1||7

2

)1()1(2 ][,0max)( (49)

 




 












Ii

J

j Kk

kjiijkkji xxxxg
1||7

2

)1()1(3 1][,0max)( (50)

  




 



 








Ii

J

r k

r

rj

kijk cxxg
3||7

1 }3,1{

3

4 ,0max)( (51)

  




 
 

Ii

J

j k
kjiijkkji xxxxg

1||7

2 }3,1{
)1()1(5 ,0max)( (52)

   
      






























3

1

||

1

7

67

7

67

6 ,0max,0max)(
t Ii

J

w

w

wj Kk

ijkt

w

wj Kk

tijk

t

xhgxxg (53)

 








  








1

3||7

1

3

7 3,0max)(
Ii

J

r

r

rj Kk

ijkxxg (54)

 




 
 

Ii

J

j Kk
kjiijk xxxg

1||7

1
)1(8 2,0max)(

2
(55)

4.2 The VNS Approach

As the major purpose of this paper is to investigate the availability of combining exact algorithms
and metaheuristics in handling a variety of constraints and requirements from nurse rostering, we
believe that the metaheuristics applied should be as simple as possible, i.e. without any additional
local search or combination with the other (meta)heuristics. Also, to effectively achieve the task
of decomposition, we design the metaheuristics so that they can focus on the search from
particular aspects of the problem, i.e. the satisfaction of the constraints that have not been taken
into account by the exact algorithm. The motivation for investigating a VNS approach is based on
these two considerations.
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VNS is a relatively recent metaheuristic based on the simple idea of changing neighbourhood
within a local search to identify better local optima [35]. It has been applied to a wide variety of
NP-hard problems such as the travelling salesman problem, the resource-allocation problem, the
clustering problem [32], the linear ordering problem [29], vehicle routing [24], nurse rostering
[18] and university course timetabling [1]. An introduction can be seen in [19].

VNS is able to drive the search towards certain desirable objectives by defining the appropriate
neighbourhood structures associated with these objectives, although each resulting solution still
needs to be evaluated by all the objectives in target function (47). As the VNS here is mainly used
to make refinement on the IP’s resulting solution which has taken most constraints into account,
the VNS’s neighbourhood structures should not be too complicated. In this paper we apply the
neighbourhoods of swapping groups of consecutive shifts which are inspired by human
scheduling processes of re-allocating sections of schedules. All possible swaps have been
considered in these neighbourhoods, that is, shifts in a period from one day to the whole
scheduling period can be switched between any set of two nurses in the schedule. To guarantee
the satisfaction of the hard constraint HC1 of daily shift demands, swaps will only be allowed
vertically. If any of the swaps results in an infeasible solution, this swap will be deemed as
invalid.

Figure 1 illustrates the moves that are allowed in the proposed neighbourhoods. For clarity, a
small part of the scheduling period (i.e. a 4-day period) is shown and each day a nurse can work
no more than one of the four shift types: Early (E), Day (D), Late (L) and Night (N). An arrow
denotes a possible move in the neighbourhood.

Mon Tue Wed Thu

Nurse 1 D L E D

Nurse 2 E E L E

Nurse 3 L N N

Neighbourhood Nk, k = 1

Mon Tue Wed Thu

Nurse 1 D L E D

Nurse 2 E E L E

Nurse 3 L N N

Neighbourhood Nk, k = 2

Mon Tue Wed Thu

Nurse 1 D L E D

Nurse 2 E E L E

Nurse 3 L N N

Neighbourhood Nk, k = 3

Mon Tue Wed Thu

Nurse 1 D L E D

Nurse 2 E E L E

Nurse 3 L N N

Neighbourhood Nk, k = 4



9

Figure 1. Possible moves in neighbourhoods Nk between the schedules of nurse 1 and nurse 3

Given an initial solution, our VNS was implemented in a greediest or steepest decent manner. It
starts to search from its first neighbourhood (i.e. single swap) between the schedules of any pair
of two nurses. If the best solution contained in the current neighbourhood is no better than the
previous best, the algorithm goes to its next neighbourhood and searches there. Otherwise, the
best solution is updated and the algorithm comes back to search from the first neighbourhood of
this best solution. The algorithm stops if no improvement has been achieved after finishing the
search in its last neighbourhood. Figure 2 gives a schematic overview of the basic VNS.

____________________________________________________________________
The VNS ( )
{

Define a set of neighbourhood structures Nk, k = 1, …, kmax;
Create an initial solution x;
Set k ← 1;
While k ≤ kmax {

Explore the neighbourhood Nk of x;
Find the best solution x’ in Nk;
If x’ < x {

Set x ← x’;
Set k ← 1;

}
Else

Set k ← k + 1;
}
Return the best solution found;

}

Figure 2. Pseudo-code of the basic VNS

Note that the proposed neighbourhoods may be applied in different orders, which would affect the
search results significantly. According to experiments regarding the neighbourhood order in nurse
rostering [18], the best way is to develop algorithms that explore neighbourhoods with increasing
size. Hence, our approach starts over from the first (finest) neighbourhood when the current
neighbourhood contains a better solution.

Defined by its neighbourhood structures, the proposed basic VNS has a time complexity of O(m2

× n2), where m is the number of nurses and n is the length of the scheduling period. The benefit of
applying this approach is that the number of neighbouring solutions is not particularly large, and
thus an exhaustive search in the proposed neighbourhoods for solution improvement is not a very
time-consuming process.

5 Computational Results

Whilst the hard constraints of our problem are requirements that must be met under any
circumstance, the objectives for both of our IP model and heuristic model are to satisfy the soft
constraints as much as possible. Regarding the degree of desirableness for the soft constraints
listed in Section 2, we have the following priority ordering: [SC1, SC2]  SC3  [SC4, SC5,
SC6]  [SC7], where ‘ ’ denotes “be more preferred than”. This ordering is determined in close
consultation with the hospital.



10

Accordingly, regarding the priority ordering of the objective functions, in the proposed IP model
we have )](),([ 21 xgxg  )]([ 3 xg  )](),(),(),([ 7654 xgxgxgxg  )(8 xg , and in the heuristic

model we have )](),([ 21 xgxg  )]([ 3 xg  )](),(),(),([ 7654 xgxgxgxg  )(8 xg . Hence, we can

solve a single-objective problem for each multi-objective model, in which the constraint set
remains unchanged and the objective functions (37) and (46) change to

)()(
8

1

xgxG i
i

i


  (56)

and

)()(
8

1

xgwxG i
i

i


 , (57)

respectively. Parameters i and iw are the weights of objectives which are determined by taking

their priority ordering into account.

In fact, problems exist with the above weighted sum functions if the Pareto surfaces are non-
convex. Moreover, a proper determination of weight distributions would be difficult. However, as
the results of previous approaches on this problem are all obtained by using the same type of
weighted-sum objective functions, in this paper we continue to use them for benchmark
comparisons.

Data Hybrid GA (after 1 hr) Hybrid VNS (after 1 hr)
JAN 775 735
FEB 1791 1866
MAR 2030 2010
APR 612 457
MAY 2296 2161
JUN 9466 9291
JUL 781 481
AUG 4850 4880
SEP 615 647
OCT 736 665
NOV 2126 2030
DEC 625 520
AVE. 2225 2145

Table 1. Results of the hybrid GA and the hybrid VNS after 1-hour runtime

Table 1 shows the results of two other approaches on twelve real-world data instances of the
problem. The first approach is a hybrid GA which has been integrated into ORTEC’s HarmonyTM

system [38]. In this approach, a local search is carried out after each generation of the GA to
improve the individual solutions to their local optima. The moves taken in the local search
include moving a shift from one nurse to another and swapping two single shifts assigned to two
nurses.

The second approach is a hybrid VNS with heuristic ordering [17], in which the same types of
move as in the above hybrid GA are used in its VNS step. Starting from an initial schedule,
created by an adaptive ordering technique, this approach sequentially runs the steps of VNS,
feasibility correction, schedule disruption and schedule reconstruction in a loop until a stopping
condition is reached. Computational results demonstrate that the search can be extended and the
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solution quality can be significantly improved by the careful combination and repeated use of
heuristic ordering, VNS and backtracking.

Both of the above approaches are coded in Delphi 5 and implemented on a Pentium 1.7 GHz PC
under Window 2000 operating system. In general, the hybrid VNS outperforms the hybrid GA.

For our approach, the IP part is solved by the latest ILOG CPLEX 10.0, a general purpose
mathematical programming solver (http://www.ilog.com accessed 30 July 2006), on a Pentium
2.0 GHz PC under Windows XP. The VNS part is coded in Java 2 and run on the same machine.
As the hybrid GA and the hybrids VNS in comparisons all used the same weight distribution of
[1000, 1000, 100, 10, 10, 10, 5] for soft constraints SC1-SC7 in their target functions, we set i

and iw as [1000, 1000, 1000, 100, 10, 10, 10, 5] in Equation (56) and (57) for consistency.

To demonstrate the availability of our proposed decomposition technique in handling constraints,
two groups of experiments are carried out on each of the twelve instances. We first consider the
situation without decomposition, under which the entire problem would be solved by including all
the constraints in the IP model or by inputting a randomly generated initial solution to the VNS.
Table 2 lists the problem size (i.e. the number of variables and the number of constraints) of each
full IP model and the results of CPLEX after 2 hours’ runtime. For information, Table 2 also
gives the lower bound provided by the linear programming relaxation to the problem (denoted as
“Relaxed IP”). This keeps the objective function and all the constraints but relaxes the integrality
restrictions. These lower bound values are mostly found within one minute. The last column of
Table 2 presents the results of our basic VNS giving 1 hour’s runtime. These results are obtained
by restarting the VNS many times from randomly generated initial solutions, after each run of the
VNS terminates in about 30 seconds.

Problem size Relaxed IP IP’s result Our VNS’s result
Data

Constraint Variable Result Time (sec) After 1 hr After 2 hrs After 1 hr
JAN 9206 7915 140 75 3381 3241 None
FEB 8437 7316 440 16 None None None
MAR 9059 7830 440 19 7280 5240 None
APR 8787 7616 40 17 8989 1518 None
MAY 9218 7935 240 19 7658 6618 None
JUN 8836 7641 7510 19 10394 10394 None
JUL 9090 7831 40 74 11983 6643 None
AUG 9298 8019 340 6 9332 7922 None
SEP 8723 7564 0 17 6250 1070 None
OCT 9154 7883 140 75 3345 4205 None
NOV 9059 7830 440 18 4647 4647 None
DEC 9026 7805 0 18 3767 947 None
AVE. 8991 7765 814 31 7002 4767 None

Table 2. Results of the IP and the VNS without decomposition

The next stage carries out the experiments with decomposition. The whole set of soft constraints
(i.e. sets SC1-SC7) is partitioned into subsets which will be satisfied by different approaches (i.e.
the IP and the basic VNS). As constraint set SC7 would cause the most computational complexity
(by introducing about 2000 variables and 2000 constraints for each data instance) and as it is
regarded as less important by the hospital, we exclude it from the IP model and leave it to be
satisfied by the next VNS. Regarding the maximum runtime allowed for the proposed approach,

http://www.ilog.com/
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as the PC for our current experiments is about 10% faster than the ones for the hybrid GA and the
hybrid VNS, we set it be 50 minutes, instead of 1 hour, per data instance for a fair comparison: 49
minutes for the IP and 1 minute for the basic VNS. Table 3 lists the sizes of the reduced IP model,
the intermediate solutions produced by the IP and the final solutions improved by our VNS. Note
that the method employed for constraint partition in this paper is for illustration purpose only, and
we can certainly make other kinds of partition among the constraints.

Reduced IP’s size Reduced IP’s result Our VNS’s results
Data

Constraint Variable After 49 mins Δ %* After 1 min Δ %
JAN 7286 5995 631 14.1 460 37.4
FEB 6709 5588 1822 -1.7 1526 14.8
MAR 7203 5974 3890 -94 1713 14.8
APR 6931 5760 1268 -177 391 14.4
MAY 7298 6067 5348 -147 2090 3.3
JUN 7044 5849 9126 1.8 8826 5.0
JUL 7170 5911 2498 -419 425 11.6
AUG 7362 6067 4582 5.5 3488 28.1
SEP 6867 5708 680 -11.0 330 46.3
OCT 7234 5963 605 9.0 445 33.1
NOV 7203 5974 2605 -28.0 1613 20.5
DEC 7106 5859 1037 -99.0 405 22.1
AVE. 7118 5893 2841 -33.0 1809 15.2

Table 3. Results of the proposed decomposition approach
*: ‘Δ %’ denotes the relative percentage deviation over the previous best solution

According to the results in the above tables, we can see the full IP model for the entire problem
cannot produce good solutions if there is a realistic runtime restriction. In addition, the basic VNS
alone is not applicable at all as it can produce no feasible solutions for all data instances. The
VNS’s results are unsurprising due to the highly constrained nature of the problem which makes a
single heuristic (i.e. without the use of strong domain knowledge and/or the hybridization with
other heuristic searches) extremely difficult to find and maintain its feasible solution. However,
the preliminary results by the combination of IP and VNS are very promising. Compared with the
commercial hybrid GA in [38] and the complex hybrid VNS in [17], our proposed hybrid
approach outperforms them on all instances and significantly improves their best solutions by
15.2% on average.

The behaviours of each run of the decomposed IP and the basic VNS are as expected: while the
IP is able to find several integer solutions via big jumps in the solution space within an acceptable
time, the VNS however is particularly good at achieving local refinement quickly within the
defined neighbourhoods. Figure 3 and Figure 4 respectively depict the improvement of the
solution cost versus the runtime (in seconds) for the IP and the VNS on the APR instance, in
which the IP finds 12 integer solutions within 45 minutes, and the VNS makes 53 improvements
within half a minute from the best solution of the IP. Although the actual values may differ
among various instances, the characteristic shapes of the curves are similar.
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Figure 3: Sample run of the decomposed IP (for instance APR)
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Figure 4: Sample run of the basic VNS (for instance APR)

6 Conclusions

This paper proposes a hybrid model within a multi-objective framework for hospital nurse
rostering, in which IP and VNS are combined for global optimization. The IP is used to solve an
easy handled subproblem by only including the constraints that would cause less computing
complexity or be regarded as more important. A VNS with the neighbourhood of swapping
blocks of shifts is then used to make the improvement on the LP’s resulting solution, mainly from
the aspects of satisfying the constraints that are not considered in the preceding IP model. Hence,
the proposed hybrid model is able to handle all the requirements and constraints of nurse rostering
in today’s complex hospital environments.

Although the work in this paper is presented in terms of nurse rostering, it is suggested that the
ways of decomposing the whole set of problem constraints into subsets and solving them
accordingly by different approaches could be applied to a wider ranger of other problems (i.e.
resource allocation problems) defined by a large number of constraints. It is also hoped that this
research would shed light on the significant issue of integrating the two broad methodologies of
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exact algorithms and metaheuristics, and may therefore be of interest to practitioners and
researchers in areas of mathematical programming and heuristic design.

Our future work will investigate other efficient ways of combining IP and local search in solving
this type of highly-constrained problems. In this paper, although we have formulated a full IP
model for the entire problem (in Section 3), we actually solve a partial problem due to the
computational difficulty arising in handling all the constraints at one time. The interesting thing
is, as shown in Table 2, that the relaxed entire IP problem (i.e. the problem without the integrality
restrictions) are all solved by CPLEX to optimality at an astonishingly fast speed. Our next work
is therefore to use the information gained from these relaxed fractional solutions to guide the local
search, rather than simply starting the local search from the integer solutions of a partial problem.
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