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Abstract

In the past decade, considerable advances have been made in the field of
computational intelligence and operations research. However, the major-
ity of these optimisation approaches have been developed for determinis-
tically formulated problems, the parameters of which are often assumed
perfectly predictable prior to problem-solving. In practice, this strong as-
sumption unfortunately contradicts the reality of many real-world prob-
lems which are subject to different levels of uncertainties. The solutions
derived from these deterministic approaches can rapidly deteriorate dur-
ing execution due to the over-optimisation without explicit consideration
of the uncertainties. To address this research gap, a deep reinforcement
learning based hyper-heuristic framework is proposed in this paper. The
proposed approach enhances the existing hyper-heuristics with a powerful
data-driven heuristic selection module in the form of deep reinforcement
learning on parameter-controlled low-level heuristics, to substantially im-
prove their handling of uncertainties while optimising across various prob-
lems. The performance and practicality of the proposed hyper-heuristic
approach have been assessed on two combinatorial optimisation problems:
a real-world container terminal truck routing problem with uncertain ser-
vice times and the well-known online 2D strip packing problem. The
experimental results demonstrate its superior performance compared to
existing solution methods for these problems. Finally, the increased in-
terpretability of the proposed deep reinforcement learning hyper-heuristic
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has been exhibited in comparison with the conventional deep reinforce-
ment learning methods.

Keywords: Transportation, 2D Packing, Hyper-heuristics, Deep
Reinforcement Learning, Container Truck Routing

1. Introduction

Research on combinatorial optimisation problems is of vital impor-
tance because of their broad applications in various real-world scenar-
ios, including transportation, logistics, production, resource allocation,
timetabling, digital services, finance and numerous other domains. De-
spite the recent advances, existing studies have largely focused on algo-
rithmic development on the deterministic variant of the problems, in which
the parameters to define the problems are assumed to be known in ad-
vance. It is not always possible to acquire accurate information of all the
problem characteristics in most real-life scenarios. Instead, the real values
of problem parameters are often sequentially revealed over time during de-
cision making. In such situations, solutions generated as a priori often
encounter various issues such as inferior service quality, increased costs,
and infeasibile solutions, all of which would lead to substantial losses. For
example, in Uncertain Capacitated Arc Routing Problem studied in Mei
et al. (2010), offline methods showed to generate infeasible solutions when
the actual demand of a task exceeds the remaining capacity of the vehicle,
and consequently, the vehicle cannot fully serve the task as expected by
the offline methods.

Thus, it is crucial to develop alternative methodologies that can ac-
commodate uncertainties as well as make decisions that can sufficiently
balance the conflicts between solution optimality and its resilience to un-
predictable (sometimes even disruptive) changes. This research focuses on
adaptive algorithms that are trained offline but deployed in real-time, so
that decisions are dynamically made in sequence pursuant to the actual
situations revealed. This provides decision-makers with the maximum
flexibility to react to changes while maintaining the high quality from the
resulting solution.

One of the possible methods for this purpose is the hyper-heuristics,
originally proposed as a high-level search paradigm that aims to achieve an
increased generality in performance across different problem instances and
problem domains. Different from the metaheuristic approaches that oper-
ate directly in the space of solutions, hyper-heuristics search in the heuris-
tic space, the landscape of which is considered less problem-dependent
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than that of the solution search space (Burke et al., 2013; Pillay & Qu,
2018a). The idea of hyper-heuristic originated from Fisher & Thompson
(1963) in the 1960s before the term was formally introduced by Cowling
et al. (2000). Hyper-heuristics have been studied to solve various combi-
natorial optimisation problems, such as timetabling (Soria-Alcaraz et al.,
2014), production scheduling (Rahimian et al., 2017) and vehicle rout-
ing (Ahmed et al., 2019), and potentially can be a promising candidate
framework to address online optimisation problems.

This work is motivated by the demand of advanced algorithms for solv-
ing challenging online combinatorial optimisation problems, taking advan-
tage of both the known problem structures as well as a large amount of
unlabelled historical data reflecting the uncertainties. To be more adapt-
able to industrial applications, the proposed algorithms must also cater
to a certain level of interpretability. Bearing these requirements in mind,
we propose a new hyper-heuristic method that uses a double deep Q-
network (DDQN) (Van Hasselt et al., 2016) to train a heuristic selection
module from a set of low-level, human-interpretable heuristics in differ-
ent problem-solving scenarios. The DDQN offers good performance and
training stability, and it has been used to solve problems in different fields,
such as edge computing (Chen et al., 2018) and recommendation systems
(Zheng et al., 2018).

Our proposed method extends the previous research in the followings:
1) different from the DRL methods in Mnih et al. (2013), Mnih et al.
(2015) and Van Hasselt et al. (2016), which are designed for solving gam-
ing problems without obvious mathematical formulations, our DRL-HH is
applied to classical combinatorial optimisation problems which have rich
literature, especially for their offline version of the problems. 2) compared
with previous hyper-heuristics, the simple Q-learning mechanism is re-
placed with a much powerful DDQN, which provides much better ability
to handle high dimensionality data; 3) the proposed framework is now ap-
plicable for online combinatorial optimisation problems while the previous
Q-learning based hyper-heuristics are designed for offline optimisation.

Compared to online genetic programming (GP) hyper-heuristic meth-
ods (e.g. MacLachlan et al. (2019) and Chen et al. (2020)), our proposed
method could offer better performance handling a large amount of training
data with much higher dimensionality of features, on which the evolution
of a GP decision tree is often highly challenging (if not impossible). A
GP based method will need a set of pre-defined features as well as a set of
customised operators. Compared to supervised learning methods heavily
used in data predictions and pattern recognition, our proposed method
does not require pre-labelled data by experts. In fact, most of the prob-
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lem instances addressed in this paper do not normally have ground-truth
solutions due to their difficulty. The decisions made in practice are not
optimal because of the problem complexity.

The remainder of this paper is organised as follows: Section 2 reviews
hyper-heuristics and related problems. Section 3 describes the proposed
DRL hyper-heuristic framework. In Sections 4 and 5, the proposed frame-
work is evaluated by solving two considerably different combinatorial op-
timisation problems with uncertainties, followed with discussions of the
experimental design and results analysis. Finally, Section 6 concludes the
paper.

2. Literature Review

Boosted by the increased computing power and more sophisticated op-
timisation algorithms that are now capable of exploiting more advanced
problem structures, possibilities exist to tackle optimisation problems of
considerably larger sizes and to obtain solutions of substantially higher
quality in terms of stated objectives. Among these methods, hyper-
heuristics have been explored with the primary goal of raising the gener-
ality of the performance of optimisation methods across different problem
domains and instances. In broad terms, hyper-heuristics can be defined
as ”heuristics to select or generate heuristics” (Burke et al., 2010). The
selection hyper-heuristic, being the focus of this paper, can be further
divided into two types: construction-based and perturbation-based. Se-
lection perturbative hyper-heuristics start from a complete solution and
then iteratively select a low-level heuristic among a set of perturbative low-
level heuristics (often neighbourhood operators) that can efficiently search
the solution space and rapidly improve the incumbent solution. Selection
constructive hyper-heuristics learn to select among a set of constructive
low-level heuristics at each point of solution construction, incrementally
building a complete solution to a given optimisation problem (Pillay &
Qu, 2018b).

Since the initial introduction in 2000, hyper-heuristics have received
progressively increasing research attention, especially in the past few
years. The number of yearly publications on hyper-heuristics is close to
100 in the Web of Science database. Among these publications, the ma-
jority of existing literature on selection hyper-heuristics is perturbative
hyper-heuristics, which operate on sets of perturbative low-level heuris-
tics searching upon complete solutions for optimisation problems (Bai
et al., 2012; Drake et al., 2019). Studies have been conducted exploring
different pairwise combinations of selection and move acceptance (Burke
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et al., 2013). A Modified Choice Function was chosen by Choong et al.
(2019) to solve TSP by choosing between low-level heuristics within a
swarm-based evolutionary algorithm. In Zamli et al. (2016), a tabu search
hyper-heuristic was utilised for combinatorial interaction testing, choos-
ing among four low-level metaheuristics for t-way test suite generation,
and obtaining good results for problems with up to 6-way interactions.
Traditional reinforcement learning was adopted in selection perturbative
hyper-heuristics. Kheiri & Keedwell (2017) proposed a sequence-based
selection hyper-heuristic that maintains scores representing the probabil-
ity of choosing a low-level heuristic. The scores are updated by employ-
ing a reinforcement learning strategy during the search. The selection
perturbative hyper-heuristics can perform well for problems with perfect
and complete information, but could potentially suffer from performance
degradation when dealing with uncertain factors or dynamic events which
impact on the performance of decisions obtained offline.

As depicted in Figure 1, selection constructive hyper-heuristics oper-
ate upon a set of constructive low-level heuristics to incrementally build
solutions. A constructive heuristic can be certain rules, suitable building
blocks/patterns and partial optimal solutions premised on certain math-
ematical models. There can also be some random assignments in cer-
tain cases to diversify the search. A key decision in constructive hyper-
heuristics is to intelligently select the most suitable constructive heuris-
tic(s) in the heuristic space at each step of solution construction while
at the same time satisfying various constraints. The ultimate goal is to
acquire an optimal (or near-optimal) sequence of constructive heuristics
that builds a high-quality solution in the solution space. The challenge is
to build a reliable mapping between the problem states and constructive
heuristics. The interface between the solution space and hyper-heuristics
renders the possibility of building a system that performs effectively across
various solution spaces.
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Figure 1: A selection constructive hyper-heuristic framework

Evolutionary algorithms have been the most adopted methods to ex-
plore sequences of low-level heuristics for solution construction. With low-
level graph colouring heuristics, Burke et al. (2007) proposed a construc-
tive selection hyper-heuristic to solve educational timetabling problems.
Soghier & Qu (2013) presented a hybrid approach for exam timetabling
utilising classic graph colouring heuristics to choose and assign an exam
before using bin packing heuristics to allocate a time slot and room. To
generate probability distributions of sequences of low-level heuristics at
different stages of a search, Qu et al. (2015) applied a Univariate Marginal
Distribution Algorithm (UMDA). Gomez & Terashima-Maŕın (2018) used
an evolutionary algorithm to evolve rules to select low-level heuristics for
solving multi-objective two-dimensional bin packing problems.

In these selection constructive hyper-heuristics, a decision is made step
by step at each decision point, offering the potential to solve online com-
binatorial optimisation problems. However, the aforementioned methods
can only perform effectively when certain vital information of problem
characteristics is known beforehand. For example, in 2-D bin packing
problems, the items (rectangles) need to be known in advance. After
being sorted, the rectangles are fed to the algorithm. In timetabling prob-
lems, all the events that are not yet scheduled similarly need to be known
in advance, and are then ordered by certain low-level heuristics. For in-
stance, events are ordered according to the number of feasible timeslots
available in the partial solution at that time, or in terms of the number
of conflicts they have with those already scheduled in the timetable. For
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real-world online problems, this required information is quite often not
available.

To handle uncertainties in real-world problems in a very flexible way,
Chen et al. (2016) established a manually crafted dynamic heuristic based
on the human experience. The algorithm obtained solutions that are supe-
rior to those used in practice. This type of manual heuristics can be used
as baselines for performance evaluations but are often far from optimal-
ity. MacLachlan et al. (2019) proposed a Genetic Programming Hyper-
Heuristic (GPHH) to develop routing policy for the Uncertain Capacitated
Arc Routing Problem, while Chen et al. (2020) proposed a data-driven ge-
netic programming heuristic that evolved different decision-making rules
(heuristics) in solving real-world truck routing problems in a container
port. Superior results were reported in comparison with those from Chen
et al. (2016).

The GP based hyper-heuristics used by MacLachlan et al. (2019) and
Chen et al. (2020) showed to improve the manual heuristic in Chen et al.
(2016), as the resulting heuristic (in the form of a GP decision tree) is
evolved with a large number of instances, thus of better average perfor-
mance than human-designed ones. However, the evolution process of GP
can be extremely time-consuming on hundreds of training instances, and
the resulting tree can be too large to be used in practice with a large
number of features and terminal operators.

In the present research, a Deep Reinforcement Learning (DRL) based
selection constructive hyper-heuristic is proposed to solve difficult online
combinatorial optimisation problems with uncertain variables revealed
over time. Compared against the existing hyper-heuristics, the proposed
hyper-heuristic method can take advantage of large scale historical data
of the random variables to train the heuristic selection module so that
robustness can be built into the constructed solution. Furthermore,
we note that the solutions obtained by the proposed method is
of improved interpretability, compared with those obtained by
traditional deep reinforcement learning. This is due to: Firstly,
the underlying actions in the proposed framework are human-
understandable heuristics (rather than direct variable fixing ac-
tions in conventional deep reinforcement learning); Secondly,
through the spectrum analysis of the state-action pairs, we can
identify decision patterns in which the agent prefers to choose
certain low-level heuristics (actions) at specific decision points
(states).
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3. The Proposed DRL Hyper-heuristic Framework

In the new hyper-heuristic framework for online combinatorial opti-
misation problems, a deep reinforcement learning is introduced into an
existing selection constructive hyper-heuristic framework. Specifically, a
double deep Q-network (DDQN) (Van Hasselt et al., 2016) was utilised to
train the present heuristic selection module exhibited in Figure 1. Details
are described in the following sub-sections.

DRL combines reinforcement learning (RL) and deep learning. Since
it was first proposed by Mnih et al. (2013), DRL has attracted intensive
attention, with the highlight of AlphaGo (Silver et al., 2016) which beat
the world Go champion Lee Sedol in 2016. The deep neural networks
in DRL are capable of perceiving and extracting advanced features from
data automatically; while RL can iteratively improve the decision-making
thereof by ‘trial and error’ interactions with the problem model. Com-
pared with some greedy and myopic online algorithms, such as best-fit
for online bin-packing and nearest neighbour heuristic for TSP, the pro-
posed method can strategically give up some current rewards to obtain a
bigger reward in the future thanks to the intelligence built in the DRL
agent through offline training based on the large amount of data contain-
ing hidden information regarding uncertainties. It can, therefore, more
effectively handle problems with uncertainties.

3.1. DRL based Hyper-heuristics

...

Figure 2: The DRL hyper-heuristic framework
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The proposed DRL based constructive hyper-heuristic framework is
depicted in Figure 2. In the framework, the actions are a set of pa-
rameterised heuristics (often referred to as low-level heuristics in hyper-
heuristics). The selection of these actions/heuristics is based on two state-
vectors (see Section 3.3 for details) and the historical experience of the
DRL agent.

The DRL agent is represented as a value function Q(s, a) with respect
to state s and action a, and corresponds to the heuristic selection module
in the constructive hyper-heuristic. At each decision point, the agent
selects and then executes an action in accordance with the states of the
partial solution, and acquires reward feedback from the problem model.
The Q function is defined as the expectation of discounted cumulative
rewards, as denoted in Equation 1, where γ is the discounted factor, t is
the time step, R is the reward and π is the policy.

Qπ(s, a) = E[Rt + γRt+1 + γ2Rt+2 + · · · |St = s,At = a, π] (1)

Notably, in the DRL framework, the training data of the states, actions
and rewards is generated during the interactions between the agent and the
problem model with random parameters. Thus, the difficulty in building
the training data or the issues of low-quality labels in supervised learning
can be avoided.

The proposed DRL based constructive hyper-heuristic method capi-
talises on both the problem mathematical model (via model derived solu-
tion states) as domain knowledge and the large amount of training data
possibly available from previous real-life experience and/or simulations.
The mathematical model provides the main structures and properties of
the problem while the uncertainties are not modelled mathematically. In-
stead, it is assumed that all the information of uncertainties is implicitly
given in the form of the training data and the proposed algorithm is ex-
pected to perform well across all uncertain scenarios. Thus, this frame-
work is believed to be relatively easier to train than the previous data-
driven methods due to the use of additional information as pre-knowledge
from the mathematical model.

3.2. Offline Training of Double Deep Q Network (DDQN)

Deep Q-network (DQN) is a widely used robust DRL method, which
combines a deep neural network function approximator with the classical
Q-learning algorithm to learn a state-action value function. By acting
greedily, a policy can be iteratively acquired (Mnih et al., 2013). Numer-
ous methods to enhance the performance of the original DQN have been
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proposed in prior literature. In the present framework, the double deep Q
network method (DDQN) (Van Hasselt et al., 2016) with the experience
replay strategy (Lin, 1993) is adopted because of their performance con-
sistency and fast convergence. Although the availabilities of other DRL
methods that may be better than DDQN are noted, the focus in this re-
search is on the interactions between DRL and hyper-heuristics, rather
than exploring the best DRL method in the context of hyper-heuristics.
Particular focus is centred on the hybridisation of data-driven and model-
driven schemes as well as the interpretability of the proposed DRL hyper-
heuristic framework.

DQN is a deep neural network that outputs a vector of actions’ (i.e.
low-level heuristics) preference values Q(s, •; θ) given state s, where θ is
the set of parameters of the network that can be trained to help select the
most appropriate heuristics. Mnih et al. (2015) utilised a target network
and experience replay strategy that substantially improved the perfor-
mance of the basic DQN. The target network (with parameters θ−t ) and
the online network (with parameters θt) share the same structure, but the
parameters of the target network are only updated every τ steps from the
online network. Here, τ is a parameter to define how frequently the target
network parameters (θ−t ) are updated. The target used by DQN can be
described by Equation 2.

Y DQN
t ≡ Rt+1 + γmax

a
Q(St+1, a; θ−t ) (2)

Owing to the max operator in the standard DQN in Equation 2, the
DQN agent is more likely to select overestimated values, leading to over-
optimistic value estimates. Double-DQN (DDQN) is hence introduced to
reduce over-estimations by decomposing the max operation in the target
into action selection and action evaluation. Then, the target used by
DDQN is changed to Equation 3:

Y DDQN
t ≡ Rt+1 + γQ(St+1, arg max

a
Q(St+1, a; θt); θ

−
t ) (3)

In this research, during the interactions with the problem model with ran-
dom parameters, at each time step t, the DRL agent acquires an explicit
partial solution state sa from the problem model directly; then the model
derived solution state sb is calculated pursuant to the dynamics of the
problem model. After that, the state s is denoted as the concatenation of
sa and sb. In accordance with the state, the DRL agent takes an action
a (a low-level heuristic) and obtains a reward r. Meanwhile, the action
takes the partial solution to a new state s′, which contains s′a and s′b, as
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mentioned above. In this case, a piece of data e is obtained, indicated as
a tuple (s, a, r, s′). At each time step, e is added into the data pool M .
During the training process, the experience replay mechanism is applied.
Every time, a mini-batch of training data (a random set of experiences)
is sampled from the data pool M . The details of the training process are
shown in Algorithm 1 in Appendix A.

3.3. Solution state

The proposed DRL hyper-heuristic constructs a solution step by step
by repeatedly calling a chosen constructive heuristic. At each step, two
state vectors on the current partial solution are passed to the hyper-
heuristic as reference information for decision making (i.e. choice of the
most appropriate constructive heuristic from the set of heuristics at the
disposal thereof). The first state vector (the explicit partial solution
states) contains all the necessary information about the current partial so-
lution, including any constraints and efficiency indicators of key resources
of the problem under concern. The second state vector (the model de-
rived solution states) is on the projected solution states at any future
point, being estimated through the deterministic model of the problem.
In an effort to raise the generality of hyper-heuristics, the use of both
explicit state vector and model-derived state vector are considered as a
distinctive algorithm design philosophy.

3.4. Actions

In the context of hyper-heuristics, the actions are, in most cases, vari-
ous heuristic rules used in practice. The actions can also be more sophis-
ticated model-based strategies for making multiple decisions at each step.
Action set design is problem-specific, and there is no generic design suit-
able for all problems. As a general guideline, an action set design should
satisfy both reachability and interpretability. Reachability means that
there should exist at least one combination of these heuristics through
which the optimal solution can be reached. Meanwhile, interpretabil-
ity requires a certain level of convenience to interpret and evaluate these
heuristics.

In the following two sections, we demonstrate how the proposed hyper-
heuristic method can be used to solve two different combinatorial optimisa-
tion problems with challenging uncertainties and evaluate its performance
in comparison with existing methods.
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4. Application to Online Container Terminal Truck Routing
Problem

4.1. Online Container Truck Routing Problem Description

The real-world problem considered in this paper is a container truck
routing problem faced by one of the largest international ports. At the
same time, it is also a type of problem faced by many maritime ports,
airports and logistics centres. The problem is concerned with the optimal
truck assignments for a list of predefined container transportation between
the vessels (seaside) and the container yard in a container terminal (see a
typical layout in Figure 3). On each day, the terminal is visited by several
vessels with a list of predefined containers to be loaded and/or unloaded.
Cranes are required to handle the operations at both the seaside (ship
cranes) and the yard area (yard cranes). The yard area consists of a
number of yard blocks, each of which with a unique yard block ID (e.g.
A1-A6 in Figure 3), and is equipped with a single yard crane. A fleet
of homogeneous trucks, based at the depot initially, transport containers
between ship cranes and yard blocks. In this problem, the depot, each
ship crane and each yard block is represented as a node.
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... ...
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E3

B1
B2
B3
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Q5
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...

...

Ship cranes

Yard blocks with 
yard cranes

Depot

Trucks

CR07

Figure 3: Typical layout of a container terminal

As the most valuable resources in a container terminal, ship cranes
are often considered as the primary focuses in operations optimisation.
Therefore, in this study, the objective is set to be the minimisation of the
total ship crane waiting time between two consecutive operations, which
is mostly caused by late truck arrivals.
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Different from other container truck routing problem studies, the prob-
lem considered in this study is modelled as an online problem to re-
alistically formulate the uncertainties of the crane operation times (i.e.
loading/unloading time) caused by the complexities in container stack-
ing requirements, operator proficiency, weather conditions and differences
among cranes. Meanwhile, since each crane can only handle one opera-
tion at any time, it is extremely challenging if ever possible to deal with
the truck queues at both ship and yard cranes with deterministic problem
formulation.

Each time when a vessel arrives, high-level decisions are made in terms
of the assignments of the berth, the ship cranes and the yard blocks for
this vessel. For practicality, these decisions are made separately from the
truck routing problem concerned in this paper. Additionally, for each as-
signed ship crane, a load balance planner is used to generate a work queue
that specifies the operation sequence of the containers to be loaded and
unloaded from this vessel. Again, practical rules require that each ship
crane is responsible for one type of operations only (i.e. either loading or
unloading but not both). Containers are either in small size (20-inch) or
in large size (40-inch). We use task to define a standard operation unit
consisting of either two small containers of the same Source-Destination
pairs or one large container. Each task is then defined by a source node
(SN), a destination node (DN) and the details of the corresponding con-
tainer(s). A task is serviced by one truck exactly. The dashed line in
Figure 3 represents a transportation task from a ship crane CR07 to yard
block D6.

1

2

3

6

4

5

Dispatched to a truck
(Task dispatched)

Truck arriving at SN

SN service beginning

SN service finishing

Truck arriving at DN

DN service beginning

DN service finishing
(Task finishing)

Truck heading to SN

Truck waiting at SN

SN serving

Truck Moving to DN

Truck waiting at DN

DN serving

Figure 4: The flow of handling a task.

The detailed events of handling a task are shown in Figure 4. The
timings of these events for all tasks define a full truck dispatching solu-
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tion. The ship cranes strictly follow the sequences defined by the work
queues while operations at each yard crane adopt the First-Come-First-
Serve (FCFS) policy.

4.2. Problem Formulation

This problem is initially formulated in Chen et al. (2016). Here, we
provide a slightly different formulation.

The problem can be defined with a directed graph G = (N,A), where
vertices N = {0}

⋃
N ship

⋃
Nyard are the union of the depot (node 0), ship

cranes N ship, and yard cranes Nyard. Set A denotes the arcs between the
nodes. Let WQl denote the work queue list associated with ship crane l ∈
N ship and nl be the size of WQl. Denote qhl be the h-th task in work queue
WQl. For each task i from some work queue, denote t(i)ship (respectively
tt(i), t(i)yard) be its operation time at the ship crane (respectively its
transportation time, and operation time at the yard crane). Denote td(i, j)
be the deadheading time from the destination of task i to source of task j
when task j is serviced immediately after task i by the same truck. Denote
K be the set of homogeneous trucks to be dispatched. Let Q =

⋃
{WQl}

be the set of all tasks in all work queues.

4.2.1. Decision variables

There are two sets of decision variables. The first set is the truck
assignment decisions x(i, j)k, ∀i, j ∈ Q, k ∈ K, which takes value 1 if
task j is immediately serviced after task i by truck k, and 0 otherwise.
The second variable set determines the operation start times at the ship
and yard cranes (respectively denoted as T (i)ship, T (i)yard) for each task
i ∈ Q. For the ease of mathematical formulation, we also use T (i)SN and
T (i)DN to denote the operation start time of task i at the source and
destination nodes, respectively. Similarly, we use t(i)SN and t(i)DN to
stand for the service times for task i at the source and destination nodes,
respectively.

4.2.2. Objective function

The objective of the problem is to minimise the aggregated ship crane
waiting times between two consecutive tasks, which equals to the time
difference between the operation start time of the current task and the
completion time of the previous task, expressed as shown in (4).

min
∑

l∈Nship

nl−1∑
h=1

[T (qh+1
l )ship − T (qhl )ship − t(qhl )ship] (4)
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4.2.3. Constraints

The following constraints need to be satisfied to ensure the feasibility
of the solution. Constraint (5) ensure that all tasks are serviced exactly in
the order specified by the work queues. Constraint (6) ensures the feasible
operation start times for any two consecutive tasks assigned to the same
truck. Constraints (7)-(8) make sure that each task is serviced by exactly
one truck. Another important constraint is the FCFS policy at each yard
crane which has an effect on a truck’s waiting time before the assigned
tasks can be started. Its mathematical representation is not included due
to its expression complexities and page limitation.

T (qh+1
l )ship ≥ T (qhl )ship + t(qhl )ship, ∀qhl ∈WQl, l ∈ N ship (5)

T (j)SN ≥ (T (i)DN + t(i)DN + td(i, j))x(i, j)
k ∀i, j ∈ Q, k ∈ K (6)∑

j∈Q

∑
k∈K

x(i, j)k = 1 ∀i ∈ Q (7)

∑
i∈Q

∑
k∈K

x(i, j)k = 1 ∀j ∈ Q (8)

Note that in this study, the crane operation times (t(i)ship, t(i)yard)
are subject to uncertainties and are assumed to be revealed in an online
fashion. We model this online combinatorial problem as a sequential de-
cision problem (i.e., multi-stage). Once a decision is made, no change can
be made later on to reverse the decision. This way, the problem can then
be solved within a reinforcement learning framework. Nevertheless, the
DRL agent is exposed to the nature of the uncertainties through training
instances; while its performance is evaluated on a set of independently
generated instances.

4.3. Implementation details

This section describes the implementation details of the proposed
DDQN based hyper-heuristic method, including the state design, the ac-
tion sets (low-level heuristics) and the reward design.

4.3.1. State design

Unlike in most reinforcement learning problems, such as playing Atari
games, where screen images can be directly fed as a state to the neural
network, a real-world problem like the container truck routing in a port
terminal requires professional advice on selecting features to encode a
state. The following features have been seen as vital by our collaborators
in the port when dispatching a task, being subsequently selected to be
part of the state.
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• The remaining number of tasks each ship crane needs to finish (i.e.
the length of the work queue),

• The distance between the current position of the truck to be dis-
patched and the source nodes of the first tasks of every work queue,

• The predicted number of trucks to serve every ship crane, including
trucks already dispatched and to be dispatched in the near future
(i.e. the supply),

• The predicted number of tasks to be finished at every ship crane in
the near future (i.e. demand). In this application, this is set to 10
minutes.

The first two features are explicit partial solution states which
can be directly acquired from the problem environment, denoted as
[rn1, rn2, · · · , rnm] and [d1, d2, · · · , dm], respectively. The latter two need
to be estimated by the problem mathematical model. For example, a
moving-average method is applied to predict the service time of a task in
a ship crane. Algorithm 2 in Appendix A denotes how the problem math-
ematical model calculates the predicted number of tasks to be finished at
every ship crane in 10 minutes.

The last two state vectors can be expressed as [wn1, wn2, · · · , wnm]
and [pn1, pn2, · · · , pnm], respectively. Thus, the final state is a concate-
nation of all the four items, represented as:
[[rn1, rn2, · · · , rnm], [[d1, d2, · · · , dm], [wn1, wn2, · · · , wnm], [pn1, pn2, · · · ,
pnm]].

4.3.2. Actions

In this proposed framework, there are two level of actions. An agent
performs an agent action to select a low-level heuristic, i.e. Aagent =
{agent action i | i ∈ (0, 1, 2, · · · , 9)}. Once agent action i is selected,
the corresponding heuristic action is taken to assign a task to the current
truck under consideration.

The set of low-level heuristics used in this paper is inspired by the
manual heuristic in Chen et al. (2016). Essentially, these heuristics are
different rules to sort the active work queues (WQl, l ∈ N ship) attached
to ship cranes. This is because the task sequencing in each work queue is
already decided separately and is not part of optimisation in our problem.
The low-level heuristics considered three factors: distances between the
current action-triggering truck and the candidate work queues, the degree
of unbalance of work queues, and the degree of urgency of all candidate
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work queues. For each factor, three possible thresholds are assigned to
decide whether the corresponding factor becomes active in work queue
sorting. This leads to 3 ∗ 3 = 9 low-level heuristics. Finally, Chen et al.
(2016)’s manual heuristic is also included as a low-level heuristic in our
DRL-HH. See Appendix B for more details of the low-level heuristics. This
leads to a total of 10 low-level heuristics.

4.3.3. Rewards

Typically an immediate reward rt is a scalar value that the agent
receives after taking the chosen action in the environment at each time
step t. Since the objective of this problem is to minimise the aggregated
ship crane waiting times between two consecutive tasks, when a task qh+1

l

is selected, we set the reward as the time gap (i.e. crane idle time) between
the completion time of the previous task qhl and the start time of the
current task qh+1

l , i.e. T (qh+1
l )ship − T (qhl )ship − t(qhl )ship. Since this

problem is a minimisation problem and DRL normally aims to maximise
the accumulative reward, we chose the negative time gap as the reward in
order to minimise the accumulated ship crane idle time between tasks.

Note that, when computing the reward of a specific task assignment,
the corresponding ship crane waiting time cannot be computed immedi-
ately after the assignment because the previous task may not have been
completed yet, or the current truck has not reached the assigned ship
crane. Therefore, the evaluation is done episodically. That is, at each
episode, when all the tasks in a given data set are dispatched and finished
(i.e. an episode is finished), the rewards are calculated retrospectively.

4.4. Experiment design and results analysis

To evaluate the performance and robustness of the proposed DRL
hyper- heuristic (DRL-HH), several benchmark problem instances of dif-
ferent sizes are extracted from real-life data to serve as a test bed. The
methods to solve this kind of online combinatorial optimisation problem
are scarce due to its huge solution space and a relatively low response
time required. The manually crafted heuristic (Chen et al., 2016) showed
to generate solutions that are superior to those used in practice, and is
used as a baseline for our proposed method. The proposed DRL-HH is
also compared with the data-driven genetic programming hyper-heuristic
(Data-driven GP) Chen et al. (2020).

4.4.1. Datasets

The experiment datasets were drawn from real-world problems with
a small adaptation. Two datasets (small basic and big basic) were used
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in the initial experiments, both contain 120 problem instances. In the
scalability test experiments, 10 further datasets were generated based on
small basic and big basic. In all problem instances, the crane operation
times (t(i)ship, t(i)yard) are drawn from four different Gaussian distribu-
tions to sufficiently simulate the complexity of the real-life data (see Ap-
pendix C.1 for more details). Their real values are revealed dynamically
over time.

4.4.2. Experiment settings

We adopted a four-layer DRL similar to the one used in Chen & Tian
(2019), where a DRL was used to solve some deterministic combinatorial
optimisation problems. Due to space limitations, the details of our DRL
settings are given in Appendix C.2.

4.4.3. Experimental results

There are stochastic components in our algorithm, such as the initial
values of the weights, biases in the neural networks and the randomness
in the low-level heuristics. We therefore repeated the experiment (i.e.
both training and testing) 10 times. During the training, our DRL agent
converges after about 2000 episodes on both small basic and big basic. In
each episode, the entire training dataset (20 problem instances) was used
to train the agents. The average total crane waiting time of the present
DRL-HH for both datasets during the training process is shown in two
figures in Appendix D.1.

Once the training is completed, the resulting DRL-HH method is eval-
uated for its performance, scalability and relative performance against the
simple DRL method. In each test experiment, the algorithms were used
to solve 100 test instances. For each test instance, the algorithms were
run 200 times with different random seeds.

The average total crane waiting time over 100 problem instances was
adopted as the performance indicator. Meanwhile, rank tests were con-
ducted to fully compare the performance of the proposed method and the
other two benchmark methods, results shown in Table 1. It was shown
that combining multiple heuristics is beneficial than applying any of them
alone (Burke et al., 2007; Pillay & Qu, 2021). The comparison of our pro-
posed DRL-HH against each individual heuristic is presented in Appendix
D.2, and results confirm this finding in the literature.

It can be seen that the data-driven GP is marginally better than the
manual heuristic, while DRL-HH performs the best among the three meth-
ods. This was expected because our DRL-HH can balance the long-term
and short-term rewards with DQN training. Both the manual heuristic
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Table 1: The Performance of DRL-HH in comparison with manual heuristic and a data-
driven GP method. In x/y: x is the average waiting time, and y is the average rank
from the rank test.

Datasets

Average total crane waiting time (s)
/ Average rank Imp% of

DRL-HH
over manual

heuristic

Manual
heuristic
(baseline)

Data-driven
GP DRL-HH

Small Basic 1808.02/2.85 1786.32/2.04 1674.40/1.11 7.39%
Big Basic 6392.29/2.87 6333.48/2.03 5868.30/1.10 8.20%

and data-driven GP may suffer from solving extreme test instances. On
average, DRL-HH obtains a significant improvement when compared with
manual heuristic (7.37% for small basic and 8.20% for big basic).

Scalability evaluations. In real-world scenarios, the generality of the
trained model is of high importance. In the problem faced by Ningbo
Port, the number of tasks in the datasets and the number of work queues
(which is equal to the number of ship cranes) may change at some point.
Therefore, two groups of experiments (Scalability Experiment 1 and Scal-
ability Experiment 2) were conducted to evaluate the generality of the
trained DRL-HH agent.

In Scalability Experiment 1, DRL-HH was tested on ‘small48T’,
‘small96T’, ‘big144T’ and ‘big288T’, where the number of tasks in a prob-
lem instance is different from those of the training instances (See Appendix
C.1 for details). The experimental results are presented in Table 2.

Table 2: Results of Scalability Experiment 1. In x/y, x is the average waiting time, and
y is the average rank from the rank test.

Datasets

Average total crane waiting time (s)
/ Average rank Imp% of

DRL-HH
over manual

heuristic

Manual
heuristic
(baseline)

Data-driven
GP DRL-HH

Small48T 1017.06/2.85 1037.40/2.06 971.44/1.09 4.52%
Small96T 2207.33/2.91 2192.76/1.95 2130.67/1.14 3.51%
Big144T 3601.26/2.83 3580.37/2.12 3450.30/1.05 4.20%
Big288T 8489.78/2.90 8423.56/2.02 8175.28/1.08 3.71%

In Scalability Experiment 2, DRL-HH was tested on ‘small3WQ’,
‘small2 WQ’, ‘big5WQ’, where the number of work queues involved is
decreased (See Appendix C.1 for details), results shown in Table 3. Note
that here we did not test our trained algorithm on instances with increased
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ship cranes due to two reasons: First, we foresee poor results because the
DRL-HH agent knows nothing about these newly added ship cranes dur-
ing the training. Second, for a real-world port, the maximum number of
ship cranes stays unchanged. If we train our DRL-HH with the maximum
ship cranes, the model would still perform well for instances with fewer
ship cranes because it has seen all the information.

Table 3: Results of Scalability Experiment 2. In x/y, x is the average waiting time, and
y is the average rank from the rank test.

Datasets

Average total crane waiting time (s)
/ Average rank Imp% of

DRL-HH
over manual

heuristic

Manual
heuristic
(baseline)

Data-driven
GP DRL-HH

Small3WQ 1360.45/2.93 1354.74/1.99 1313.10/1.08 3.42%
Small2WQ 895.43/2.87 889.79/1.99 869.92/1.14 2.93%
Big5WQ 4850.87/2.89 4805.76/2.04 4646.37/1.07 4.22%
Big4WQ 3920.40/2.79 3898.45/2.05 3774.21/1.16 3.76%
Big3WQ 2620.34/2.81 2612.49/2.04 2533.54/1.15 3.32%
Big2WQ 1745.55/2.89 1735.95/1.97 1692.46/1.14 3.08%

In these two groups of scalability experiments, the changes of both the
number of tasks in the datasets and the number of work queues rendered
significantly in the problem structure. Hence, obtaining a model that
could perform well in different situations was considerably difficult. The
results of manual heuristic and data-driven GP are still relatively close:
data-driven GP is slightly better than manual heuristic (except for the
task set with 48 tasks in Table 2).

Notably, in Table 2 and Table 3, the results of data-driven GP in every
row were obtained by rules developed separately for different situations.
Using the results obtained by a single rule in the data-driven GP would be
unfair. Yet, in real world, when faced with continuously changing scenar-
ios, data-driven GP would experience difficulties in automatically making
a choice to call different rules. In DRL-HH, since the deep neural net-
work can learn non-linear relationships and encode kinds of knowledge in
different problem instances, good performance with only one well-trained
model could be achieved. DRL-HH is better than manual heuristic in all
experiments (from 2.9% to about 4.5%), as observed from the two tables.

DRL VS. DRL-HH. Finally, the direct use of DRL to choose work queues
was tested against the DRL-HH for both the small basic and big basic task
sets. In the experiment where the DRL directly chooses work queue, all
the hyper-parameters are the same as those in the DRL-HH experiments.
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Again, the simple DRL was run 10 times with the random seeds. In the
simple DRL method, the agent may choose an action that violates some of
the constraints (e.g. going to work queue without tasks). If this happens,
the agent heavily to make the decision extremely unpopular, namely giving
a big negative reward. In this experiments, we give the agent rewards of
-10000 and -20000 which are far smaller than a normal reward signal, for
small basic and big basic datasets, respectively.

However, although the punishment strategy addresses this problem to
a certain extent, the training time increases greatly, as shown in Table 4
for simple DRL to obtain similar results to those by DRL-HH. The simple
DRL consumes about 3.7 (for small basic) and 4.1 (for big basic) times
training time, respectively, compared with that of DRL-HH. The simple
DRL also requires about 4 and 4.5 times training iterations compared
with that of DRL-HH. Using DRL directly suffers from considerably slow
convergence.

Table 4: Average training time and number of training episodes for two methods to
achieve the same results

Task sets Methods
Average Training Time

(minute) & StdDev
Average num of

episodes & StdDev

Small basic DRL-HH 87(6) 1933(61)
Simple DRL 324(11) 7740(209)

Big Basic DRL-HH 397(17) 1992(75)
Simple DRL 1640(45) 8864(218)

It is worth noting that although the training of DRL-HH takes a lot of
time, it is very fast in testing/execution once trained. The average execu-
tion time for a trained DRL-HH agent to solve a small instance (containing
72 tasks) is 0.165 seconds and 0.575 seconds for a large instance (with 216
tasks).

4.5. States spectral analysis

Models trained with data-driven methods are often concerned with
their interpretability. Complex models acquired through traditional ma-
chine learning methods, such as deep neural networks, are difficult to
comprehend. The low-level heuristics in the present hyper-heuristics were
manually designed. The proposed DRL hyper-heuristic thus provides a
certain level of interpretability. To further understand the trained model,
in the test phase, spectrum analysis of the states was conducted to identify
possible patterns between the states and the corresponding actions.

We collected 12,000 states and removed duplication. The remaining
11,035 states were then partitioned into nine groups pursuant to their
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corresponding actions executed, as shown in Figure 5. It can be observed
that out of the total 11035 states, actions 0, 1, 3 and 6 are among the
most frequently used heuristics.

Figure 5: The distribution of the actions corresponding to the 11035 states.

Spectrum analysis was conducted on each group of these classified
states. Taking action 0 in Figure 6 as an example, where the x-axis rep-
resents the state elements discussed in Section 4.3.1. The urgent degree
(see Appendix B for details) was employed to replace the supply and the
demand as it is a more intuitive indicator and more conducive to discover
certain patterns. The range of values of different state elements was nor-
malised to [-50, 50]. For the elements of work queue length, the closer it
was to -50, the smaller the work queue length was. When it was equal to
-50, the work queue was empty. The colour represents the frequency of
the elements that fall into a specific area exhibited as the colour bar on
the right side of the figure. In Figure 6 and Figure D.3 in Appendix D.3,
when focusing on the work queue length elements, it can be observed that
DRL-HH tended to choose actions 0 and 3 at the middle and late stages
of an episode (work queue length in [-50, 2] and [-50, 26], respectively).
However, at the early stage of an episode, actions 0 and 3 were chosen
with a low frequency. When attention shifts to the urgent degree, Figure
D.3 and Figure D.4 in Appendix D.3 indicate that compared with action
4, action 3 was more likely to be chosen when the urgent degree was high.
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Figure 6: The spectrogram of states for action 0.

The results reveal that certain patterns exist between the states and
the corresponding actions. In real life, people instinctively reject decisions
that are hard to understand. This presents a challenge for the use of DRL
in an industrial environment like Ningbo Port. DRL-HH can fully utilise
the powerful learning and exploration of DRL, but more importantly, can
also provide explainable solutions to some extent, allowing decision-makers
in industry to understand and thus accept the suggestions provided by the
algorithm more easily.

5. Application of DRL-HH to online 2-D strip packing problem

The proposed DRL-HH was further evaluated on a classic online 2-D
strip packing problem. Two online variants of the best-fit algorithm
(Burke et al., 2004) were used as baselines. The first is best-fit with a
fixed strategy, which only selects the ”leftmost” placement throughout the
whole packing process. The second is best-fit with a stochastic strategy,
which selects different placements at different decision points. At the same
time, we also included in the comparison the grouping super harmonic
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algorithm (GSHA) proposed in Han et al. (2016), which is commonly
considered as a state of the art online method. More details of this problem
and the experiments are reported in Appendix E.

Table 5 displays the average results (i.e. heights) achieved by the
proposed DRL-HH in comparison with the other three methods. An ob-
servation can be made that the present DRL-HH method outperformed
the best-fit algorithm on average, and ranked the highest (1.22). The
recently proposed GSHA method, to our surprise, did not perform well.
This is probably due to its lack of internal learning mechanism to the given
problem data set. The results demonstrate the generality of the proposed
method across different types of online optimisation problems.

Table 5: The average heights achieved by four approaches and their scores in the rank
test for the online 2-D strip packing problem.

Datasets

Average heights of packings
/ Rank score

Best-fit with
fixed strategy

Burke et al. (2004)

Best-fit with
Stochastic
strategy

Burke et al. (2004)

DRL-HH
GSHA

Han et al. (2016)

Training 271.8 272.2 269.3 374.3
Test 271.7/2.07 271.9/2.29 269.1/1.22 372.8/3.78

6. Conclusions and Future Work

Real-world combinatorial optimisation problems are frequently fea-
tured with uncertainties. This poses a major challenge to traditional
optimisation algorithms. In this paper, we propose a deep reinforcement
learning (DRL) based hyper-heuristic framework. For the first time, DRL
was introduced into a constructive hyper-heuristics framework to address
the challenging online combinatorial optimisation problems. Experimen-
tal results highlight several advantages with this new framework. Firstly,
it shows better performance compared with the existing state of the art
methods on both a real-world truck routing problem and a 2D strip pack-
ing problem with uncertainties. Secondly, it shows a good scalability when
the problem sizes change. Thirdly, compared with traditional DRL meth-
ods, it holds better convergence. Finally, the proposed approach showed
to improve the interpretability of the solutions, thus is more acceptable in
real-life applications.

In our future work, first, we can explore a better neural network struc-
ture with variable input dimensions to adapt to the changing number of
ship cranes or other relevant elements. Second, it would be interesting to
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investigate whether the ‘patterns’ or ‘knowledge’ obtained from the state
spectral analysis can be fed to the learning agent at the early training
process to improve the training efficiency.
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