
Automated Design of Search Algorithms: Learning on

Algorithmic Components

Weiyao Menga,∗, Rong Qua

aSchool of Computer Science, University of Nottingham, Nottingham, UK

Abstract

This paper proposes AutoGCOP, a new general framework for automated

design of local search algorithms. In a recently established General Com-

binatorial Optimisation Problem (GCOP) model, the problem of algorithm

design itself is defined as a combinatorial optimisation problem. AutoGCOP

defines a general framework to optimise the composition of elementary al-

gorithmic components as decision variables in GCOP. By modelling various

well-known local search meta-heuristics within a general framework, Auto-

GCOP supports automatic design of new novel algorithms which may be

highly different from those manually designed in the literature.

Within the consistent AutoGCOP framework, various elementary algo-

rithmic components are analysed for solving the benchmark vehicle routing

problem with time window constraints and different characteristics. Fur-

thermore, two learning models based on reinforcement learning and Markov

chain are investigated to learn and enhance the compositions of algorithmic

components towards the automated design of search algorithms. The Markov

∗Corresponding author
Email addresses: weiyao.meng@nottingham.ac.uk (Weiyao Meng),

rong.qu@nottingham.ac.uk (Rong Qu)

Preprint submitted to Expert Systems with Applications May 10, 2021



chain model presents superior performance learning the compositions of al-

gorithmic components during the search, demonstrating its effectiveness for

automatically designing new algorithms.

Keywords: Automated algorithm design, search algorithms, reinforcement

learning, Markov chain

1. Introduction

In solving complex combinatorial optimisation problems, the demand

for effective algorithms presents a challenge and burden for human experts,

where a large number of decisions need to be made in the algorithm design

process (Pillay et al., 2018). Performance of manually designed algorithms

highly relies on the experience and effort of the human experts, who may only

consider a limited number of designs, leaving a significant number of poten-

tial algorithms unexplored (Hoos, 2008). Automation in algorithm design

helps to release human experts from the tedious design process and explore a

larger scope of candidate algorithms, some of which may never be considered

by manual designs.

Research developments in automated algorithm design are fast emerg-

ing along with the successful research findings in evolutionary computation.

Based on the decisions of the algorithm design space and different aims, a

new taxonomy has been defined in (Qu et al., 2020), categorising the current

research in automated algorithm design into three themes, namely automated

configuration, automated selection and automated composition as follows:

• Automated configuration: aims to automatically determine values for

2



algorithmic parameters of specific target algorithm(s) to solve a collec-

tion of problem instances (Hutter et al., 2007).

• Automated selection: aims to automatically select the most appropriate

algorithm from a portfolio of candidate algorithms for a set of training

instances thus to solve new testing instances.

• Automated composition: aims to automatically compose or combine

heuristics or components of arbitrary algorithms to solve the problem

at hand online (Qu et al., 2020).

In the theme of research in automated composition, the algorithm de-

sign process is automated by composing algorithmic components. It takes a

bottom-top method to work flexibly with a set of algorithmic components,

thus to generate new algorithms (Qu et al., 2020). The other two themes of

research in automated configuration and selection take a top-down method,

to consider parameters and algorithms themselves in the decision space. In

line with automated algorithm composition, this paper proposes a general

framework to support automated algorithm design based on a new model

established in (Qu et al., 2020), where basic elementary algorithmic com-

ponents are defined as decision variables in a combinatorial optimisation

problem of algorithm design.

Hyper-heuristics (Pillay & Qu, 2018) can be seen as one of the main

streams in automated composition of novel algorithms. Within a two-level

framework, hyper-heuristics determine “at a higher abstraction level which

low-level heuristics to apply” (Cowling et al., 2000). The low-level heuristics,

e.g. algorithms or operators, are called to generate heuristic algorithms on

3



the fly. One type of hyper-heuristics, selection hyper-heuristics, automat-

ically combines low-level heuristics by iterative selection. Various learning

models have been applied at a high level to adaptively select the low-level

heuristics. Reinforcement learning aims to learn the performance of individ-

ual low-level heuristics, e.g. simple reinforcement learning schemes (Nareyek,

2003), (Burke et al., 2003) and (Özcan et al., 2012) and complex reinforce-

ment learning models that strictly follow the criteria of reinforcement learning

(Khamassi et al., 2011), (Di Gaspero & Urli, 2011) and(Di Gaspero & Urli,

2012); other models observe the transition performance between each pair of

low-level heuristics, e.g. MCHH (McClymont & Keedwell, 2011) with Markov

chain (Kemeny & Snell, 1976) and SSHH (Kheiri & Keedwell, 2015) with hid-

den Markov models (Baum & Petrie, 1966). Choice function (Cowling et al.,

2000) can also be seen as a learning model awarding both individual and the

transition of low-level heuristics which perform well during the iterative selec-

tions. Another type of hyper-heuristics, generation hyper-heuristics, can be

seen as to automate the composition process using mainly genetic program-

ming (Banzhaf et al., 1998). Common features of a specific type of target

heuristic(s) are extracted into a terminal set. The context-free grammar de-

fines how to combine the elements in the terminal set into novel algorithm

designs. The mostly studied methods in generation hyper-heuristics include

dispatching rules for job scheduling problem (Pickardt et al., 2010), (Nguyen

et al., 2012), local search algorithms for bin packing (Burke et al., 2011)

and satisfiability testing (Fukunaga, 2008), particle swarm optimisation al-

gorithms for continuous optimisation problems (Miranda et al., 2017), and

evolutionary algorithms for function optimisation, traveling salesman prob-

4



lems and the Quadratic Assignment Problem (Oltean, 2005).

Another line of research in the automated composition is based on the

automated combination of algorithmic components or building blocks within

frameworks of specific algorithms. Various search algorithms in the litera-

ture can be instantiated within the frameworks, and novel algorithm designs

can be composed automatically. The most studied algorithms include SAT

solver (KhudaBukhsh et al., 2016), simulated annealing algorithms (Franzin

& Stützle, 2019), iterated greedy algorithms (Mascia et al., 2013), stochastic

local search algorithms (Pagnozzi & Stützle, 2019) and multi-objective evolu-

tionary algorithms (Bezerra et al., 2015) for permutation flow shop problems,

and multi-objective ant colony algorithms (Lopez-Ibanez & Stutzle, 2012) for

traveling salesman problems.

In (Qu et al., 2020), a new model named General Combinatorial Opti-

misation Problem (GCOP) is introduced to define the problem of algorithm

design itself as a combinatorial optimisation problem. The decision vari-

ables of GCOP consist of elementary algorithmic components. With the

GCOP model, the design of various algorithms can be defined as flexible

compositions of basic components. The objective of GCOP is to optimise

the composition of these components. Solving the GCOP thus automates

the design of the best algorithms for solving the problem at hand. GCOP

provides a standard to support automated algorithm design (Qu et al., 2020)

by formulating various search algorithms in one model.

The newly established GCOP model requires coherent frameworks to as-

sess the performance of the elementary algorithmic components and explore

the insights on designing effective algorithm compositions with these com-

5



ponents. Existing frameworks in the automated composition concern only a

subset of algorithmic components in GCOP, thus cannot provide sufficient

support for automated algorithm design based on GCOP.

Based on the GCOP model, this paper presents a new general AutoG-

COP framework to automatically compose elementary algorithmic compo-

nents, thus to support the automated design of local search algorithms and

systematic investigations on automated composition. Various algorithmic

procedures in the literature can be modelled and encapsulated as general

procedures within AutoGCOP. These general algorithmic procedures oper-

ate flexibly upon the elementary algorithmic components in GCOP, leading

to novel local search algorithms which may not be designed manually. In

other words, various local search algorithms can be automatically composed

with basic components within the general AutoGCOP framework.

Within the consistent AutoGCOP framework, this paper investigates the

scope of algorithm performance with these elementary algorithmic compo-

nents. This is a base case to conduct further investigations on effective algo-

rithm compositions. With the elementary components in the GCOP model,

it can be observed that the performance of the composed new algorithms is

satisfying, confirming the effectiveness of the most basic components in local

search algorithms.

In addition, this paper investigates the learning of effective composition

of the basic algorithmic components for automated algorithm design within

the AutoGCOP framework. Two learning models have been studied based on

probabilistic reasoning on the behaviour of algorithmic components during

the search, comparing the effectiveness of two different learning perspectives.

6



In particular, the Markov chain based learning on the transition between

pairs of components is shown to be effective composing new algorithms au-

tomatically.

The contributions of the paper are threefold. First, it presents a new

general AutoGCOP framework to automatically compose elementary algo-

rithmic components, thus to support automated design of local search algo-

rithms. Second, within the consistent AutoGCOP framework, this paper con-

firms the satisfying performance of the elementary algorithmic components

for the vehicle routing problems with time window constraints (VRPTW).

Third, this paper evaluates reinforcement learning and Markov chain as a

means of learning to compose algorithmic components, investigating the ef-

fectiveness of learning the individual performance of algorithmic components

and learning the transition performance of algorithmic components. Results

within the general AutoGCOP framework confirm the superior performance

of the Markov chain model (which observes transition performance) to auto-

mate compositions of new local search algorithms, thus suggesting the ben-

efits of learning the transitions between algorithmic components.

Based on the GCOP model, this study investigates automated algorithm

composition within the proposed general AutoGCOP framework, using the

VRPTW as the domain example. As a widely investigated optimization prob-

lem in operational research (Wong, 1983), the basic vehicle routing problem

(VRP) (Fisher & Fisher, 1995) consists of ordering and assigning customer

delivery demands to a set of vehicles. The objective is to minimise the total

travel costs serving all the customers. Variants of VRP have been investi-

gated with complex constraints (Braekers et al., 2016) to address different

7



real-world scenarios. In the most widely studied VRPTW variant, customers

must be served within specified time intervals (Cordeau et al., 2007). Most

search algorithms in the literature adopt the weighted sum objective function

(Bräysy & Gendreau, 2005b) or the hierarchical objective function, where the

number of vehicles (routes) is minimised as the primary objective, followed by

minimising the total travel distance or travel time as the secondary objective

(Bräysy & Gendreau, 2005a).

In the rest of the paper, Section 2 presents the proposed general AutoG-

COP framework for automated algorithm composition. Section 3 describes

the proposed GCOP methods with learning models within AutoGCOP. Sec-

tion 4 presents the experimental studies addressing the concerned research

issues, followed by conclusions in Section 5.

2. The AutoGCOP Framework for Automated Algorithm Compo-

sition

The AutoGCOP is a new general framework to automatically compose

elementary algorithmic components in the extended GCOP model, thus to

support the automated design of local search algorithms. Within AutoG-

COP, algorithmic procedures are encapsulated as general procedures, allow-

ing various local search algorithms in the literature to be instantiated and

novel search algorithms composed automatically. Section 2.1 describes the

extended GCOP model. Section 2.2 presents the AutoGCOP framework and

the instantiation of local search algorithms from AutoGCOP. The differences

between AutoGCOP and existing frameworks in the automated composition

are discussed in Section 2.3.

8



2.1. An Overview of the Extended GCOP Model

In the novel GCOP model (Qu et al., 2020), various search algorithms

are broken into a finite set A of elementary algorithmic components a ∈ A.

These a serve as the domain of decision variables in GCOP, defining algorithm

design itself as a combinatorial optimisation problem. The solution space of

GCOP consists of algorithmic composition c upon a. Each c represents a

new algorithm for solving optimisation problems p, i.e. a solution s for p is

obtained by a corresponding algorithmic composition c, c→ s. The objective

of GCOP is to search for the optimal c∗ which produces the optimal s∗ for p,

i.e. c∗ → s∗. With the optimisation process for solving GCOP, compositions

c of a, i.e. design of various search algorithms, can be obtained automatically

for solving p.

In GCOP, there are two categories of algorithmic components a ∈ A1.0,

i.e. operators oi ∈ A1.0 o, and acceptance criteria aj ∈ A1.0 a, each with their

associated heuristic and parametric settings (Qu et al., 2020). The operators

oi modify values of the decision variables in s1 to generate a new solution

s2 in the search space of p. The acceptance criteria aj determine if s2 is

accepted in the search.

In building the AutoGCOP framework in Section 2.2, this paper extends

the elementary algorithmic components a ∈ A1.0 in the GCOP model with

termination criteria in local search algorithms. Based on the widely investi-

gated meta-heuristics (Blum & Roli, 2003) in the literature, various termi-

nation criteria have been modelled and added as basic procedure algorithmic

components in the extended GCOP model, i.e. tk ∈ At as shown in Table 1.

With the extended algorithmic component set in the GCOP model, the

9



Table 1: The algorithmic components tk ∈ At in the extended GCOP model.

At

tk with parameters h, n. h: measure of convergence;

n: number of iterations, CPU time or threshold.

tconstruct Terminate when a complete solution is constructed

tconverge(h) Terminate upon the convergence h

titeration(n) Terminate as the number of iterations reaches n

ttime(n) Terminate when the elapsed CPU time reaches n

tthreshold(r, q, n) Terminate when r increased by q reaches the threshold n

AutoGCOP general framework is built in Section 2.2 to support automated

algorithm composition. Note that both the acceptance criteria aj and termi-

nation criteria tk have been built to model elements across different search

algorithms into general algorithmic components, and can be used in designing

any local search algorithms for any problem p.

2.2. The AutoGCOP Framework with Extended GCOP Model

Based on the extended GCOP model, the AutoGCOP framework as

shown in Algorithm 1 is proposed to automatically design local search algo-

rithms by composing the basic algorithmic components oi ∈ A1.0 o, aj ∈ A1.0 a

and tk ∈ At. The underlying idea in building the AutoGCOP framework is

to model various local search meta-heuristics by encapsulating their com-

mon procedures (operations upon solutions s) as the most basic processes

in search algorithms. In particular, the following three most basic processes

have been modelled in local search algorithms.

• Select(A): select a basic component oi ∈ A1.0 o, aj ∈ A1.0 a or tk ∈ At.

• ApplyOperator(oi, s): return a new solution by applying an operator

oi to solution s.

10



• ApplyAcceptance(aj, snew, s): return solution snew if it is accepted by

an acceptance criterion aj; otherwise, return solution s.

As shown in Algorithm 1, AutoGCOP consists of the Construction proce-

dure and the Improvement procedure. These basic procedures compose the

corresponding elementary algorithmic components in the extended GCOP

model, i.e. decision variables in GCOP. The Construction procedure con-

structs a complete solution s for the optimisation problem p by composing

the corresponding component sets tk ∈ Atconstruct and oi ∈ Aoconstruct . The Im-

provement procedure improves s as an initial solution searching for the best

possible solution sbest, thus automates the composition of the corresponding

component sets tk ∈ Atimprove
∪ Atinner

, oi ∈ Aoimprove
and aj ∈ Aa.

With the general AutoGCOP framework, various local search algorithms

in the literature (Blum & Roli, 2003) can be defined in a unified template by

composing specific algorithmic components in the Improvement procedure as

shown in Table 2. In other words, these meta-heuristics can be seen as specific

GCOP solutions composed manually by selecting the specific algorithmic

components within AutoGCOP.

With the general AutoGCOP framework, a large number of new and

unseen local search algorithms can be designed automatically by searching

for solutions for GCOP, i.e. compositions c of oi ∈ A1.0 o, aj ∈ A1.0 a and

tk ∈ At. Different techniques and algorithms can be developed within this

general framework to compose algorithmic components from the respective

sets in the GCOP model. This can be seen as to automate the process

of human experts hand-picking algorithmic components during algorithm

design.

11



Algorithm 1 : The general AutoGCOP framework
Input: p: an optimisation problem,

At: a set of termination criteria tk, including a subset for Construction procedure

Atconstruct
, a subset for Improvement procedure Atimprove

and a subset for inner loops

of the Improvement procedure Atinner
.

Ao: a set of operators oi, including a subset for the Construction procedure

Aoconstruct
and a subset for the Improvement procedure Aoimprove

,

Aa: a set of acceptance criteria aj ,

Output: sbest: the best-recorded solution,

1: procedure Construction

2: s← An empty solution for p;

3: tkcon
← Select(Atconstruct

);

4: while tkcon
is not met do

5: oi ← Select(Aoconstruct);

6: s← ApplyOperator(oi, s);

7: end while

8: end procedure

9:

10: procedure Improvement

11: tkmain ← Select(Atimprove
);

12: while tkmain
is not met do

13: tkinner ← Select(Atinner );

14: while tkinner is not met do

15: oi ← Select(Aoimprove
);

16: aj ← Select(Aa);

17: snew ← ApplyOperator(oi, s);

18: s← ApplyAcceptance(aj , snew, s);

19: sbest ← Update the best-recorded solution;

20: end while

21: end while

22: end procedure

12



Table 2: Instantiation of widely used local search metaheuristics in the literature using different elementary

algorithmic components in the Improvement procedure within the unified AutoGCOP framework.

Local search

algorithms

Termination criteria, operators and acceptance criteria used in Algorithm 1

(x← y denotes use y as x)

Tabu search

tkmain
← tconverge(h) in line 11,

tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← atabu in line 17.

Simulated

annealing

tkmain
← tconverge(h) in line 11,

tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← asa in line 17.

Iterated local

search

tkmain
← tconverge(h) in line 11,

line 13-20 repeat with different tkinner
, oi and aj as follows:

firstly, tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← none in line 17;

secondly, tkinner
← tconverge(h) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← aoi in line 17;

thirdly, tkinner
← titeration(1) in line 13,

oi ← none in line 15,

aj ← aoi in line 17.

Variable

neighborhood

search

tkmain
← tconverge(h) in line 11,

line 13-20 repeat with different tkinner
, oi and aj as follows:

firstly, tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
based on a certain order in line 15,

aj ← none in line 17;

secondly, tkinner
← tconverge(h) in line 13,

oi ←Specific oi from Aoimprove
based on a certain order in line 15,

aj ← aoi in line 17;

thirdly, tkinner
← titeration(1) in line 13,

oi ← none in line 15,

aj ← aoi in line 17.

13



2.3. Differences between AutoGCOP and existing frameworks

Generally, the AutoGCOP framework is built on the extended GCOP

model, supporting flexible exploration in algorithmic compositions of ele-

mentary algorithmic components. Existing frameworks in the automated

composition concern only a subset of algorithmic components in GCOP, pro-

viding limited scope for automated algorithm design.

The framework that most closely resembles the AutoGCOP framework

is the selection hyper-heuristics (SHHs) (Pillay & Qu, 2018), which can be

seen as automatically design of search algorithms by freely composing a set

of low-level heuristics chosen by human experts. However, the generality of

SHH is limited when compared to AutoGCOP in terms of two aspects as

follows:

• The algorithmic components. The SHH selects pre-defined problem-

specific low-level heuristics rather than elementary algorithmic compo-

nents (i.e. basic operators, acceptance criteria and termination crite-

ria). The low-level heuristics can be seen as compound components

combining and accumulating the basic components in GCOP. The re-

sulting algorithms of SHH are therefore only a subset of algorithms

which can be composed of basic algorithmic components within Auto-

GCOP.

• The components to manage algorithmic components. The SHH frame-

work usually applies a selection strategy to manage low-level heuristics

(Özcan et al., 2008) and uses a pre-defined acceptance criteria. There-

fore, the SHH framework is insufficient to manage different types of

14



basic components in GCOP, i.e. basic operators, acceptance criteria

and termination criteria.

These above issues not only limit the number of local search algorithms

that can be composed with SHH but also involve more human decisions while

selecting and configuring the low-level heuristics.

3. Learning in AutoGCOP

With the proposed new AutoGCOP framework, this work investigates

different GCOP methods which optimise the elementary algorithmic compo-

nents oi ∈ Ao, aj ∈ Aa and tk ∈ At as shown in Section 3.1 to automatically

design new algorithms. The investigations in particular focus on 1) the role

of learning in composing basic components; and 2) the behaviour (i.e. per-

formance) of basic components. AutoGCOP provides a unified common tem-

plate to support such investigations. The widely studied VRPTW is tested

to demonstrate the effectiveness of the GCOP methods.

With AutoGCOP, two learning models, namely Individual Performance

(IP) learning and Transition Performance (TP) learning in Section 3.2, have

been investigated. Based on probabilistic reasoning, they learn to compose

oi ∈ Aoimprove
intelligently, i.e. learning-based methods Select(Aoimprove

) (line

15, Algorithm 1). IP learning focuses on the performance of each oi using

a simple probability matrix based on the concept of reinforcement learning.

TP learning focuses on the transition between pairs of components. It is

based on Markov chain which applies a transition probability matrix, where

each oi is a state.The difference between IP and TP is that TP conducts a

more detailed learning, where the performance of a specific component can be

15



seen as the sum of the performance of other possible components transferred

to this component.

In comparison, two simple strategies with Select(Aoimprove
) are tested as

the baseline GCOP methods to demonstrate the effectiveness of the learning

models, including a random strategy (RN) which chooses oi with equal prob-

ability and a random gradient strategy (RG) which chooses a random oi and

continues to apply it as long as it is successful. More specifically, the simple

random strategy does not attempt to learn from the behaviour of oi, while

the random gradient strategy can be considered as using a reinforcement

learning mechanism with the shortest memory length possible to exploit the

currently selected oi as long as it is successful (Lissovoi et al., 2020).

3.1. Component Sets

To explore the insights on designing effective algorithm compositions with

elementary algorithmic components, this research investigates a subset of

the most basic components operators oi ∈ A1.0 o and acceptance criteria

aj ∈ A1.0 a in the GCOP model (Qu et al., 2020) and a subset of termination

criteria tk ∈ At in Table 1, as shown in Table 3, within the AutoGCOP

framework. The focus is on the behaviour of operators oi ∈ Aoimprove
(line

15, Algorithm 1), with specific components fixed in other procedures.

16



Table 3: The component sets considered in the AutoGCOP framework, i.e. termination criteria tk ∈ At,

operators oi ∈ Ao, and acceptance criteria aj ∈ Aa.

Component set At Termination criteria tk in At

Atconstruct tconstruct: terminate when a complete candidate solution is constructed.

Atimprove
titeration(n): terminate as the number of iterations reaches n.

Atinner
titeration(1): terminate after conducting one iteration.

Component set Ao

Operators oi in Ao with parameters as defined in GCOP (Qu et al.,

2020)

h1: heuristics to choose the customer with the highest proximity to the

most recently inserted customer based on distance and time (Walker

et al., 2012).

h2: heuristics to choose the next position of the most recently inserted

customer (Walker et al., 2012).

h3: random strategy.

Aoconstruct oins(1, h1, h2): insert one customer chosen by h1 to the position se-

lected by h2.

Aoimprove

oinxchg(1, 1, h3): swap two customers chosen by h3. Selected customers

are within one route.

obwxchg(1, 1, h3): swap two customers chosen by h3. Selected customers

are from different routes.

oinins(1, h3, h3): insert one customer chosen by h3 to other position se-

lected by h3 within the same route.

obwins(1, h3, h3): insert one customer chosen by h3 to other position se-

lected by h3 in a different route.

orr(10, h3, h3): remove 10% customers chosen by h3, and re-assign

them using h3.

2-opt∗: swap the end sections of two routes to generate two new routes

(Burke et al., 2010).

Component set Aa Acceptance criteria aj in Aa

Aa anaive: accept all improvements; worse solutions are accepted with a

probability of 0.5 (Burke et al., 2010).

17



Among the most basic oi ∈ Aoimprove
adopted in the Improvement proce-

dure, 2-opt∗ is a problem-specific compound operator designed manually in

the literature, which showed to be especially effective for VRPTW (Potvin

& Rousseau, 1995). We therefore investigate the performance of oi grouped

into two sets as follows in the experiments:

• Obasic = {oinxchg, obwxchg, oinins, obwins, orr};

• Ovrp−basic = Obasic ∪ {2-opt∗}.

3.2. Learning models

The GCOP methods with the proposed learning models in Select(Aoimprove
)

are named as the IP-GCOP method learning individual oi ∈ Aoimprove
, and

the TP-GCOP method learning the transition between oi. The purpose of

the learning models is to observe the behaviour of oi ∈ Aoimprove
in Table 3,

thus to predict their performance and choose the most appropriate without

human involvement to solve the problem adaptively.

Based on the general AutoGCOP framework in Algorithm 1, the GCOP

methods only adds the learning model M for selecting oi ∈ Aoimprove
(line 15,

Algorithm 1) and the method to update the learning model Update() after

updating sbest (line 19, Algorithm 1).

3.2.1. Learning model in IP-GCOP

A reinforcement learning method interacts with the environment by trial

and error and takes actions given a state based on a policy, aiming to ac-

cumulate reward relating to its goal (Sutton et al., 1998). The IP-GCOP

method follows a simple reinforcement learning scheme, i.e., a simple reward

18



and penalty scheme, to learn the individual performance of elementary algo-

rithmic components by updating the reward and penalty of each component

through sequences of actions (i.e., selection of operators) to adapt to the

scenarios of the search environment. A probability matrix is used as a fun-

damental model to record the individual performance (i.e., the reward and

penalty) of elementary algorithmic components, supporting a reinforcement

scheme to update the reward and penalty of each component based on its

performance during the search. The promising algorithmic components can

be selected and applied based on the probability matrix during the search.

The IP-GCOP method uses a simple 2 × n probability matrix MIP , to

record the accumulated performance of each individual oi (i = 1, ..., n, n =

|Aoimprove
|) when a better solution than the current best is found. The two

rows record the reward and penalty of each oi, respectively.

At each iteration of the Improvement procedure, an oi ∈ Aoimprove
is se-

lected using MIP . With the learning models, oi with better-accumulated

performance in M are chosen for the next iteration using the roulette wheel

selection in the proposed GCOP methods. The accumulated individual per-

formance of each oi is calculated based on the likelihood (L) of each oi achiev-

ing improvement in the next iteration:

Li =
MIP [1, i]

MIP [1, i] + MIP [2, i]
(1)

The IP-GCOP method uses a roulette wheel selection strategy to select the

next ol with a probability PIP (l) in proportion to L(i):

PIP (l) =
Ll∑n
k=1 Lk

(2)

At the end of each iteration, the learning model MIP is updated using

19



Update() based on the performance of the selected oi ∈ Aoimprove
depending

on if oi leads to a new best solution sbest during the search. In MIP , the oi is

rewarded by increasing its corresponding value in the first row, i.e. MIP [1, i].

Otherwise, oi is punished by increasing its corresponding value in the second

row, i.e. MIP [2, i].

3.2.2. Learning model in TP-GCOP

A Markov chain is a statistical model describing a sequence of states with

certain probabilities to transfer between each other (Kemeny & Snell, 1976).

A transition probability matrix describes the transition probabilities between

states.

The TP-GCOP method is based on the Markov chain combining with a

simple reinforcement scheme. The TP-GCOP method uses a Markov chain

model to represent transitions between elementary algorithmic components

and a transition matrix to record the transition probabilities of pairs of al-

gorithmic components statistically. The transition matrix supports a simple

reinforcement scheme to learn the transition performance between algorith-

mic components and update the transition probabilities in the matrix, thus

support the selection of the promising algorithmic components during the

search.

In the TP-GCOP method, a n× n transition probability matrix MTP is

built based on the concept of Markov chain (Kemeny & Snell, 1976), regard-

ing each oi ∈ Aoimprove
as a state. The values in MTP record the performance

of one oi transferring to another, learning the transition performance of pairs

of oi and ol which contributes to a new best solution. Given the current oi,

the TP-GCOP uses a roulette wheel selection strategy to select the next ol

20



with a probability PTP (l) in proportion to MTP [i, l]:

PTP (l) =
MTP [i, l]∑n

k=1 MTP [i, k]
(3)

In MTP , at the end of each iteration, a transition from oi to ol leading

to a new better sbest is rewarded by increasing the corresponding value of

MTP [i, l].

3.2.3. Update mechanisms for learning models

The update strategy on M is shown to be an important factor in learn-

ing algorithm design in the proposed GCOP methods. In this work, a set

of Update() methods as shown in Table 4 is tested to analyse the effective-

ness of a set of factors that may influence the performance of oi during the

optimisation search.

Table 4: A set of update strategies to be tested in the proposed GCOP methods, i.e. Update() for updating

the learning models M .

Update() Strategies to update the corresponding value in M

Simple() By 1

Linear() By the index of the current iteration

Improve() By the amount of improvement / deterioration in the

current iteration

NoImprove() By the number of iterations since sbest has not been up-

dated

NoCall() For each oi, by the number of iterations since oi has been

last called

3.2.4. An Illustrative Example

Given three operators (denoted by o1,o2,o3), assume a search process with

six iterations have been conducted within the AutoGCOP framework in Al-

21



gorithm 1. Each oi is determined by Select(Aoimprove
) in Algorithm 1 with

M . Simple() in Table 4 is adopted in Update() to update M . Initially, the

values in M are all set to 1, thus each oi is chosen with an equal probability.

With MIP , assume o2 in the first iteration generates a better solution

s1, thus MIP [1, 2] for o2 is increased by 1. In the next iteration, o2 is more

likely to be selected applying roulette wheel on MIP . Assume o1 is selected,

generating a non-improving solution s2, so MIP [2, 1] for o1 is increased.

This is repeated in the following iterations, where oi with better-accumulated

performance as recorded in MIP for finding new best solutions is more likely

to be selected. Other operators, however, have the potential to be selected

as well but with a smaller probability. Figure 1 presents how MIP is updated

during six iterations. With MIP , in the seventh iteration, o2 with a higher

probability in MIP is more likely to be selected.

With MTP , the learning starts from the second iteration. After o2, assume

o1 is selected using MTP , generating a non-improving solution s2, so there

is no reward to update MTP [2, 1], i.e. the transition from o2 to o1. Using

roulette wheel, each oi has the same probability to be chosen after o1. Assume

o3 is selected leading to a better solution s3. MTP [1, 3] is thus increased by

1 to reward the transition from o1 to o3. In the following iterations, assume

MTP [3, 2] and MTP [3, 1] are updated to reward the transitions from o3 to

o2 and o3 to o1 after selecting o2, o3 and o1. Figure 2 presents how MTP is

updated during six iterations. Checking the element MTP [1, 3] suggests o3

has a higher probability to be selected in the next iteration.

22



Figure 1: The MIP updated during six iterations

Figure 2: The MTP updated during six iterations

!! !" !#
!! 1 1 1
!" 1 1 1
!# 1 1 1

!! → !" selected
!! !" !#

!! 1 1 1
!" 1 1 1
!# 1 1 1

!! !" !#
!! 1 1 2
!" 1 1 1
!# 1 1 1

Initial "$%

#! is not better 
than ##$%&

!" → !' selected

#' is better than 
##$%&

"$% after the 
2&' iteration

"$% after the 
3(' iteration

…
…

!! !" !#
!! 1 1 2
!" 1 1 1
!# 2 2 1

"$% after six 
iterations

4. Experimental Studies

The experimental investigations aim to address the two research issues, 1)

assessing the performance of basic oi in the AutoGCOP framework in Section

4.1, and 2) analysing the automated composition of oi in the proposed GCOP

methods using the learning models in Section 4.2. In evaluating the proposed

learning models, the influence of different Update() methods is also analysed.

Section 4.3 compares the results of the proposed GCOP methods with the

published best results by the state-of-the-art methods.

The VRPTW concerned in this work considers the dual objectives of min-

imising the number of vehicles (NV) and minimising the total travel distance

(TD). A weighted sum objective function is adopted from the literature to

evaluate VRPTW solutions s as shown in Equation (4), where c is set to

1000 empirically (Walker et al., 2012).

f(s) = c×NV + TD (4)

23



The investigations are conducted on two sets of the widely studied bench-

mark VRPTW, i.e. the Solomon 100 customers set (Solomon, 1987) and

the Homberger 1000 customer set (Gehring & Homberger, 1999) as shown in

Table 5, covering different instance characteristics. In particular, customers

in type-R instances are randomly distributed geographically. In type-C in-

stances, customers are distributed in clusters. RC type instances are a mix

of them.

Table 5: Characteristics of the benchmark VRPTW instances.

Benchmark Name Size Vehicle Capacity Type

Solomon R101 100 25 200 R

Solomon R201 100 25 1000 R

Solomon C101 100 25 200 C

Solomon C206 100 25 700 C

Solomon RC103 100 25 200 RC

Solomon RC207 100 25 1000 RC

Homberger R1-10-1 1000 250 200 R

Homberger R2-10-6 1000 250 1000 R

Homberger C1-10-8 1000 250 200 C

Homberger C2-10-1 1000 250 700 C

Homberger RC1-10-5 1000 250 200 RC

Homberger RC2-10-1 1000 250 1000 RC

4.1. Performance of the Basic Components

To assess the performance of composing the basic algorithmic components

oi in the AutoGCOP framework, the algorithm performance of each oi in

Ovrp−basic ⊆ Aoimprove
(as defined in Section 3.1) is compared with a random

24



GCOP method (i.e. RN-GCOP) with Ovrp−basic in Section 4.1.1. The same

number of evaluations is set as the stopping condition, i.e. titeration(n) is

adopted as tkmain in Algorithm 1, for all methods.

The performance of the elementary algorithmic components Obasic ⊆

Aoimprove
is then compared against the basic problem specific compound al-

gorithmic components Ovrp−basic ⊆ Aoimprove
. The performance of RN-GCOP

with Obasic is compared against the same method with Ovrp−basic, which in-

cludes a compound operator 2-opt∗ based on the solution quality in Section

4.1.2 and the algorithm convergence in Section 4.1.3. The computation time

for 100 customer instances and 1000 customer instances are set to 2 CPU

hours and 4 CPU hours, respectively.

4.1.1. Performance evaluation on composing algorithmic components

Figure 3 and Figure 4 show the difference in solution value of each opera-

tor in the operator set Ovrp−basic against the random RN-GCOP method with

Ovrp−basic for instances with 100 and 1000 customers, respectively. Compar-

ing with the algorithm performance with each of the operators, RN-GCOP

achieves better overall performance. Only for instance RC103 and C1-10-8,

obwins obtains better results than other methods. The problem-specific com-

pound operator 2-opt∗ achieves better performance for instance C2-10-1. The

algorithm performance of different operators varies according to problem in-

stances. Among the operators in Ovrp−basic, the performance of obwins, orr and

2-opt∗ (denoted as o3, o4 and o5, respectively) are relatively better than

others.

To further investigate whether the worse-performing operators oinxchg, o
bw
xchg

and oinins (denoted by o0, o1 and o2) are useful for all problem instances,

25



Figure 3: Comparison in the average solution objective value (out of ten runs) between each operator in

Ovrp−basic against RN-GCOP with Ovrp−basic on the 100-customer instances. o0: oinxchg . o1: obwxchg . o2:

oinins. o3: obwins. o4: orr. o5: 2-opt∗.

0

10000

20000

30000

40000

50000

R101 R201 C101 C206 RC103 RC207

So
lu

ti
o

n
 o

b
je

ct
iv

e 
va

lu
e

o0 o1 o2 o3 o4 o5 RN-GCOP

Figure 4: Comparison in the average solution objective value (out of ten runs) between each operator in

Ovrp−basic on the 1000-customer instances. o0: oinxchg . o1: obwxchg . o2: oinins. o3: obwins. o4: orr. o5: 2-opt∗.

0

100000

200000

300000

400000

500000

R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5RC2-10-1

So
lu

ti
o

n
 o

b
je

ct
iv

e 
va

lu
e

o0 o1 o2 o3 o4 o5 RN-GCOP

26



the performance of RN-GCOP with Ovrp−basic is compared against the same

method with a subset of Ovrp−basic which excludes the worse-performing op-

erators. The same number of evaluations is set as the stopping condition for

each method.

Table 6 shows the comparison in solution objective value between RN-

GCOP with different operator sets. The results support the observations

in Figure 3 and Figure 4 that the performance of different operators can

be relatively different according to problem instances. RN-GCOP with the

six operators Ovrp−basic (denoted as RN6) achieves better results for the in-

stance R2-10-6, C2-10-1 and RC2-10-1. This supports that the three worse-

performing operators are useful in some cases.

Table 6: Solution quality of RN-GCOP with different operator sets. RN3: RN-GCOP with a subset of

Ovrp−basic (which excludes three worse-performing operators). RN6: RN-GCOP with six operators in

Ovrp−basic. Average of objective function values out of 10 runs are presented.

Instance R101 R201 C101 C206 RC103 RC207

RN3 21750.22 5533.27 11978.00 3690.10 14192.18 5300.13

RN6 23047.82 5631.21 13103.39 3752.15 14675.39 5432.32

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

RN3 214630.66 85006.18 245291.17 106239.80 185248.76 90826.98

RN6 218268.34 81627.15 249231.61 95457.94 188173.73 85106.16

In general, it is better to combine operators during the search than to use

one operator in all cases. This confirms the effectiveness of the idea of GCOP

which utilises algorithmic components with complementary strengths. The

difference in the performance of operators requires effective GCOP methods,

such as learning, to adapt to different problem instances in the automated

composition process.

27



4.1.2. Performance evaluation on solution quality

Table 7 presents the results of the random RN-GCOP method with dif-

ferent operator sets Ovrp−basic and Obasic. It is obvious that RN-GCOP with

Ovrp−basic outperforms that with Obasic in all instances.

Table 7: Solution quality of RN-GCOP with different operator sets Ovrp−basic and Obasic using the same

computational time. RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with Ovrp−basic. Average

of objective function values out of 10 runs are presented.

Instance R101 R201 C101 C206 RC103 RC207

RN basic 24163.07 5551.13 14842.15 3713.68 14592.45 5392.30

RN vrp 21770.72 5514.45 11922.23 3665.37 13534.16 5232.89

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

RN basic 270650.70 97718.23 330129.70 191309.90 201882.50 101099.60

RN vrp 213375.90 79577.04 239243.90 90495.82 185281.10 82816.58

Figure 5 shows the improvement from Ovrp−basic in RN-GCOP against

Obasic. Although improvements vary among instances, RN-GCOP with Ovrp−basic

is better on solving larger instances of 1000 customers. Among the different

types of customer distributions, the performance of Ovrp−basic is relatively

better for solving instances of type-C compared to Obasic, although the im-

provements vary between type-C and type-R. Improvements on type-RC of

mixed customer distributions are smaller with Ovrp−basic, i.e. with the 2-opt∗

operator.

4.1.3. Performance evaluation on algorithm convergence

Figure 6 and Figure 7 present further detailed convergence of RN-GCOP

with different operator sets for different types of instances, mapping the final

results of type-C, type-R and type-RC instances in Figure 5.

28



Figure 5: The improvement of the random GCOP method with Ovrp−basic (denoted as RN vrp) compared

to the same method with Obasic (denoted as RN basic). The amount of Improvements = (RN basic −

RN vrp)/RN basic.

9.90%

0.66%

19.67%

1.30%

7.25%

2.96%

21.16%
18.56%

27.53%

52.70%

8.22%

18.08%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Im
p
ro
ve
m
e
n
t

Instance

It is shown in Figure 7 that in general, for type-C instances, the gaps are

bigger, followed by type-R instances as reflected in both Figure 5 and Fig-

ure 7. For type-RC instances, the gaps are much smaller. RN-GCOP with

Ovrp−basic converges faster and outperforms RN-GCOP with Obasic through-

out the search for all types of instances.

However, RN vrp is not always better than RN basic, e.g. Figure 6 (b)

and (f) suggest RN basic may reach satisfactory performance with the el-

ementary algorithmic components oi. As reflecting in both Figure 5 and

Figure 6 (b) and (f), the gaps when the algorithms converge are relatively

small.

29



10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

2

2.5

3

3.5

4

4.5

5

5.5
O

b
je

c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n
10

4 Convergence Curve (Instance0)

RN_basic

RN_vrp

(a) Instance R101

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance1)

RN_basic

RN_vrp

(b) Instance R201

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance2)

RN_basic

RN_vrp

(c) Instance C101

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

2000

4000

6000

8000

10000

12000

14000

16000

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

Convergence Curve (Instance3)

RN_basic

RN_vrp

(d) Instance C206

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance4)

RN_basic

RN_vrp

(e) Instance RC101

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance5)

RN_basic

RN_vrp

(f) Instance RC207

Figure 6: Convergence curves of RN-GCOP with different operator sets on the 100 customer instances

(computation time: 2 CPU hours). RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with

Ovrp−basic.

4.1.4. Discussions

In summary, with the most basic algorithmic components, GCOP meth-

ods can obtain satisfying performance, reaching performance as good as us-

ing problem-specific compound components on some benchmark instances.

30



10
0

10
1

10
2

10
3

10
4

Index of iteration

2

2.5

3

3.5

4

4.5

5
O

b
je

c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n
10

5 Convergence Curve (Instance6)

RN_basic

RN_vrp

(a) Instance R1-10-1

10
0

10
1

10
2

10
3

10
4

Index of iteration

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance7)

RN_basic

RN_vrp

(b) Instance R2-10-6

10
0

10
1

10
2

10
3

10
4

Index of iteration

2.5

3

3.5

4

4.5

5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance8)

RN_basic

RN_vrp

(c) Instance C1-10-8

10
0

10
1

10
2

10
3

10
4

Index of iteration

1

1.5

2

2.5

3

3.5

4

4.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance9)

RN_basic

RN_vrp

(d) Instance C2-10-1

10
0

10
1

10
2

10
3

10
4

Index of iteration

1.5

2

2.5

3

3.5

4

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance10)

RN_basic

RN_vrp

(e) Instance RC1-10-5

10
0

10
1

10
2

10
3

10
4

Index of iteration

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f 

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance11)

RN_basic

RN_vrp

(f) Instance RC2-10-1

Figure 7: Convergence curves of RN-GCOP with different operator sets on the 1000 customer instances

(computation time: 4 CPU hours). RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with

Ovrp−basic.

Larger instances may require a longer time for the most basic components to

reach better results compared to those obtained using specifically designed

components.

The algorithm performance of each operator is different according to prob-

31



lem instances. For type-RC instances, the improvements on solution quality

from problem-specific compound components are relatively small. The most

basic components should be given a longer computation time to reach compa-

rable solution quality for type-R instances. For type-C instances, particularly

for larger instances, the improvement in solution quality and computation

time from problem-specific components are relatively significant.

The problem-specific compound component 2-opt∗ swaps the end sec-

tions of two routes thus can more likely retain better sections in the solution,

moving the search towards promising areas in the solution space. The im-

provements are due to the domain knowledge used to devise 2-opt∗. The

most elementary components make only the most basic moves in the search

space, and are applicable to different problems. Their generality needs to

be compensated by more computational time to reach solutions obtained by

2-opt∗. In the following performance analysis, Ovrp−basic is employed to assess

the learning models.

4.2. Effectiveness of the Learning Models

To assess how well the proposed learning models in the proposed GCOP

methods, IP-GCOP and TP-GCOP are compared with RN-GCOP and a

random gradient GCOP method (RG-GCOP) with the same component set

first. A set of Update() methods to update the learning model is then tested

to identify their influence on learning effectiveness.

4.2.1. Comparison with Random GCOP Methods

The best and average results obtained from IP-GCOP and TP-GCOP are

compared with those from RN-GCOP and RG-GCOP in Table 8. Both learn-

32



ing models are embedded with Simple() update methods. The same number

of evaluations is set as the stopping condition, i.e. titeration(n) is adopted as

tkmain in Algorithm 1, for all GCOP methods. Similar computational time is

observed for these approaches. Overall, TP-GCOP performs better than IP-

GCOP, which is better than RN-GCOP and RG-GCOP in most instances.

Only for one small instance, RG-GCOP obtains better results than other

methods.

To analyse whether the differences observed between IP-GCOP and TP-

GCOP are statistically significant, the Lilliefors test is used, shown that they

do not always follow a normal distribution. The Mann–Whitney–Wilcoxon

test is therefore performed with a 95% confidence level to conduct the pair-

wise comparisons between the two GCOP methods. Table 9 shows that TP-

GCOP has a better overall performance compared to IP-GCOP, especially

for solving large instances.

The proportion each operator oi is called in the best algorithm compo-

sitions by different GCOP methods are compared on two example instances

C101 and C206, in Figure 8 and Figure 9, respectively. The oi selected in

IP-GCOP and TP-GCOP are highly different, indicating the algorithm com-

positions, i.e. new algorithms automatically designed with the two learning

models, are highly different. Both learning models identify 2-opt∗ (denoted

as o5) as the most selected component in the best algorithms, although it is

automatically selected more often by TP-GCOP compared to IP-GCOP.

4.2.2. Influence of Different Update Methods to the Learning Models

The influence of different Update() methods as specified in Section 3.2

is examined to identify the best intra-domain general method (of the per-

33



Table 8: Comparison between GCOP methods with different learning (IP-GCOP and TP-GCOP) against

the random RN-GCOP and RG-GCOP method. Best and average of objective function values out of 31

runs are presented.

Instance R101 R201 C101 C206 RC103 RC207

RN

Best 22941.88 5569.55 12027.70 3709.01 14609.87 5355.37

AVG 23055.69 5637.15 13030.92 3752.32 14684.06 5437.76

AVG Time(s) 176 436 175 316 169 452

RG

Best 21914.76 5584.46 12158.35 3704.71 14622.91 5385.61

AVG 22946.41 5630.69 12802.19 3756.83 14687.69 5444.48

AVG Time(s) 175 436 176 317 169 452

IP

Best 21792.20 5481.94 10828.94 3707.82 14545.99 5325.75

AVG 22027.43 5592.05 11823.04 3737.37 14618.26 5384.51

AVG Time(s) 225 818 261 579 223 809

TP

Best 20683.49 5476.38 10828.94 3708.99 13523.36 5302.97

AVG 21599.58 5600.57 11072.53 3738.01 14538.34 5368.54

AVG Time(s) 234 1069 284 598 234 970

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

RN

Best 214494.95 80507.45 238474.41 92016.80 185565.28 81506.01

AVG 218091.44 81341.35 248982.83 94935.60 188031.34 84957.79

AVG Time(s) 225 1044 280 509 2142 799

RG

Best 192876.50 72191.55 216253.93 79846.80 176046.18 73084.74

AVG 206357.04 78072.89 235120.04 89442.99 183384.09 79385.30

AVG Time(s) 224 1026 281 500 210 802

IP

Best 187732.06 71466.97 184622.87 63594.81 175301.01 71337.83

AVG 198588.32 74280.80 213053.01 70601.03 179682.39 74856.27

AVG Time(s) 257 1578 277 610 235 918

TP

Best 160065.59 62520.70 155129.10 50841.53 152887.15 61935.10

AVG 164202.91 63939.58 173015.06 52943.00 162072.30 63673.53

AVG Time(s) 221 1785 231 794 225 1133

formance across multiple instances from the same domain) for updating the

learning model in IP-GCOP and TP-GCOP, respectively. All methods are

34



Table 9: Performance comparison between IP-GCOP and TP-GCOP using the Mann–Whitney–Wilcoxon

test. The comparison between TP ↔ IP is shown as +, -, or ∼ when TP-GCOP is significantly better

than, worse than, or statistically equivalent to IP-GCOP, respectively.

Instance R101 R201 C101 C206 RC103 RC207

TP ↔ IP ∼ + ∼ + + +

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

TP ↔ IP + + + + + +

Figure 8: Proportion of each operator called in the best algorithm compositions obtained by IP-GCOP

and TP-GCOP, compared with RN-GCOP and RG-GCOP, for solving instance C101.

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

o0 o1 o2 o3 o4 o5

(a) RN

o0
16%

o1
16%

o2
17%

o3
17%

o4
17%

o5
17%

o0 o1 o2 o3 o4 o5

(b) RG

o0
5%

o1
20%

o2
5%

o3
20%o4

10%

o5
40%

o0 o1 o2 o3 o4 o5

(c) IP

o0
3%

o1
5%

o2
3%

o3
13%

o4
6%

o5
70%

o0 o1 o2 o3 o4 o5

(d) TP

Figure 9: Proportion of each operator called in the best algorithm compositions obtained by IP-GCOP

and TP-GCOP, compared with RN-GCOP and RG-GCOP, for solving instance C206.

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

o0 o1 o2 o3 o4 o5

(a) RN

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

o0 o1 o2 o3 o4 o5

(b) RG

o0
7%

o1
19%

o2
11%

o3
20%

o4
15%

o5
28%

o0 o1 o2 o3 o4 o5

(c) IP

o0
5%

o1
24%

o2
5%o3

8%o4
25%

o5
33%

o0 o1 o2 o3 o4 o5

(d) TP

35



evaluated for the same number of times, to compare the results out of ten

runs.

The results across different instances differ by a large scale, are therefore

normalised into a range [0, 1]. The normalisation scheme in (Di Gaspero

& Urli, 2012), as shown in Equation (5), is used, where x(i) represent the

objective function values calculated using Equation (4), and xbest and xworst

is the best and worst results obtained, respectively. An intra-domain per-

formance score is then calculated as the sum of normalised results over all

instances. The normalised scores of the learning models with different update

strategies in Table 10 show that TP-GCOP with Simple() obtained the best

intra-domain performance. For IP-GCOP, the most suitable update method

is Linear().

xnorm(i) =
x(i)− xbest

xworst − xbest

. (5)

Table 10: The intra-domain scores for IP-GCOP and TP-GCOP with different update methods. The best

results (smallest values) for each method are in bold.

Update() IP-GCOP TP-GCOP

Simple() 28.34 15.52

Improve() 20.98 52.31

NoCall() 23.79 23.31

Linear() 16.14 43.64

NoImprove() 21.68 21.51

Further analysis on the intra-domain performance scores of the update

strategies using the Lilliefors test showed that they do not always follow a nor-

36



mal distribution. The Mann–Whitney–Wilcoxon test is therefore performed

with a 95% confidence level to conduct the pairwise comparisons between

the two GCOP methods with different update strategies statistically.

Table 11 shows that IP-GCOP with Linear() has a better overall per-

formance compared to other update methods, especially for solving large

instances. For TP-GCOP in Table 12, Simple() led to better overall perfor-

mance, especially for solving small instances.

Table 11: Pairwise performance comparison between different Update() methods with IP-GCOP using

the Mann–Whitney–Wilcoxon test. The comparison between A ↔ B is shown as +, -, or ∼ when A is

significantly better than, worse than, or statistically equivalent to B, respectively.

Update() Instance

A ↔ B R101 R201 C101 C206 RC103 RC207

Linear ↔ Simple ∼ ∼ + ∼ + ∼

Linear ↔ Improve ∼ ∼ ∼ − ∼ ∼

Linear ↔ NoCall ∼ ∼ + ∼ + ∼

Linear ↔ NoImprove ∼ ∼ ∼ ∼ ∼ ∼

Update() Instance

A ↔ B R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

Linear ↔ Simple + + + + + +

Linear ↔ Improve + + + + + +

Linear ↔ NoCall + + + + + +

Linear ↔ NoImprove ∼ ∼ ∼ + ∼ ∼

4.3. Comparison with the Best-known Approaches

The best solutions from TP-GCOP with Simple() and IP-GCOP with

Linear() are compared with the published best results produced by various

37



Table 12: Pairwise performance comparison for the TP-GCOP with different update methods using the

Mann–Whitney–Wilcoxon test.

Update() Instance

A ↔ B R101 R201 C101 C206 RC103 RC207

Linear ↔ Simple + + ∼ ∼ ∼ ∼

Linear ↔ Improve + ∼ + ∼ ∼ ∼

Linear ↔ NoCall + + ∼ ∼ ∼ ∼

Linear ↔ NoImprove ∼ ∼ ∼ ∼ ∼ +

Update() Instance

A ↔ B R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

Linear ↔ Simple + − ∼ + ∼ +

Linear ↔ Improve ∼ ∼ ∼ ∼ ∼ ∼

Linear ↔ NoCall + ∼ + + ∼ −

Linear ↔ NoImprove ∼ − ∼ − − −

state-of-the-art methods. In the VRP literature, the results of the best-

known solutions for VRPTW are usually ranked using a hierarchical objective

function, considering the number of vehicles NV as the primary objective and

the total travel distance TD as the second objective (Bräysy & Gendreau,

2005a). In this study, a solution with lower NV is considered better than the

others with higher NV. For those solutions with the same NV, the lower TD

the better.

Table 13 shows the results of the proposed GCOP methods compared to

the best results reported in the literature by different approaches. It can be

seen that the proposed GCOP methods can obtain competitive results in the

number of vehicles (i.e. NV) in most small instances, especially on instance

C101, where both of the proposed methods obtained the best solution in the

38



literature.

It should be noted that the results from the proposed GCOP methods

are obtained by automatically designed new algorithms without any human

involvement, while the best results in the literature are obtained by different

methods specifically designed for VRPTW. The main research objective in

this study is not to beat the tailor-made state-of-the-art approaches by yet

another algorithm, but to investigate the learning in automatic design of new

algorithms by composing only the most basic algorithmic components within

the general AutoGCOP framework.

Table 13: Comparison of solution quality between the published best-known results and the best solutions

from IP-GCOP and TP-GCOP out of ten runs. NV denotes the number of vehicles. TD denotes the total

travel distance. Results that are better than or the same as the best known are in bold.

Instance
Best-known results IP-GCOP TP-GCOP

NV TD Ref. NV TD NV TD

R101 19 1650.80 (SINTEF, a) 19 1653.76 19 1654.07

R201 4 1252.37 (SINTEF, a) 4 1624.12 4 1443.91

C101 10 828.94 (SINTEF, a) 10 828.94 10 828.94

C206 3 588.49 (SINTEF, a) 3 754.75 3 671.54

RC103 11 1261.67 (SINTEF, a) 12 1401.44 12 1399.13

RC206 3 1061.14 (SINTEF, a) 4 1297.91 4 1258.75

R1-10-1 100 53412.11 (SINTEF, b) 101 58815.26 100 62024.51

R2-10-6 19 29978.02 (SINTEF, b) 21 41170.48 21 40851.73

C1-10-8 92 42629.91 (SINTEF, b) 103 44867.96 106 47013.85

C2-10-1 30 16879.24 (SINTEF, b) 32 18141.82 33 18149.23

RC1-10-5 90 45069.37 (SINTEF, b) 95 53594.62 97 54482.19

RC2-10-1 20 30276.27 (SINTEF, b) 29 33446.19 28 32627.48

39



5. Conclusions

Based on the General Combinatorial Optimisation Problem (GCOP) model

which defines the problem of algorithm design as a combinatorial optimisa-

tion problem, new algorithms can be designed automatically by searching in

a space of compositions of elementary algorithmic components. In this paper,

a general AutoGCOP framework is built to support the automatic compo-

sition of elementary algorithmic components based on the general GCOP

model, thus to design local search algorithms automatically.

With the encapsulated common processes in local search algorithms, Au-

toGCOP allows instantiations of existing algorithms designed by manually

determining algorithmic components. That is, a large number of existing

local search algorithms can be seen as specific solutions of GCOP imple-

mented in AutoGCOP. Furthermore, the AutoGCOP framework underpins

the automated design of new and unseen algorithms by using different GCOP

methods which compose the algorithmic components automatically.

Based on the AutoGCOP framework, this study focuses on addressing

two important and fundamental issues. The performance of the most basic

algorithmic components is analysed to justify their effectiveness in design-

ing search algorithms capable of solving complex combinatorial optimisation

problems. Two GCOP methods have also been proposed based on differ-

ent learning models to investigate learning within the unified template of

AutoGCOP framework in designing new algorithms automatically.

The basic elementary algorithmic components present a satisfying perfor-

mance given enough computational time, which confirms their effectiveness

in automatically designing search algorithms to solve hard VRPTW prob-

40



lems online. In addition, including problem-specific algorithmic components

in the basic component set can greatly improve the efficiency of search, reach-

ing a similar solution quality with less computation time especially for solving

larger instances with specific problem structure. This efficiency is gained by

the domain knowledge used to devise problem-specific algorithmic compo-

nents, which may not be available or consistent in practice. The general

AutoGCOP with elementary algorithmic components presents a promising

framework across different problems and may be employed by developers of

different expertise.

The proposed GCOP methods based on the AutoGCOP framework have

been investigated with effective learning ability to observe the behaviour

of algorithmic components. Particularly, compared to the learning model

which records and learns from the performance of individual components,

the Markov chain based learning model which adaptively records the transi-

tion performance between pairs of basic components shows superior overall

performance for problems of different sizes and structures.

The research presented in this paper can be extended into various in-

teresting research directions. Future work will consider the general Auto-

GCOP framework in designing multi-objective algorithms. Analysis of the

performance of basic components for addressing different problem domains

within the common AutoGCOP framework may also reveal their effective-

ness on different problem features and structures. Last but not least, with

the GCOP model which defines a vast design space of algorithms, effective

patterns from different algorithmic compositions may be discovered within

AutoGCOP using machine learning. Such patterns or new knowledge ex-

41



tracted from the design space of algorithms can be applied offline to design

new effective algorithms, which may be difficult by human experts, releasing

them from computational burdens to focus on applying the new knowledge

to solve more problems effectively.

Acknowledgements

This work was supported by the University of Nottingham.

References

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic

programming . Springer.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic func-

tions of finite state markov chains. The annals of mathematical statistics ,

37 , 1554–1563.

Bezerra, L. C., López-Ibánez, M., & Stützle, T. (2015). Automatic

component-wise design of multiobjective evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 20 , 403–417.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM computing surveys (CSUR),

35 , 268–308.

Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle

routing problem: State of the art classification and review. Computers &

Industrial Engineering , 99 , 300–313.

42



Bräysy, O., & Gendreau, M. (2005a). Vehicle routing problem with time

windows, part I: Route construction and local search algorithms. Trans-

portation science, 39 , 104–118.

Bräysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time

windows, part II: Metaheuristics. Transportation science, 39 , 119–139.

Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S.,

Vázquez-Rodŕıguez, J. A., & Gendreau, M. (2010). Iterated local search

vs. hyper-heuristics: Towards general-purpose search algorithms. In IEEE

congress on evolutionary computation (pp. 1–8). IEEE.

Burke, E. K., Hyde, M. R., & Kendall, G. (2011). Grammatical evolution of

local search heuristics. IEEE Transactions on Evolutionary Computation,

16 , 406–417.

Burke, E. K., Kendall, G., & Soubeiga, E. (2003). A tabu-search hyper-

heuristic for timetabling and rostering. Journal of heuristics , 9 , 451–470.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2007). Vehicle

routing. Handbooks in operations research and management science, 14 ,

367–428.

Cowling, P., Kendall, G., & Soubeiga, E. (2000). A hyperheuristic approach

to scheduling a sales summit. In International Conference on the Practice

and Theory of Automated Timetabling (pp. 176–190). Springer.

Di Gaspero, L., & Urli, T. (2011). A reinforcement learning approach for the

cross-domain heuristic search challenge. In Proceedings of the 9th Meta-

heuristics International Conference (MIC 2011), Udine, Italy .

43



Di Gaspero, L., & Urli, T. (2012). Evaluation of a family of reinforcement

learning cross-domain optimization heuristics. In International Conference

on Learning and Intelligent Optimization (pp. 384–389). Springer.

Fisher, M., & Fisher, M. (1995). Chapter 1 vehicle routing. Handbooks in

Operations Research and Management Science, 8 , 1–33.

Franzin, A., & Stützle, T. (2019). Revisiting simulated annealing: A

component-based analysis. Computers & Operations Research, 104 , 191–

206.

Fukunaga, A. S. (2008). Automated discovery of local search heuristics for

satisfiability testing. Evolutionary computation, 16 , 31–61.

Gehring, H., & Homberger, J. (1999). A parallel hybrid evolutionary meta-

heuristic for the vehicle routing problem with time windows. In Proceedings

of EUROGEN99 (pp. 57–64). Citeseer volume 2.

Hoos, H. H. (2008). Computer-aided design of high-performance algorithms .

Technical Report Technical Report TR-2008-16, University of British

Columbia, Department of Computer Science.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configu-

ration based on local search. In Proceedings of the 22nd national conference

on Artificial intelligence-Volume 2 (pp. 1152–1157).

Kemeny, J. G., & Snell, J. L. (1976). Markov chains . Springer-Verlag, New

York.

44



Khamassi, I., Hammami, M., & Ghédira, K. (2011). Ant-q hyper-heuristic

approach for solving 2-dimensional cutting stock problem. In 2011 IEEE

Symposium on Swarm Intelligence (pp. 1–7). IEEE.

Kheiri, A., & Keedwell, E. (2015). A sequence-based selection hyper-heuristic

utilising a hidden Markov model. In Proceedings of the 2015 Annual Con-

ference on Genetic and Evolutionary Computation (pp. 417–424). ACM.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016).

SATenstein: Automatically building local search SAT solvers from compo-

nents. Artificial Intelligence, 232 , 20–42.

Lissovoi, A., Oliveto, P. S., & Warwicker, J. A. (2020). Simple hyper-

heuristics control the neighbourhood size of randomised local search opti-

mally for leadingones. Evolutionary computation, 28 , 437–461.

Lopez-Ibanez, M., & Stutzle, T. (2012). The automatic design of multiob-

jective ant colony optimization algorithms. IEEE Transactions on Evolu-

tionary Computation, 16 , 861–875.

Mascia, F., López-Ibánez, M., Dubois-Lacoste, J., & Stützle, T. (2013). From

grammars to parameters: Automatic iterated greedy design for the permu-

tation flow-shop problem with weighted tardiness. In International Con-

ference on Learning and Intelligent Optimization (pp. 321–334). Springer.

McClymont, K., & Keedwell, E. C. (2011). Markov chain hyper-heuristic

(MCHH): an online selective hyper-heuristic for multi-objective continuous

problems. In Proceedings of the 13th annual conference on Genetic and

evolutionary computation (pp. 2003–2010). ACM.

45



Miranda, P. B., Prudêncio, R. B., & Pappa, G. L. (2017). H3AD: A hybrid

hyper-heuristic for algorithm design. Information Sciences , 414 , 340–354.

Nareyek, A. (2003). Choosing search heuristics by non-stationary reinforce-

ment learning. In Metaheuristics: Computer decision-making (pp. 523–

544). Springer.

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2012). A computational

study of representations in genetic programming to evolve dispatching rules

for the job shop scheduling problem. IEEE Transactions on Evolutionary

Computation, 17 , 621–639.

Oltean, M. (2005). Evolving evolutionary algorithms using linear genetic

programming. Evolutionary Computation, 13 , 387–410.

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A comprehensive analysis

of hyper-heuristics. Intelligent Data Analysis , 12 , 3–23.

Özcan, E., Misir, M., Ochoa, G., & Burke, E. K. (2012). A reinforcement

learning: great-deluge hyper-heuristic for examination timetabling. In

Modeling, Analysis, and Applications in Metaheuristic Computing: Ad-

vancements and Trends (pp. 34–55). IGI Global.

Pagnozzi, F., & Stützle, T. (2019). Automatic design of hybrid stochas-

tic local search algorithms for permutation flowshop problems. European

journal of operational research, 276 , 409–421.

Pickardt, C., Branke, J., Hildebrandt, T., Heger, J., & Scholz-Reiter, B.

(2010). Generating dispatching rules for semiconductor manufacturing to

46



minimize weighted tardiness. In Proceedings of the 2010 Winter Simulation

Conference (pp. 2504–2515). IEEE.

Pillay, N., & Qu, R. (2018). Hyper-Heuristics: Theory and Applications .

Springer.

Pillay, N., Qu, R., Srinivasan, D., Hammer, B., & Sorensen, K. (2018). Auto-

mated design of machine learning and search algorithms [Guest Editorial].

IEEE Computational Intelligence Magazine, 13 , 16–17.

Potvin, J.-Y., & Rousseau, J.-M. (1995). An exchange heuristic for routeing

problems with time windows. Journal of the Operational Research Society ,

46 , 1433–1446.

Qu, R., Kendall, G., & Pillay, N. (2020). The General Combinatorial Opti-

mization Problem: Towards Automated Algorithm Design. IEEE Compu-

tational Intelligence Magazine, 15 , 14–23.

SINTEF (a). VRPTW benchmark problems, on the sintef transport

optimisation portal. https://www.sintef.no/projectweb/top/vrptw/

solomon-benchmark/100-customers/. Published April 18, 2008.

SINTEF (b). VRPTW benchmark problems, on the sintef transport

optimisation portal. https://www.sintef.no/projectweb/top/vrptw/

homberger-benchmark/1000-customers/. Published April 18, 2008.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations research, 35 , 254–265.

47

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/1000-customers/


Sutton, R. S., Barto, A. G. et al. (1998). Introduction to reinforcement

learning volume 135. MIT press Cambridge.

Walker, J. D., Ochoa, G., Gendreau, M., & Burke, E. K. (2012). Vehicle rout-

ing and adaptive iterated local search within the HyFlex hyper-heuristic

framework. In International Conference on Learning and Intelligent Opti-

mization (pp. 265–276). Springer.

Wong, R. T. (1983). Combinatorial optimization: Algorithms and complexity

(Christos H. Papadimitriou and Kenneth Steiglitz). SIAM Review , 25 ,

424.

48


	Introduction
	The AutoGCOP Framework for Automated Algorithm Composition
	An Overview of the Extended GCOP Model
	The AutoGCOP Framework with Extended GCOP Model
	Differences between AutoGCOP and existing frameworks

	Learning in AutoGCOP
	Component Sets
	Learning models
	Learning model in IP-GCOP
	Learning model in TP-GCOP
	Update mechanisms for learning models
	An Illustrative Example


	Experimental Studies
	Performance of the Basic Components
	Performance evaluation on composing algorithmic components
	Performance evaluation on solution quality
	Performance evaluation on algorithm convergence
	Discussions

	Effectiveness of the Learning Models
	Comparison with Random GCOP Methods
	Influence of Different Update Methods to the Learning Models

	Comparison with the Best-known Approaches

	Conclusions



