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Abstract: Fault diagnosis in aero-engines typically requires an experienced expert for understanding and 
detecting the cause of faults. However, accurate and quick identification of fault parts is difficult for 
maintenance crews owing to the complexity of aero-engines. In this study, we developed a case-based 
reasoning (CBR) system with a highly accurate novel similarity measure for fault diagnosis of aero-
engines by retrieving similar fault cases. The proposed CBR system is established based on 143 cases 
with the knowledge of correctly diagnosed and successfully resolved aero-engine faults, which 
constitutes the first tentative case base in the field of aero-engine fault diagnosis. The proposed case 
similarity measure for fault diagnosis of aero-engines integrates three local similarity measures 
associated with different attributes, especially among which a tree-based semantic similarity measure is 
proposed to define the relationship between the fault part and fault mode based on a semantic graph 
incorporated into the aero-engine tree structure. The proposed CBR system is evaluated using the k-
nearest neighbors algorithm and 5-fold cross-validation. The system exhibited high retrieval accuracy 
with all cases collected from real-world scenarios of aero-engine fault diagnosis. Our study shows great 
promise that the experience-based decisions yielded from the results can aid in aero-engine maintenance 
and support services. 
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1. Introduction 
Case-based reasoning (CBR) is an experience-based method that solves new problems by retrieving 

and reusing problem-specific knowledge from similar historical cases or existing experience (Kolodner, 
1992). Herein, a new input case, referred to as a target case, is compared with existing cases stored in a 
historical database called a case base, and the most similar case(s) are retrieved from the case base for 
reuse (Aamodt & Plaza, 1994). The essence of using previous experience in CBR is similar to that of the 
human thought process (Cheng & Ma, 2015).  

CBR has several advantages over other methods, such as expert systems and knowledge-based 
systems, which collate expert experience to obtain evaluation rules and object models. This type of 
knowledge engineering requires exceptional skills and extensive expertise, which bottlenecks the 
knowledge elicitation during the development of knowledge-based systems (Fyfe & Corchado, 2001). 
Conversely, CBR is not subjected to modeling bottlenecks because the knowledge is extracted directly 
from historical cases to be modeled and retained in the case base, which is easier to maintain and update 
in comparison with that of the rule-based systems (Watson & Marir, 1994). Additionally, when the rules 
and judgments are not complete in a field, rule-based reasoning methods may fail to return any solution 
or generate insufficiently accurate solutions. Conversely, CBR always retrieves the most similar 
historical cases that can solve new problems. 

Thus, CBR has been successfully applied to several problem domains owing to the aforementioned 
advantages. Recent developments in artificial intelligence and data-based methodologies present a 
promising research direction for addressing large-scale problems of complex fault diagnosis in various 
fields (Guo, 2020), such as medical (Nasiri, Zahedi, Kuntz & Fathia, 2019) and mechanical engineering 
(Hu, Qi & Peng, 2015). This can lead to the improvement of existing CBR systems for fault diagnosis of 
aero-engines without using explicit domain models. The effectiveness of the system can be further 
improved when more cases are collected in the case base. Moreover, unlike the rule-based expert systems, 
the case base in a CBR system does not require intensive maintenance. In practice, engineers and 
maintenance crews can use the CBR system conveniently to make better decisions during outfield tests. 

Additionally, CBR is highly suitable for the characteristics of fault diagnosis in aero-engines, which 
is a complex system comprising different types of parts that render fault diagnosis using model-based 
methods challenging. In most cases, it is difficult to immediately locate fault parts when an anomaly 
occurs in aero-engines (Yuan, Wu & Lin, 2016). Additionally, the fault analysis of different types of data 
in maintenance records warrants expertise in various domains (Cui, et al., 2020). Furthermore, certain 
information recorded by humans on the faults of outfield flights may be ambiguous and incomplete (Pang, 
et al., 2020). Moreover, the semi-structured and unstructured fault parts in complex aero-engines render 
the application of evaluation rules of model-based methods infeasible in aero-engine fault analysis 
(Tayarani-Bathaie & Khorasani, 2015) (Lu, Huang & Lu, 2017).  

In this study, we address several major research issues in the development of a CBR system for fault 
diagnosis of aero-engines. For instance, identifying, classifying, and structuring the key attributes is 
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crucial in the representation of fault cases in complex aero-engines. Moreover, the descriptive text must 
be extracted and collated in the case base to facilitate effective retrieval and maintenance. Finally, the 
similarity measure between cases must accurately quantify the similarity in text descriptions to retrieve 
the truly useful cases. Particularly, the actual similarity in terms of different attributes associated with 
fault diagnosis must be calculated to retrieve truly useful cases. To define the similarity of different fault 
parts, the irrelevance between parts located at different positions of the aero-engine should be considered 
to identify the relationship between the fault part and fault mode. Therefore, we propose a novel method 
to calculate the similarity of fault cases based on the semantic similarity between text descriptions of 
cases, thus ensuring a quick and accurate fault diagnosis.  

The contributions of the study can be summarized as follows.  
- First, a novel case similarity measure capable of producing high retrieval accuracy is proposed for 

the fault diagnosis of aero-engines by integrating three local similarity measures associated with 
three types of attributes. This novel similarity measure can effectively model and discriminate 
complex cases in problem domains by considering different types of attributes and semantic 
similarity in short texts. 

- Second, a tree-based semantic similarity measure is proposed to define the relationship between the 
fault part and fault mode by merging the semantic graph into the endogenous tree structure of the 
aero-engine itself, thus considering the irrelevance in different fault parts to match the fault mode to 
the corresponding fault part.  

- Third, the 143 cases modeled in the CBR system potentially contributes to the real-life experience-
based fault diagnosis of aero-engines in outfield maintenance and support services. Moreover, it 
provides a complete modeling structure for researchers to study and diagnose aero-engine faults.  
The remainder of this paper is organized as follows. Section 2 reviews relevant literature on fault 

diagnosis of aero-engines, CBR, and textual similarity. Section 3 explains the method for fault diagnosis 
in aero-engines using three similarity measures based on different types of attributes. The proposed CBR 
system on aero-engine faults is evaluated and its performance is experimentally verified in Section 4. 
Finally, Section 5 presents the conclusions of the study. 

 

2. Literature Review 

2.1 Fault Diagnosis of Aero-engines  
Three main categories of methods, namely the fault tree-based, neural network-based, and 

mathematical theory-based methods have been investigated in the fault diagnosis of aero-engines.  
Fault tree-based methods utilize a logic causality tree to identify the cause of the fault and an ideal 

approach to reduce risks. Geng, Duan & Li (2011) proposed a dynamic fault tree to support safety 
analysis of the aircraft considering a higher number of factors for safety modeling. Huang, Wang & Liu, 
(2012) constructed a novel dynamic fault tree that provided a complete description of the system and 
applied the method to the aircraft power supply.  

Neural network-based methods simulate the human neuron networks to extract and handle 
unstructured information during information processing. Gou, et al., (2020) applied continuous wavelet 
transform to convert signal recognition problems to image recognition problems. Additionally, a 
convolutional neural network was used to identify the features of the image and recognize faults in aero-
engine control systems. Furthermore, an autoassociative neural network was used by Li et al., (2020) to 
diagnose faults in control systems without establishing a model.  

Mathematical theory-based methods often require the establishment of an accurate mathematical 
model. Herein, grey theory, information entropy, and fuzzy mathematics are used for fault diagnosis of 
aero-engines. A soft-squared pinball-loss function was proposed for training the samples to improve the 
classification performance of the algorithm and was applied to fault diagnosis of the gas path in aero-
engines (Cao, Zhang, Wang & Bai, 2020). Furthermore, Bai, Li, Zhang & Zhao (2020) optimized an 
immune algorithm and grey theory and proposed a novel mutation strategy to improve the accuracy of 
fault diagnosis. 

2.2 CBR 
CBR is an intelligent methodology that solves new problems by retrieving similar historical cases 

and adapting their solutions, outcomes, and recommendations. Fig. 1 depicts the four sub-phases of a 
standard CBR cycle, namely retrieve, reuse, revise, and retain (Aamodt & Plaza, 1994).  
- Retrieve: To solve a target case, case retrieval is performed as a core process of the CBR cycle, 

wherein the most similar case(s) are retrieved from a case base. The assessment of the CBR system 
is significantly affected by the accuracy of case retrieval (Hu, Xia, Skitmore & Chen, 2016) (Liao, 
Zhang & Mount, 1998). The case retrieval highly relies on four elements, namely the case 
presentation, case indexing, retrieval algorithms, and similarity measurement (Silva, Carvalho & 
Caminhas, 2020). The accuracy of retrieval can be improved by constantly adding target cases to 
extend the case base (Ke, et al., 2020).  

- Reuse: If the retrieved case is sufficiently similar to the target case, the solution of the retrieved case 
can be used directly to solve the target case.  

- Revise: However, solutions of the retrieved cases need to be revised in most scenarios and adapted 
for the target case.  
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- Retain: After confirming the final solution for the target case, the case and its solution can be retained 
in the case base using memory mechanisms and dynamic maintenance operations (Yan, Qian & 
Zhang, 2014).  

 

Fig. 1. Case-based reasoning (CBR) process (Aamodt & Plaza, 1994) 

 

Most studies considered the influence of similarity algorithms on the accuracy of case retrieval as 
it is a key aspect in building a successful and effective CBR. Bannour, Maalel & Ghezala (2020) proposed 
a two-stage case retrieval method for short texts that included syntactic and cumulative prospect theory-
based similarity measurements for crisis response. Similarly, Chang, Lee & Wang, (2016) reported a 
retrieval method of integrating short-text semantic similarity with recognizing textual entailment for 
product information retrieval. Based on the development of online knowledge databases, a novel method 
was proposed by combining Wikipedia with semantic similarity to solve the problem of limited 
information and sparse features of short texts (Li, Li, Zhang, et al., 2020). Moreover, other researchers 
investigated the global optimization of CBR. Considering the interactions among attributes, Fei & Feng, 
(2020) used attitudinal Choquet integral to optimize the global similarity with respect to the importance 
of attributes. Ahn & Kim (2009) optimized attribute weights with genetic algorithms to devise an 
effective similarity measure and increased the accuracy of CBR in retrieving the most useful cases.  

Considering the other three phases in the CBR cycle, Zhong, Xie & Lin (2015) proposed a two-
layer model with a random forest algorithm to improve the accuracy of case reuse. Furthermore, Zhai, 
Martínez, Martínez & Díaz (2020) developed a method of learning-based adaptation strategy to compare 
the differences between target cases and previous cases to improve case revision. Yan, Qian & Zhang 
(2014) and Salamo & Lopez-Sanchez (2011) used an adaptive CBR model to maintain the case base by 
adding or removing cases. The aforementioned methodologies in the four phases of the CBR cycle 
contribute to improving the accuracy and effectiveness of the CBR system considering different aspects. 

2.3 Textual Similarity Method: Lexical Similarity and Semantic Similarity 
The textual similarity method is a basic application of natural language processing to quantify the 

similarity between different texts, such as phrases, sentences, and documents (Chergui, Begdouri & 
Groux-Leclet, 2019). A major challenge of applying the textual similarity method is distinguishing the 
similarity of words or documents in string sequences, wherein two different words may express the same 
meaning owing to the diversity of descriptions (Do, Roth, et al., 2009). Therefore, the textual similarity 
method is primarily divided into lexical and semantic similarities based on the object of comparison 
(Gomaa & Fahmy, 2013). 

Lexical similarity computes the similarity between two texts by comparing the distance of string 
sequences (Gomaa & Fahmy, 2013). Several well-established string-based distance measurement 
methods, such as Levenshtein distance (Li & Liu, 2007), longest common sequence (Hunt & Szymanski, 
1977), and Hamming distance (Apostolico, Guerra, et al., 2016) have been proposed. Another widely 
used lexical similarity method is the vector space model (VSM), wherein terms are treated as vectors. 
The commonly used metrics of VSM include cosine similarity (Sidorov, Gelbukh, et al., 2014) and 
Euclidean distance (Huang, 2008).  

Typically, the lexical similarity method is used to calculate the similarity between long texts based 
on their ambiguity and synonymy (Thiagarajan, Manjunath & Stumptner, 2008). However, as the lexical 
similarity method cannot capture the semantics of texts, it may lower the accuracy of short texts with 
identical meanings yet different expressions. 

Conversely, semantic similarity computes the similarity between texts by considering semantic 
features of the meaning represented (Kenter & Rijke, 2015). The two primary categories of semantic 
similarity include corpus-based and knowledge-based methods (Kadupitiya, Ranathunga & Dias, 2016). 

Corpus-based semantic similarity calculates the similarity of texts based on the information from a 
large corpus, which is a collection of multiple reference texts. A commonly used corpus-based semantic 
similarity is distributional representation, wherein corpus transforms the text into a vector representation 
of semantic features. Subsequently, the semantic similarity is calculated based on the similarity of vectors. 
Dinu & Lapata (2010) represented the meanings of words as a distribution and proposed a framework 
for characterizing the meanings of words and computing similarity in contexts. Additionally, Ganesh, 
Kumar & Soman (2016) used distributional representation to classify the texts of health information. 
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Corpus-based semantic similarity assumes that words of similar meanings have similar contexts (Shi, 
2016). Therefore, the calculation of corpus-based semantic similarity usually generally relies on large-
scale text data to compare the similarity of input texts and cases stored in a case base.  

Conversely, the knowledge-based similarity method quantifies the degree of semantic relevance 
between texts using information stored in a knowledge base. This method considers the true meaning of 
words in texts (Mihalcea, Corley & Strapparava, 2006) using a semantic dictionary or semantic network 
that is organized based on the structural relationship between concepts. Herein, the similarity is computed 
considering the hypernymy, hyponymy, or synonymy relationships between concepts. The similarity of 
the two concepts relies on the distance between their corresponding nodes (Resnik, 1995). Schuhmacher 
& Ponzetto (2014) proposed a semantic model to acquire the information of related entities using the 
DBpedia knowledge database and calculated the semantic similarity using a graph edit distance-based 
method. This is similar to the method proposed by Milne & Witte (2008), who developed a Wikipedia 
link-based measure to compute the semantic similarity using the hyperlink structure of Wikipedia. 
Chergui, Begdouri & Groux-Leclet (2019) described the knowledge-based similarity method as a graph-
based similarity method because it generally uses knowledge or semantic graphs to represent semantic 
relationships. Moreover,  Liu & Xu (2012) divided the graphs into tree-based and directed graph-based 
methods considering the structure of the knowledge database.  

In this study, the cases are extracted from the text descriptions and divided into several keywords, 
which are short texts with limited context. Therefore, a novel similarity measure of short texts is proposed 
to characterize the similarity between cases. Additionally, we chose the knowledge-based similarity 
method to calculate the similarity of fault cases in aero-engines considering the small number of cases in 
the early stages of case base establishment. 

 

3. Novel Case Similarity Measure for Fault Diagnosis 
In this study, when a new input case, defined as a textual description of fault diagnosis, is input to 

the CBR system, the most similar cases from the case base are retrieved with correct fault classification 
considering both local and global similarities in the similarity measure. Initially, the local similarity is 
calculated between the new input case and the retrieved historical cases (Section 3.3). Subsequently, the 
global similarity between cases is calculated considering all attributes and their corresponding weights 
(Section 3.4).  

3.1 Pre-processing 
Typically, fault diagnosis cases include the maintenance date, locations of fault parts, and operation 

condition of aero-engines. The useful information in the descriptions of engine fault records is manually 
extracted into several keywords from the fault description. All useful keywords of cases can be divided 
into 12 attributes, which are used to pre-process the fault diagnosis cases that are transferred and 
represented as cases in CBR. The useful information is passed to the next step of similarity calculation, 
whereas the useless information, such as stop-words in the records, are filtered during pre-processing. 
Fig. 2 illustrates the pre-processing of an input case.  

 

Fig. 2. Pre-processing to extract useful keywords 

 

Based on the extracted keywords with all useful information from the fault descriptions, a fault 
instance is described using 12 attributes, namely (1) aero-engine model, (2) aero-engine category, (3) 
aero-engine operation state, (4) thrust performance, (5) temperature performance, (6) rotational 
performance, (7) aero-engine shutdown, (8) other anomalies, (9) flight height, (10) flight speed, (11) 
aero-engine fault part, and (12) fault mode. In the similarity calculation, these attributes of the target case 
are compared with those of the fault diagnosis cases in the case base, which are also processed and 
represented using these 12 attributes. Additionally, every fault case has its fault positioning and type 
defined by an expert along with the fault reason and solutions. This information is divided into 5 outputs, 
including (1) fault positioning, (2) fault type, (3) fault reason, (4) troubleshooting measure, and (5) 
improvement measure. In this study, if the fault positioning and type of the target case were identical to 
that of the calculated historical cases, we considered them to be similar. The remaining three outputs 
were used to confirm the cause and solutions of the fault case to reduce the possibility of faults in the 
future.  

3.2 Case Representation 
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The 12 attributes are classified into three categories based on their data types, namely the categorical 
attributes, numerical attributes, and semantic attributes (Table 1). The similarity of attributes in each 
category is calculated using different similarity methods. The details are explained in Section 3.3. 

In the case of categorical attributes, the information is grouped into several categories based on the 
descriptions of cases. However, considering the different operation temperatures of multiple types of 
aero-engines, it is not reasonable to compare the service temperatures of different aero-engines. For 
instance, an exhaust gas temperature of 850 °C is considered normal for XP-6 aero-engines, whereas it 
causes overheat in XP-7 aero-engines. Therefore, temperature conditions of different categories are 
concerted based on the handbook of each type of aero-engine. 

In the case of numerical attributes, the information is represented by numerical values. 

 
Table 1 Classification of attributes  

Classifications Attributes Description 

Categorical 
attributes 

Aero-engine model Identify specific engine models, including XP-7, XP-8, and other 
models 

Aero-engine category Identify the category of engine usage, i.e., military or civilian 

Aero-engine operation state Identify the working state of the engine in case of faults, including 
intermediate, maximum, and other states 

Thrust performance Identify symptoms of abnormal thrust in engines, including thrust 
loss, thrust fluctuation, and other factors 

Temperature performance Identify symptoms of abnormal temperature in engines, including 
overheat, temperature drop, and other factors 

Rotational performance Identify symptoms of abnormal rotational speed in engines, 
including speed-drop, speed fluctuation, and other factors 

Aero-engine shutdown Identify whether the engine stops in the air (Yes or No) 

Other anomalies Identify other engine anomalies, including engine surge, abnormal 
engine sound, and other anomalies 

Numerical 
attributes 

Flight height Identify the flight height of aircraft in case of engine fault, 
measured in kilometers 

Flight speed Identify the flight speed of aircraft in case of engine fault, measured 
in Mach number 

Semantic 
attributes 

Aero-engine fault part Identify the semantic terms of specific fault parts, such as 
compressor blade, turbine blade, and other parts 

Fault mode Identify the semantic terms of fault mode corresponding to specific 
fault parts, such as fracture, crack, and other faults 

 
In semantic attributes, the complex semantic relationship between fault part and fault mode is 

considered owing to the diverse relationship of each part. 
Table 2 summarizes three examples of case presentation. All cases in a case base are presented in this 
structured manner. The five outputs of the cases include (1) fault positioning, which indicates a certain 
system, a specific structure, or a component in aero-engine; (2) fault type, which specifies the feature 
that a fault exhibits. Every fault type is associated with a case set in which all cases are of the same fault 
type; (3) fault reason, which explains the reason for a fault case; (4) troubleshooting measure, which 
indicates the methods of troubleshooting a fault case; and (5) improvement measure, which identifies the 
methods of reducing faults and improving product reliability in the future.  

 
Table 2 Case presentation of three example cases 

Case Description 

On 4th March 1978, a 
military engine of type XP-6 
was tested at a height of 
2000 m. When the pilot 
turned the engine to its 
maximum thrust state, a 
loud noise was heard and 
the rotating speed decreased. 
When the pilot throttled 
back, the engine shut down. 

In March 1990, when the 
pilot pushed the throttle to 
test a military engine of type 
XP-7, the engine shutdown 
in-flight at a flight height of 
9.5 km and speed of 0.6 
Mach. 

When an aircraft equipped 
with the XP-7 engine 
climbed sharply to a height 
of 20 km, the thrust of the 
engine decreased, and the 
exhaust gas temperature 
(EGT) increased higher than 
the prescriptive temperature 
of 820 C. 

Aero-engine model XP-6 XP-7  XP-7 

Aero-engine category Military Military Military 
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Aero-engine 
operation state 

Maximum power state Intermediate state Intermediate state 

Flight height (Km) 2 9.5 20 

Thrust performance Normal Normal Engine thrust decline 

Temperature 
performance 

Normal Normal  Over-temperature (T4) 

Flight speed (Ma) /  0.6 / 

Aero-engine 
shutdown 

Yes Yes No  

Rotational 
performance 

Speed-drop Normal Normal 

Other anomalies Abnormal engine sound Engine surge / 

Aero-engine  
fault part 

Sleeve of fuel pump /  / 

Fault mode loose /  /  

 
Table 3 presents an example of the five outputs. Among these, fault positioning and fault type are 

used to classify the cases and the other three outputs represent the reasons and solutions of cases. 

 
Table 3 An instance of five outputs 

Case 
No. 

Fault 
positioning 

Fault type Fault reason Troubleshooting measure 
Improvement 

measure 

9 
Anomaly of 

engine 
performance 

In-flight 
shutdown 

(IFSD) 

Improper matching 
between inlet and aero-

engine; Pilot mis-
operation; Machining 

error of parts 

Changing the inlet cone 
from three-step 

adjustment to infinite 
adjustment; Modifying 

the airfoil of compressor 
blades 

Using a new main 
fuel pump regulator; 
Adding engine surge 

prevention system 

 

3.3 Local Similarity Measure 

3.3.1 Categorical Attributes 
In the CBR system, categorical attributes are classified into the aero-engine model, aero-engine 

category, aero-engine operation state, thrust performance, temperature performance, rotational 
performance, aero-engine shutdown, and other anomalies. The similarity between categorical attributes 
is calculated using Eq. (1). 
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where nc

ja  and ic

ja  denote the values of attribute j in the new input case and case i in the case base, 
respectively. Further,  1,2,...,i I ,  1,2,...,j J , where I and J indicate the total number of attributes 
and cases, respectively. 

3.3.2 Numerical Attributes 
Based on the collected fault cases of aero-engines, numerical attributes are categorized into flight 

height and flight speed. The similarity is calculated as the normalized distance between the two values 
of numerical attributes using Eq. (2) and (3). 
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Where 
nc

jb  and ic

jb  denote the values of attribute j in the new input case and case i in the case base, 
respectively. Further, max

jb  and min

jb  represent the maximum and minimum values of attribute j, 
respectively. 
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3.3.3 Tree-based Semantic Similarity 
The tree-based semantic similarity calculates the semantic similarity of the fault part and fault mode 

in aero-engines. In this study, we considered whether it is reasonable to calculate the similarity between 
different fault parts with the same fault mode.  

As aero-engines comprise numerous parts, the faults of different parts are generally irrelevant. For 
instance, the crack on the compressor blade is typically caused by the high cycle fatigue, whereas a crack 
on a turbine blade is primarily caused by thermal–mechanical fatigue. Consequently, the failure 
mechanism for the same fault mode of “crack” in both compressor and turbine blades is entirely different. 
Therefore, it is unreasonable to compare the crack on the compressor blade with that on the turbine blade. 
During modeling, the comparison of these modes in CBR can reduce the efficiency of the retrieval if all 
cases in the case base are checked against the target case, which in turn increases the computational cost 
with the extension of the case base. In the proposed CBR system, only the fault of the same part in 
different cases is considered owing to the irrelevance of certain parts in the aero-engine.  

Therefore, the key factor in this study was to define the relationship between an aero-engine fault 
part and the corresponding fault mode of every case and model it using a semantic similarity measure. 
Thus, the tree-based semantic similarity is proposed to define the relationship between the fault mode 
and the corresponding fault parts. It comprises two sections, namely the fault part tree structure and 
semantic graph of fault mode. 

Fig. 3 depicts a partial tree structure of fault parts of an aero-engine, wherein different parts are 
structured and distinguished to calculate their similarities with the same or different fault mode. Several 
parts share certain similarities within the entire aero-engine structure despite every part being irrelevant 
from each other in aviation engineering. The tree structure quantifies the similarity of different parts, 
which relies on the number of their parent nodes.  

Fig. 3. Fault part tree structure of an aero-engine 

 

Furthermore, we developed the semantic graph of fault mode based on online knowledge databases, 
including Wikipedia and DBpedia, which contain billions of triples reflecting the semantics using a dense 
link structure and have been widely adopted in several studies previously (Li, Li, et al., 2020) (Chergui, 
Begdouri & Groux-Leclet, 2019) (Begdouri, Chergui & Leclet-Groux, 2018). The missing semantic 
information of aero-engine fault mode in Wikipedia has been continuously added by experts or engineers 
with their extensive knowledge in aero-engines. Fig. 4 illustrates a fault mode of aero-engines.  

 

 

Fig. 4. Fault mode of aero-engines 

As depicted in Fig. 5, the tree structure and semantic graph are combined to define the relationship 
between each fault part and the corresponding fault mode in the proposed CBR system.  
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Fig. 5. Tree-based semantic graph for aero-engine faults 

 

The tree-based semantic similarity is based on the following three assumptions. 
(1) Two different nodes with a shorter distance within the tree-based semantic graph are more 

similar than those with a longer distance. The shortest path between ni and nj can be denoted as Dist (ni, 
nj). For example, Dist (“Crack (Compressor vane)”, “Fracture (Compressor Blade)”) = 8, and Dist 
(“Crack (Compressor Blade)”, “Peeling (Compressor Blade)”) = 2.  
Thus, Crack (Compressor Blade) is more relevant to Peeling (Compressor Blade) than to Crack 
(Compressor vane).  

(2) The correlation of two nodes increases with the increase in the distance between the nearest 
shared parent node and root node. In other words, the correlation of two nodes can be considered as the 
depth of their nearest shared parent node. When the taxonomy depth of the two nodes is high and the 
nearest shared parent node is far from the root node, it indicates that the nodes are more similar in 
semantics.  

The nearest shared parent node nk between nodes ni and nj can be denoted as Nspn (ni, nj). For 
example, Nspn (“Wear (Turbine Blade)”, “Creep (Turbine Blade)”) = Deformation (Turbine Blade), 
which implies that Deformation (Turbine Blade) is the nearest shared parent node between Wear (Turbine 
Blade) and Creep (Turbine Blade). Furthermore, Nspn (“Wear (Turbine Blade)”, “Crack (Turbine Disc)”) 
= Turbine Rotor indicates that Turbine Rotor is the nearest shared parent node between Wear (Turbine 
Blade) and Crack (Turbine Disc). 

(3) The depth, denoted as Depth(nk), represents the distance from a node to the root node. For 
example, Dept (Turbine Rotor) = 2 and Dept (Deformation (Turbine Blade)) = 5 imply that the depth of 
Turbine Rotor and Deformation (Turbine Blade) is 2 and 5, respectively. 

The tree-based semantic similarity can be calculated using Eq. (4) based on the three 
aforementioned assumptions. It is defined as a function of the location of the node in taxonomy (Meng, 
Huang, Gu, 2013) (Wu & Palmer,1994). 
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where nc

jc  and ic

jc  denote the values of attribute j in the new input case and case i in the case base, 
respectively. 

3.4 Global Similarity Measure 
The global similarity between cases calculates the weighted sum of the similarities with different 

attributes by integrating their local similarities, as indicated in Eq. (5) 

1

( , ) ( , )i

J
nnc

i j k j j

j

Sim nc c w Sim k k


 
                  (5) 

where 
jw  denotes the weight of attribute j, ( , )iSim nc c  represents the global similarity between a target 

case and a historical case i, and ( , )innc

k j jSim k k  indicates the local similarity considering the three different 
types of similarity calculations with  , ,k a b c , as explained in Section 3.3. In this study, the weights of 
all attributes were assumed to be identical. 
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4. Experimental Validation and Discussion 

4.1 Building the Case Base 
In this study, the case base comprises the following three components.  
(1) A total of 143 cases are collected in the case base and processed using the existing aircraft fault 

records in Song, Chen, et al. (1993), which provides numerous fault cases in different systems, structures, 
and components of aero-engines. All cases are stored in the case base consistent with the case structure 
described in Section 3.2. Every case comprises a detailed description of the fault model, reason, and 
conclusion. Moreover, the information is divided into different fault positioning and fault types based on 
the opinions of domain experts. The presented information serves as a reference in our experimental 
evaluations detailed in Section 4.2. 

(2) Each case is stored in the case base with 12 attributes and 5 outputs as explained in Section 3.1.  
(3) A semantic graph characterizes different fault modes in the aero-engine with 24 nodes, which 

contain all fault modes in the case base. Fig. 4 depicts a part of the semantic graph of fault mode in aero-
engines. Furthermore, the tree-based semantic graph is adopted to model the relationship between parts 
and the corresponding fault mode (Fig. 5). We considered 54 fault parts in this study, wherein each fault 
part has one to three fault modes located in the semantic graph. 

4.2 Experimental Validation Methodology 
Two methodologies, namely the 5-fold cross-validation and k-nearest neighbors, were used to test 

the performance of the CBR system with a partition of data to evaluate the retrieval accuracy. The 
accuracy of the CBR system was determined using the fault positioning and fault type of the most similar 
cases retrieved from the case base. The retrieved results were sorted according to their similarity to the 
target case. The fault positioning and fault type of every case in the proposed case base are defined by 
experts. The most similar cases are those with both the highest similarity and identical fault positioning 
and fault type as those of the target case.  

Fig. 6. Implementation of the 5-fold cross-validation 

 

The 5-fold cross-validation (Kohavi, 1995) evaluated the performance of the CBR system, wherein 
the 143 cases were divided into five partitions with an approximately equal size based on their 
classifications. Groups 1, 2, and 3 contain 29 cases each, whereas Groups 4 and 5 contain 28 cases each. 
Four among the five groups were considered as the development set and the remaining group was 
dynamically considered as the test set. As depicted in Fig. 6, the validation operation is repeated five 
times, wherein each validation considers one partition as the test set and the other four as the development 
set.  

The cross-validation implemented in this study differs from regular cross-validations, wherein the 
entire dataset is divided into training sets and test sets. Typically, the training set is used to train the 
parameters in modeling the explicit or implicit relationship between input and output variables, whereas 
the test set is used to verify the model. An advantage of the CBR system is that it does not require the 
establishment of an explicit or implicit relationship between the input and output variables. The 
development set in this study indicates the collection of correctly diagnosed and successfully resolved 
aero-engine fault cases, which serve as benchmarks for evaluating new fault diagnosis and resolutions. 

The performance of the proposed CBR system is calculated as the ratio of the number of test cases 
that are correctly matched to the total number of test cases, as indicated in Eq. (6).  

 

     

    

Number of test cases correctly matched
Accuracy

Total number of test cases
              (6) 
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The k-nearest neighbors (KNN) algorithm is used to determine whether the retrieved cases are correctly 
matched to each test case. The classification of a sample is determined by the classification of KNN. For 
each test case in the proposed CBR system, the test target case is considered to be correctly matched if 
the classification pertaining to most cases in the retrieved k most similar cases is identical to that of the 
target case.  

4.3 Results and Discussion 
Table 4 summarizes the results of one example of Validation 1 with a test set of Partition 1. For each 

case in the test set, the top 10 most similar cases in the development set of 29 cases are retrieved and 
sorted as presented in the table. For instance, the values of 0.8(2) on the second row and second column 
imply that Case No. 2 in the development set has the highest similarity of 0.8 to Case No. 1 in the test 
set.  

 
Table 4 Test result of Partition 1 in Validation 1 

Case 
No.  

Top 1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10 

1 0.8 (2) 0.57 (3) 0.33 (16)     0.33 (17) 0.25 (5) 0.25 (6) 0.16 (136) 0.16 (138) 0.14 (8) 0.14 (9) 
4 1 (5) 1 (6) 0.56 (134) 0.5 (8) 0.5 (9) 0.38(11) 0.38(12) 0.38(13) 0.38 (14) 0.38 (78) 
7 1 (8) 1(9) 0.57(11) 0.57(12) 0.57(13) 0.57(14) 0.5 (5) 0.5 (6) 0.5 (108) 0.5 (109) 

18 1 (19) 0.90 (24) 0.90 (25) 0.81 (21) 0.81 (22) 0.81 (23) 0.81 (26) 0.81 (28) 0.56 (56)  0.56 (57)  
20 1 (22) 1 (23) 0.90 (21) 0.81 (25) 0.81 (19) 0.81 (21) 0.81 (22) 0.81 (23) 0.53(29)  0.36 (105)  
24 1 (25) 0.90 (19) 0.81 (21) 0.81 (22) 0.81 (23) 0.81 (26) 0.81 (28) 0.44(50) 0.38(51)  0.38 (53)  
27 1 (26) 1 (28) 1 (29) 1 (30) 1 (31) 1 (32) 0.90 (21) 0.81 (19) 0.81 (20) 0.44 (50)  
35 0.97 (37) 0.97 (36) 0.81 (26) 0.81 (28) 0.81 (29) 0.81 (30) 0.81 (31) 0.81 (32) 0.76 (33) 0.26 (113)  
40 0.95 (43) 0.93 (41) 0.93 (42) 0.29 (60) 0.27 (66) 0.27 (67) 0.27 (69) 0.27 (70) 0.23 (59) 0.13 (17)  
46 0.97 (47) 0.97 (48) 0.97 (49) 0.63 (51) 0.63 (44) 0.61 (45) 0.61 (53) 0.61 (54) 0.6 (50) 0.58 (56) 
52 1 (51) 1 (53) 1 (54) 0.94 (61) 0.94 (62) 0.94 (63) 0.94 (64) 0.94 (65) 0.93 (50) 0.39 (113)  
55 0.96 (56) 0.94 (58) 0.94 (57) 0.64 (47) 0.64 (48) 0.64 (49) 0.64 (53) 0.64 (54) 0.63 (44) 0.63 (45) 
61 1 (62) 1 (63) 1 (64) 1 (65) 0.94 (53) 0.94 (54) 0.44 (47) 0.44 (48) 0.29 (19) 0.29 (24) 
68 0.96 (69) 0.96 (70) 0.96 (71) 0.27 (66) 0.23 (67) 0.09 (73) 0.09 (74) 0.09 (75) 0.09 (77) 0.09 (78) 
72 1 (73) 1 (74) 1 (75) 0.67 (82) 0.67 (83) 0.67 (84) 0.67(85) 0.67 (86) 0.36 (125) 0.29 (126) 
76 1 (77) 1 (78) 1 (79) 1 (80) 0.83 (82) 0.83 (83) 0.83 (84) 0.83 (85) 0.83 (86) 0.48 (47)  
81 1 (82) 1 (83) 1 (84) 1 (85) 1 (86) 0.83 (77) 0.83 (78) 0.83 (79) 0.83 (80) 0.48 (47)  
89 0.6 (90) 0.58 (44) 0.58 (45) 0.33 (47) 0.33 (48) 0.33 (49) 0.33 (50) 0.33 (51) 0.33 (53) 0.33 (54) 
91 0.6 (92) 0.6 (93) 0.6 (94) 0.46 (73) 0.46 (74) 0.46 (75) 0.46 (87) 0.46 (88) 0.26 (106) 0.14 (8) 
99 1 (95) 1 (96) 1 (97) 1 (98) 1 (100) 0.9 (101) 0.44 (105) 0.39 (104) 0.14 (66) 0.14(67) 

102 
0.83 
(104) 

0.58 (105) 0.58 (106) 0.58 (107) 0.58 (108) 0.58 (109) 0.58 (110)    0.58 (111) 0.47 (5) 0.47 (6) 

103 
0.72 
(104) 

0.53 (105) 0.53 (106) 0.53 (107) 0.53 (108) 0.53 (109) 0.53 (110) 0.53 (111) 0.38 (5) 0.38 (6) 

112 1 (113) 0.68 (114) 0.68 (115) 0.49 (117) 0.49 (118) 0.48 (120) 0.48 (121) 0.48 (122) 0.48 (123) 0.23(59)  

116 
0.83 
(117) 

0.83 (118) 0.4 (113) 0.35 (114) 0.35 (115) 0.33 (135) 0.29 (136) 0.29 (138) 0.29 (141) 0.14 (8)  

119 0.5 (120) 0.5 (121) 0.5 (122) 0.5 (123) 0.4 (114) 0.4 (115) 0.38 (130) 0.38 (131) 0.38 (132) 0.16 (136)  

124 
0.79 
(125) 

0.47 (126) 0.38 (113) 0.38 (120) 0.38 (121) 0.38 (122) 0.38 (123) 0.29 (114) 0.29 (115) 0.13 (51)  

127 1 (128) 0.36 (125) 0.29 (126) 0.29 (130) 0.29 (131) 0.29 (132) 0.2 (135) 0.2 (142) 0.2 (143) 0.12 (2)  
129 0.8 (130) 0.8 (131) 0.8 (132) 0.46 (114) 0.46 (115) 0.38 (119) 0.36 (5) 0.36 (6) 0.36 (8) 0.36 (9) 

133 
0.75 
(134) 

0.5 (5) 0.5 (6) 0.33 (16) 0.33 (17) 0.33 (140) 0.25 (141) 0.14 (136) 0.14 (138) 0.09 (2)  

 
The parameter k in the KNN algorithm is varied from 1 to 10 to observe the performance of the CBR 

system. The accuracy varies with different values of k. On average, the number of cases under each fault 
type is small as the number of cases in the case base is only 143. Therefore, a relatively small value of k 
is selected to evaluate the accuracy of the CBR system. Table 5 presents the accuracy of Validation 1 
with different values of k. 

 
Table 5 Accuracy of Validation 1 with different values of k 

k 1 2 3 4 5 6 7 8 9 10 

Accuracy 0.9655 0.8966 0.8966 0.6552 0.5862 0.4828 0.4828 0.4483 0.4138 0.4138 

 
Fig. 7 illustrates the retrieval accuracy of five validations and the average accuracy with respect to 

different values of k. We observed that when k = 1–3, the performance of CBR is adequate with more 
than 80% accuracy. The highest accuracy of 0.958 is obtained at k = 1, which implies that 95.8% of the 
returned cases with the same fault positioning and fault type are similar. 
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Fig. 7. Retrieval accuracy with different values of k 

 

It is worth mentioning that based on the classification of KNN, the retrieval accuracy decreases with 
k. When the value of k is sufficiently large, KNN is rendered meaningless as all cases exist in the same 
classification. The case base in this study comprises 143 cases and 38 fault types. This implies that for 
every fault type, only a small number of cases exist on average. Additionally, only one or two relevant 
cases exist for certain fault types owing to the extremely severe consequences of the fault. Therefore, the 
accuracy is the highest at k = 1 and extremely low when k is large. However, this does not affect the 
performance of the CBR system because the aim of the 5-fold cross-validation and KNN is to identify 
the most suitable value of k for CBR to attain the highest accuracy. In the future, the case base can be 
extended by adding new fault cases of aero-engines. The similarity measure can be further improved with 
a higher number of cases in the case base and by fine-tuning the attribute weights.  

 

5. Conclusions 

In this study, we developed a CBR system to ease the decision-making in aero-engine fault diagnosis. 
A novel case representation and similarity measure are proposed for fault diagnosis of complex aero-
engines. We established an aero-engine fault case base with 143 cases. The keywords are extracted from 
a linguistic description and divided into three types of attributes, namely categorical, numerical, and 
semantic attributes. Additionally, three similarity measures are proposed based on different attributes in 
these categories. Particularly, a semantic correlation between the fault part and its corresponding fault 
mode is considered, and a tree structure combined with a semantic graph-based approach is devised to 
quantify the similarity between semantic attributes. The most similar case is retrieved based on the 
combined local and global similarities. The KNN algorithm and 5-fold cross-validation are used to 
evaluate the performance of the CBR system by partitioning all cases into a development set and a test 
set. The experimental results exhibited a high accuracy in terms of retrieving similar cases for target 
cases.  

The accurate diagnosis and resolution of aero-engine faults have always been an important issue in 
the field of aviation maintenance and support service. Despite the extensive knowledge of aero-engine 
fault diagnosis, a higher number of cases need to be accumulated and modeled to develop and utilize 
resources and assist decision-making in aero-engine fault diagnosis. This study forms the basis for the 
development of an effective CBR system with an initial set of actual cases, which presents a promising 
high accuracy of case retrieval.  

The era of big data has increased the convenience of the collection and collation of aero-engine 
fault cases. However, the data on fault cases are generally semi-structured or unstructured text 
descriptions, rendering it highly challenging to develop and maintain quantitative models or rule-based 
models that can capture the causal relationships of faults. CBR is an experience-based methodology that 
does not require explicit models, thus addressing complex problems, such as the one considered in this 
study. Apart from avoiding the bottleneck issue of modeling, the case base in the CBR system can be 
easily maintained, updated, and extended with new successfully resolved cases, thus improving the 
service support system with higher accuracy of case retrieval. 

Similarity measure, which significantly relies on the attributes of interest and their weights, is 
critical to improving the performance of CBR systems. In the future, we intend to improve the CBR 
system by incorporating a higher number of potential key attributes that are interactively extracted from 
maintenance and diagnosis records based on further adjusted weights of attributes. Furthermore, we 
intend to extend the case base with new cases when available.  
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