A Hierarchical Cooperative Genetic Programming
for Complex Piecewise Symbolic Regression

Abstract—In regression analysis, methodologies range from
black-box approaches like artificial neural networks to white-
box techniques like symbolic regression. Renowned for its trans-
parency and interpretability, symbolic regression has become
increasingly prominent in elucidating complex data relationships.
Nevertheless, its effectiveness in managing complex piecewise
symbolic regression tasks poses significant challenges. This paper
introduces a novel Hierarchical Cooperative Genetic Program-
ming (HCGP) framework to address this issue. The HCGP
model utilizes a unique hierarchical structure, incorporating
dual cooperative genetic programming (GP) populations. This
innovative design significantly enhances the capability to solve
complex piecewise symbolic regression problems. Implementing
a scenario-based GP is central to the HCGP framework, which
strategically selects the appropriate underlying calculation GP.
This feature enables the system to autonomously learn and adapt
to complex scenarios, selecting the most suitable calculation
GPs for each case. Our HCGP approach distinguishes itself
from traditional and state-of-the-art methods. It demonstrates
particular proficiency in modeling piecewise expressions within
complex scenarios. The empirical evaluation of our model,
conducted using benchmark datasets, has exhibited its superior
accuracy and computational efficiency. This progress emphasizes
the potential of HCGP in sophisticated data modeling and marks
a substantial advancement in hierarchical structure in complex
piecewise symbolic regression.

Index Terms—genetic programming, symbolic regression, hi-
erarchical structure, evolutionary algorithm

I. INTRODUCTION

The evolution of regression analysis, a cornerstone in sta-
tistical data modeling, has witnessed significant advancements
tailored to address the complexities of contemporary data
structures. Amidst these developments, symbolic regression
is a pivotal methodology, offering a level of interpretability
often lacking in black-box approaches, such as conventional
artificial neural networks [1]. Its ability to generate explicit
mathematical models that reveal intricate data relationships has
positioned symbolic regression as a preferred tool in various
scientific and engineering applications.

In real-world problem-solving, the demand often extends
beyond mere performance; factors such as solutions’ inter-
pretability, modifiability, and traceability are increasingly val-
ued. Symbolic regression caters to these requirements, present-
ing a versatile, transparent approach that resonates with prac-
tical applications. Its emphasis on creating understandable and
adaptable models aligns with the growing need for solutions
that are effective, comprehensible, and accountable in real-life
scenarios. This aspect of symbolic regression underscores its
significance and broad applicability in addressing real-world
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challenges, where the clarity and adaptability of solutions often
take precedence over performance metrics alone.

Notwithstanding its advantages, symbolic regression faces
considerable challenges, mainly when applied to complex,
piecewise symbolic regression tasks. These tasks, character-
ized by distinct data behaviors in different input domains,
demand a modeling approach capable of discerning and ac-
curately representing these segmented relationships. Existing
methods often struggle with the nuanced demands of such
problems, especially those with complex conditions.

In response to this challenge, this paper introduces a Hierar-
chical Cooperative Genetic Programming (HCGP) framework,
a novel tailored for complex piecewise symbolic regression.
The HCGP framework sets itself apart through a unique hierar-
chical structure incorporating dual cooperative GP populations.
This configuration substantially enhances the model’s ability to
efficiently navigate and resolve segmented symbolic regression
tasks. Central to HCGP is the adoption of a scenario-based GP
approach. This method effectively navigates various complex
scenarios, autonomously selecting GP individuals’ most ap-
propriate calculation. This feature reduces the search space
and boosts the model’s comprehensibility, handling complex
piecewise symbolic regression challenges adeptly.

In our investigation, we considered a simple expression
under a complex condition, as detailed in Equation 1. We
tested several models, including Multilayer Perceptron (MLP),
Extreme Gradient Boosting (XGBoost), Logic Genetic Pro-
gramming (LGP), and our proposed HCGP on this symbolic
function regression problem. The findings in Fig. 1 revealed
that conventional regression methods struggle with complex
scenario problems, even when the scenario involves just an
essential sine function. This challenge has led us to develop
the HCGP method tailored to address such issues.
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A notable feature of our HCGP approach is the utilization
of the population dedicated to evolving the scenario selection
of GP individuals. This innovation significantly enhances the
model’s capability to fit problems characterized by complex
scenarios. Furthermore, the adaptability and robustness of
this method make it particularly well-suited for addressing
a variety of real-world problems, which often encompass
similarly complex scenarios. Therefore, our approach demon-
strates improved performance in theoretical models and holds



2000 2000

1000 -

Lt
=
s A ot
= oF H = of

—1000 -

1000 ,

—1000 H

——  XGBoost
~——  Ground Truth

—— MLP
——  Ground Truth
L

2000 2000

1000 H| [¢ 1000

—1000 —1000

—— HCGP \
——  Ground Truth

—— LGP E
~——  Ground Truth
2000

L L L
—40 =20 0 20 40

(b) XGBoost

L L L L L L
40 =20 0 20 40 40 =20 0 20 40

(c) LGP (d) HCGP

Fig. 1. MLP, XGBoost, LGP and HCGP’s Best Performance on Equation 1

substantial promise for practical applications across diverse
domains.

In this article, we introduce a novel approach to symbolic re-
gression - the Hierarchical Cooperative Genetic Programming
(HCGP), inspired by research on cooperative coevolution GP
[2], [3], novel GP representations [4], [5], [6] and principally
based on the double-layer cooperative genetic programming
framework [7]. We have applied this method to complex
piecewise symbolic regression problems, and considering the
unique characteristics of symbolic regression, we have refined
its evolutionary process. This enhancement significantly im-
proves its performance. The main contributions of this paper
are manifold.

o Innovative Hierarchical Genetic Programming Architec-
ture: We propose a novel hierarchical genetic program-
ming framework to address piecewise symbolic regres-
sion problems. This approach significantly improves the
fitting of expressions with complex conditions, show-
casing a marked advancement in symbolic regression
techniques.

o Redesigned Evolutionary Methods for HCGP: We have
redeveloped the Hierarchical Cooperative Genetic Pro-
gramming (HCGP) evolutionary process, including en-
hanced crossover and mutation strategies. These modi-
fications have resulted in a notable improvement in the
algorithm’s performance.

o Extensive Comparative Analysis with State-of-the-Art
Methods: The efficacy of the HCGP has been rigorously
tested across multiple symbolic regression datasets. Our
comprehensive comparisons with various state-of-the-art
methods demonstrate the superiority of HCGP in terms
of accuracy and efficiency.

The remainder of this paper is organized as follows. Section

IT presents the background and literature review on symbolic
regression and the applications of the symbolic regression
methods in real-world applications. Section III describes the
proposed HCGP method, outlining its structure and evolu-
tion process. Section IV discusses the experimental results,
providing a comprehensive analysis of the performance of
the HCGP and other state-of-the-art methods over several
datasets. Finally, Section V concludes the paper, summarizing

the essential findings and suggesting potential avenues for
future research in this area.

II. BACKGROUND AND LITERATURE REVIEW

Symbolic regression, a unique approach within the broader
spectrum of regression analysis, distinguishes itself by au-
tonomously constructing mathematical models that best de-
scribe a dataset [8]. This process is typically carried out using
evolutionary algorithms [9] such as genetic programming.
Unlike conventional regression techniques that fit data to pre-
defined models, symbolic regression explores various possible
models, making it exceptionally versatile and powerful in
uncovering underlying data relationships [10].

The objective of symbolic regression is to discover a map-
ping § = f(x,0) : R? — R, utilizing a dataset {(x;,y;)} Y.
Symbolic regression endeavors to identify an expression for f
and corresponding parameters 6 that encapsulate the relation-
ship between all instances of x; and y;. Once the appropriate
f and 0 are determined, it becomes possible to predict y;
using x;, even for values of x; that are out of the range of the
original dataset. Moreover, the training process of symbolic
regression involves minimizing the difference between the
predicted values g and the actual values y.

The applications of symbolic regression are impressively
varied and extensive. It has been instrumental in rediscovering
physical laws from experimental data in physics [11], [12],
[13]. This capability to extract fundamental relationships from
raw data points makes scientific discovery and verification
invaluable. In the ecological domain [14], [15], symbolic
regression aids in the modeling of complex ecological in-
teractions, which are often nonlinear and involve multiple
interacting factors. Its ability to handle such complexity is
critical for ecological research and conservation efforts.

Symbolic regression has also been applied in forecasting
financial markets in the economic sphere [16]. Here, the
flexibility of symbolic regression to model nonlinear and non-
stationary time series data offers a significant advantage over
traditional linear models. Financial analysts and economists
leverage this to predict market trends, assess risks, and make
informed investment decisions [17], [18].



Engineering applications of symbolic regression encompass
system optimization and predictive maintenance. This method-
ology enables engineers to model intricate systems, discern
vital factors influencing performance, and anticipate failures
before they manifest [19]. Furthermore, symbolic regression
has been effectively applied in areas such as truck dispatching
[7], [20], job shop scheduling [21], [22], vehicle routing [23],
and robotic control [24], [25], among others. These diverse
applications highlight its versatility and utility in addressing
complex engineering challenges.

Symbolic regression’s role in data analytics is also note-
worthy [26]. It provides a tool for data scientists to derive
meaningful insights from large and complex datasets. Its
ability to generate human-readable models interprets results
more efficiently, enhancing the decision-making process in
various business and research contexts.

Traditional symbolic regression methods, while powerful,
exhibit limitations when dealing with piecewise symbolic
regression, especially in scenarios characterized by complex
piecewise functions. Piecewise functions consisting of several
sub-functions defined on a specific interval are commonplace
in real-world data representing distinct regimes or operational
modes [27].

One core limitation of conventional approaches is their
struggle with identifying the boundaries and appropriate mod-
els for each segment in piecewise data. This challenge is
compounded in non-linear, discontinuous, or high-dimensional
data scenarios, where the transition points between different
regimes are not easily discernible [28], [29].

Moreover, traditional methods typically excel only within
the range of data on which they are trained, lacking the
capability to uncover the underlying rules that govern the data.
This limitation constrains their predictive power to scenarios
that fall within the bounds of the training data, rendering them
ineffective for extrapolation or predictions beyond the training
range [30], [31].

In summary, while symbolic regression offers a potent tool
for data modeling in diverse real-world applications, tradi-
tional methods face significant challenges in handling complex
piecewise regression problems. This limitation necessitates the
development of more advanced, flexible, and autonomous sym-
bolic regression techniques capable of effectively deciphering
and modeling complex, piecewise scenarios without extensive
manual intervention.

III. METHODOLOGIES

Addressing the challenges of traditional symbolic regression
in managing complex conditions within piecewise symbolic re-
gression, this section is dedicated to exploring the conventional
methods of piecewise symbolic regression, the Logic Genetic
Programming. Concurrently, it introduces and elaborates on
our innovative HCGP approach. This section aims to clarify
the significance of logic operators in symbolic regression
and offers an in-depth examination of the HCGP’s structure.
It emphasizes the distinct benefits of HCGP, particularly in
comparison to traditional LGP, underscoring its enhanced

capabilities in handling the intricacies of piecewise symbolic
regression.

A. Logic Genetic Programming

As previously mentioned, evolutionary algorithms are a pre-
dominant method for solving symbolic regression problems.
While alternatives like decision trees [32], recurrent neural
networks [33], and even transformers [34] exist for symbolic
regression, GP-based methods are the most commonly em-
ployed. According to SRbench data [35], GP-based methods
rank among the best performers among all approaches. This
high performance is due to GP’s extensive search capabilities.
Utilizing evolutionary algorithms with large populations, GP is
adept at finding suitable solutions within the expansive search
space characteristic of symbolic regression [36]. Additionally,
the symbolic nature of these problems often hinders the gener-
ation of a differentiable objective function, a requirement for
traditional learning methods. Evolutionary algorithms, which
do not necessitate a differentiable objective function, are par-
ticularly effective in this domain, contributing to the success
of GP in symbolic regression tasks.

As depicted in Fig. 1, traditional GP can be divided
into two main categories: Arithmetical GP (AGP), which
solely employs arithmetic operators, and Logic GP (LGP),
which integrates logic operators. This paper is concerned
with complex piecewise symbolic regression problems. The
absence of logic operators in AGP is a notable limitation
for fitting piecewise functions. Consequently, our discussion
primarily centers on the LGP method, which we also use
as a comparison in our study. In LGP, ternary operators like
“If-Else” are utilized. These operators enable the selection of
outputs from the second or third subtree, depending on the
condition set in the first subtree, thereby effectively tackling
the intricacies of piecewise functions. However, as observed in
Fig. 1, while LGP can fit complex piecewise functions, it does
not perform as well on more straightforward fitting challenges,
such as those presented in Equation 1. In contrast to AGP, the
introduction of logic operators in LGP significantly enlarges
the search space. Although LGP can identify a solution, the
immense size of the search space poses a significant challenge
in efficiently finding the optimal one.

In this research, we utilize the R-Square (coefficient of
determination) as the performance evaluation criterion for
all algorithms, as shown in Equation (2). In the R-squared
formula, y; denotes the actual values, whereas ¢; represents

the predicted values. Additionally, 7 signifies the mean of
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Fig. 2. Arithmetical GP and Logic GP Structure
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the actual values, and n is the number of data points. R-
Squared indicates the proportion of variance in the dependent
variable that can be predicted from the independent variables.
It measures how much the regression predictions align with
the actual data points. The value of R-squared ranges from
0 to 1, where a value of O implies that the model does not
account for any of the variability of the actual data around its
mean, while a value of 1 indicates the model accounts for all
the variability of the response data around its mean.
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Algorithm 1 outlines the main steps and components of
LGP and HCGP. The process begins with creating an initial
population determined by a predefined population size. During
the evolutionary process, the fitness of each individual is
calculated based on the R-squared value (R?) as shown in
Equation 2, with an additional penalty for oversized GP trees.
A new population is then produced, where a random genetic
operator—either crossover, mutation, or reproduction—is se-
lected to generate offspring for the new population. This study
adopts a non-elitist tournament selection method to enhance
diversity. This evolutionary cycle continues until the maximum
number of generations is reached. The subsequent subsections
detail the technical aspects of these components.

RP=1- 2)

Algorithm 1 LGP, and HCGP Evolution Process

Require: Initial Parameters initial
p < NewPopulation
p.anitial_individual s(initial .population_size)
generation < 0
while generation < initial.max_generation do
p.calculate_fitness()
p.penalize_long_individuals()
next_generation < NewEmptyPopulation
while next_generation.size() < p.size() do
Insert an individual to next_generation by
Crossover, Mutation, or Reproduction on p
end while
p < next_generation
generation < generation + 1
end while

1) Crossover: In the crossover operation, two parent indi-
viduals are chosen through tournament selection size
7. To produce two offspring, these parents undergo a single
point crossover operation. Fig. 3 provides an example
of this process: a subtree from parent 2 is combined with
parent 1 to create offspring 1, while offspring 2 is formed by
merging a subtree from parent 1 into parent 2.

2) Mutation: The mutation operation involves modifying a
single individual to produce a new offspring. A mutation point
is randomly selected, and a new, randomly generated subtree
is grown from this point. This modification ensures the overall
tree remains within the depth limit, as illustrated in Fig. 4.

Parent 1 Parent 2

Crossover

Offspring 1

Offspring 2

Fig. 3. Crossover operation in AGP & LGP
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Fig. 4. Mutation operation in AGP & LGP
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B. Hierarchical Cooperative Genetic Programming

Building upon the framework of LGP and its inherent
limitations, our objective was to preserve LGP’s adeptness
in handling complex multi-scenario piecewise problems yet
streamline the search space for greater efficiency. To accom-
plish this, we adopted a strategy that split the search space
into two distinct realms: the scenario space and the calculation
space. This division is operationalized by training two cooper-
ative GP populations, each specializing in its respective search
domain. As illustrated in Fig. 5, the structure of an HCGP
individual is conceptually split into two parts. The upper layer
is dedicated to exploring the scenario space and identifying the
relevant scenarios for the problem. In contrast, the lower layer
concentrates on the calculation, focusing on the computational
aspects required for the regression. This division reduces the
search space and leverages the strengths of both domains,
fostering a more effective and efficient symbolic regression
approach.

However, this bifurcated approach presents a new challenge.
The individuals in the scenario and calculation layers cannot
independently execute the symbolic regression task. To over-
come this, we have devised a method where one individual
from the scenario layer is paired with another from the cal-
culation layer, forming a cohesive rule. An HCGP individual
is typically composed of several such composite rules. When
an input x; is introduced, the scenario individual evaluates
whether this input aligns with its designated scenario. If
yes, the corresponding calculation individual within that rule
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Fig. 5. Structure of HCGP Individual

determines the outcome. In cases where there is no match,
the process iteratively progresses to the subsequent rule. This
procedure is repeated until an appropriate scenario is found or
all the rules have been considered. When no matching scenario
is identified, the output is computed using the calculation
individual associated with the final rule. This systematic
approach ensures a comprehensive evaluation, enhancing the
effectiveness of the symbolic regression process.

With the introduction of this novel structure, a redesign
of the evolutionary process is imperative. Regarding fitness
evaluation, we maintain the same overall fitness metric em-
ployed in LGP for the entire HCGP individual. Additionally,
we have introduced a new fitness formula for each rule
within the HCGP individual, as detailed in Equation 3. In
this rule-specific fitness calculation, m,; indicates the count of
instances x successfully matched by the scenario individual
in ruley during testing. Concurrently, R? reflects the R?
value corresponding to the predictions made by the calculation
individual in ruley. This tailored fitness metric is crucial in
the evolutionary process. It represents the specific performance
of each rule during the fitting process and its effectiveness.
This facilitates a practical assessment of each rule’s perfor-
mance within the HCGP individual. This evaluation is used in
the ranking, mutation, crossover, or removal of rules within
the individual, optimizing the overall efficacy of the HCGP
framework.

fitness, = m; X Ri 3)

The overall evolutionary process of HCGP is similar to that
of LGP, detailed in Algorithm 1. However, the crossover and
mutation methods have explicitly been redesigned to align
with the unique structure and requirements of the HCGP
framework:

1) Crossover: In the crossover process, like the method
used in LGP, two parent individuals are initially chosen
by tournament selection. Following this, using roulette
wheel selection based on rule-specific fitnessy, ex-
change rules are selected from each parent, favoring those with
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Fig. 6. Crossover operation in HCGP

higher fitness. The crossover operation is divided into four dis-
tinct types. The first type exchanges two rules without crossing
over the individuals in either the scenario or calculation
layers. The second type involves crossover between scenario
individuals, while the third type is focused on crossover among
calculation individuals. The fourth and most comprehensive
type involves a crossover between the scenario and calculation
layers. When a new rule is formulated, it either randomly
replaces its corresponding original rule in the parent individual
or is inserted at the beginning or end of the parent, thus
creating a new child individual. It is important to note that if
the rule count of an HCGP individual reaches the maximum
rule limit, new rules will only replace existing ones rather
than being added. An example of the fourth type of crossover
is depicted in Fig. 6. This approach to crossover in HCGP
individuals aligns with the established principles in LGP.

2) Mutation: The mutation operation engages a single par-
ent, from which a rule within the HCGP individual is selected
for mutation. The selection is based on the rule’s specific
fitnessy, utilizing roulette wheel selection. Rules
with lower fitness are more likely to be chosen for mutation.
The mutation process itself is divided into two types. The
first type involves deleting the selected rule. The second
type, more complex, includes mutating both the scenario and
calculation individuals within a rule, thus creating a new rule.
Following the creation of this new rule, it is reinserted into
its original position in the parent individual. An illustration of
the mutation process is provided in Fig.7.

Besides the crossover and mutation processes, the remaining
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aspects of the HCGP evolutionary mechanism are maintained
consistent with those of LGP to ensure a fair comparison. The
following section will detail two experimental parts designed
to reveal the performance of the HCGP method. These ex-
periments focus on a simple function problem and benchmark
datasets, comprehensively evaluating HCGP’s capabilities.

IV. EXPERIMENTS AND DISCUSSION

This section outlines two types of tests. The first is a piece-
wise function fitting problem, as shown in Equation 1, and
the second involves testing on the PMLB benchmark set [37].
The performance of HCGP in these tests demonstrates the
superiority of the novel method proposed. Furthermore, com-
parisons between HCGP and other state-of-the-art symbolic
regression methods highlight HCGP’s efficacy in fitting real,
complex piecewise symbolic regression problems, showcasing
its potential in solving real-world challenges. The proposed
HCGP method performs better than others in complex piece-
wise symbolic regression scenarios.

The configuration of LGP and HCGP adheres to the param-
eters established in the referenced study [7]. The crossover,
mutation, and reproduction rates are set at 0.6, 0.3, and 0.1,
respectively. We have constituted a population size of 1024,
with the initial population generated using the ramped half-
and-half method. Parent selection is conducted via a tourna-
ment process with a size of 7, and the evolution is capped at
100 generations. The maximum depth for all trees is limited
to 10. Within the HCGP framework, the number of rules is
adjustable, ranging from 1 to 10. The operators incorporated
into this research consist of addition, subtraction, multiplica-
tion, protected division, if-else, and relational operators. For
fitting simple piecewise functions, sine and cosine operators
are included, enhancing the model’s capability to capture the
intricacies of the problem. The terminal set encompasses both
the input variable and an integer constant, with values spanning
from 1 to 10.

A. Piecewise Function Fitting

This simple piecewise fitting problem shown in Equation 1,
while seemingly straightforward, incorporates a complex con-
dition due to the sine function, making it a piecewise function

fitting problem with complex conditions. For this function, we
randomly sampled 200 points within the range of = from -20 to
20 for training and endeavored to reconstruct the relationship
between z and y through regression. Our comparison involved
four methodologies: MLP, XGBoost, LGP, and our proposed
HCGP. These represent traditional neural networks, ensemble
learning methods, logic-based GP approaches, and our novel
method. Table I shows that each algorithm underwent 10
iterations with varying random seeds. HCGP and XGBoost
emerged as the most effective, nearly achieving an R? value of
1, indicative of near-perfect fitting for this complex condition.
Contrarily, MLP struggled significantly with this segmented
problem. LGP showed commendable performance but did not
match the efficacy of HCGP.

TABLE I
MLP, XGB0OsT, LGP AND HCGP TEST RESULTS ON EQUATION 1 (R2)
MLP XGBoost LGP HCGP
Min 0.06 0.98 0.32 0.98
Mean 0.07 0.99 0.71 0.99
Max 0.07 1 0.96 1

Particularly intriguing was the performance of the XGBoost
algorithm, which, despite registering the highest scores in
Table I with an R? value of 1, displayed limitations, as shown
in Fig. 1. Within the training range of -20 to 20, XGBoost
precisely predicted all data points. However, its predictions
did not align well with the y outputs beyond the training set
range, suggesting that while XGBoost excels in regression,
it primarily learns from the training set without delving into
the fundamental relationship between x and y. In contrast,
symbolic regression methods like LGP and HCGP demon-
strated adeptness within and outside the training interval. This
underscores a critical distinction between symbolic regression
and traditional regression techniques: the former delves into
the core relationship between inputs and outputs, providing
a universal model adaptable to various scenarios vital in the
uncertainty-ridden real world. The robustness of diverse inputs
is incredibly crucial. LGP, for instance, despite not perfectly
matching the function model, showed robust performance
for extra inputs, a trend even more pronounced in HCGP.
Therefore, we posit that symbolic regression-based methods
hold significant promise for broader application in real-world
settings.

B. Benchmark Datasets Test

As previously mentioned, we utilized the PMLB dataset as
our benchmark in this study. Within PMLB, we randomly
selected five datasets that are representative of evaluating
the performance of our HCGP method against other state-of-
the-art techniques. For methods other than LGP and HCGP,
we directly used data from SRBench [35]. SRBench is a
comprehensive benchmark that includes a range of advanced
ensemble learning and symbolic regression algorithms, such
as XGBoost and Operon. In SRBench, hyperparameters for
all algorithms, including the number of trees for XGBoost and



TABLE 11
EXPERIMENT RESULTS (R2)

- Slenth  Faculty UsS
Titanic  Banana Case Salaries  Crime
HCGP 0.32% 0.51 0.76* 0.95%* 0.85*
LGP 0.19 0.31 0.58 0.78 0.80
AFP 0.28 0.61 0.62 0.75 0.64
AFP_FE 0.27 0.62 0.66 0.80 0.71
AlFeynman -0.03 -0.80 -5.98 -3.66 -0.19
AdaBoost 0.27 0.49 0.60 0.72 0.82
BSR 0.24 0.01 0.32 0.70 0.18
DSR 0.24 0.47 0.58 0.81 0.66
EPLEX 0.24 0.53 0.54 0.78 0.77
FEAT 0.27 0.48 0.56 0.65 0.68
FFX 0.29 0.51 -25.08 0.05 0.71
GP-GOMEA 0.30 0.63 0.58 0.75 0.73
ITEA 0.28 0.63 0.35 0.76 0.68
KernelRidge 0.30 0.73* 0.60 0.74 0.78
LGBM 0.26 0.71 -0.01 -0.06 -0.06
Linear 0.22 0.00 0.57 0.78 0.78
MLP 0.29 0.70 0.65 0.66 0.76
MRGP 0.30 0.72 -0.54 0.80 0.29
Operon 0.30 0.68 0.34 0.95%* 0.54
RandomForest 0.30 0.69 0.45 0.66 0.77
SBP-GP 0.30 0.67 0.47 0.75 0.69
XGB 0.22 0.71 0.53 0.71 0.74
gplearn 0.05 0.57 0.66 0.76 0.72

* Best algorithm.

population sizes for Operon, have been thoroughly optimized
using the halving grid search method. Our study employs
the experimental protocols and results provided by SRBench,
ensuring a fair and typical comparison between our algorithm
and other leading methods.

The results showcased in Table 2 indicate that our pro-
posed HCGP method exhibits strong performance across most
datasets. This affirms the efficacy of the hierarchical structure
integral to our approach. By differentiating between scenario
and calculation layers, we have surpassed the performance
of existing methods in various real-world datasets. Further-
more, when LGP is considered an ablation test, lacking
the hierarchical structure, it is clear that HCGP consistently
outperforms across all datasets. This suggests that integrating
a hierarchical structure in addressing piecewise symbolic re-
gression problems effectively narrows down the search space
for GP, thereby aiding in identifying superior solutions. These
outcomes underscore the importance of incorporating a hierar-
chical structure and reinforce the superiority of our developed
HCGP method.

We further extensively evaluated all methods, comparing
both performance and computational cost. As depicted in Fig.
8, our method achieves notable performance and does so with
a reasonable training duration. In this ranking, a lower number
indicates a better outcome. Our method excels not just in terms
of performance but also in maintaining a modest increase in
training time.

V. CONCLUSION AND FUTURE WORK

This study introduces the HCGP framework to address the
complexities inherent in piecewise symbolic regression tasks.
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Fig. 8. Performance vs. Training Time

Diverging from traditional methods, HCGP’s innovative hier-
archical structure, featuring dual cooperative genetic program-
ming populations, has demonstrated exceptional proficiency
in modeling piecewise expressions within complex scenarios.
The empirical evaluations of our model on benchmark datasets
highlighted its superior accuracy, computational efficiency, and
training cost, marking a significant advancement in symbolic
regression techniques.

Looking ahead, there are several promising avenues for
future work. One potential exploration area involves enhancing
the HCGP framework by dynamically adjusting each termi-
nal’s appearance rate of different layers based on learned
knowledge during training. This adaptation could further ex-
pedite the convergence speed and improve the overall perfor-
mance of the HCGP model. Additionally, the research could
refine the scenario-based genetic programming approach, ex-
ploring more sophisticated selection and combination strate-
gies for various scenarios. Another intriguing direction is the
application of HCGP in diverse real-world domains, such as
bioinformatics, financial modeling, environmental science, and
job shop scheduling, where its ability to extract interpretable
models from complex data can be particularly valuable. These
future endeavors will enhance the capabilities of HCGP and
contribute significantly to the field of symbolic regression and
data analysis at large.

REFERENCES

[1] D. Maulud and A. M. Abdulazeez, “A review on linear regression
comprehensive in machine learning,” Journal of Applied Science and
Technology Trends, vol. 1, no. 4, pp. 140-147, 2020.

[2] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic design
of scheduling policies for dynamic multi-objective job shop scheduling
via cooperative coevolution genetic programming,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 2, pp. 193-208, 2013.



[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary computation,
vol. 8, no. 1, pp. 1-29, 2000.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A computational
study of representations in genetic programming to evolve dispatching
rules for the job shop scheduling problem,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 5, pp. 621-639, 2012.

N. X. Hoai, R. I. McKay, and D. Essam, “Representation and structural
difficulty in genetic programming,” IEEE Transactions on evolutionary
computation, vol. 10, no. 2, pp. 157-166, 2006.

Y. Bi, B. Xue, and M. Zhang, “Genetic programming with a new
representation to automatically learn features and evolve ensembles for
image classification,” IEEE transactions on cybernetics, vol. 51, no. 4,
pp. 1769-1783, 2020.

X. Chen, R. Bai, R. Qu, and H. Dong, “Cooperative double-layer
genetic programming hyper-heuristic for online container terminal truck
dispatching,” IEEE Transactions on Evolutionary Computation, 2022.
A. Diveev and E. Shmalko, Machine learning control by symbolic
regression. Springer, 2021.

T. Bartz-Beielstein, J. Branke, J. Mehnen, and O. Mersmann, “Evolu-
tionary algorithms,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 4, no. 3, pp. 178-195, 2014.

E. P. Wigner, “The unreasonable effectiveness of mathematics in the
natural sciences,” in Mathematics and science, pp. 291-306, World
Scientific, 1990.

N. Makke and S. Chawla, “Interpretable scientific discovery with sym-
bolic regression: a review,” Artificial Intelligence Review, vol. 57, no. 1,
p- 2, 2024.

S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired
method for symbolic regression,” Science Advances, vol. 6, no. 16,
p. eaay2631, 2020.

L. S. Keren, A. Liberzon, and T. Lazebnik, “A computational framework
for physics-informed symbolic regression with straightforward integra-
tion of domain knowledge,” Scientific Reports, vol. 13, no. 1, p. 1249,
2023.

Y. Chen, M. T. Angulo, and Y.-Y. Liu, “Revealing complex ecolog-
ical dynamics via symbolic regression,” BioEssays, vol. 41, no. 12,
p. 1900069, 2019.

D. Vizquez, R. Guimera, M. Sales-Pardo, and G. Guillén-Gosalbez,
“Automatic modeling of socioeconomic drivers of energy consumption
and pollution using bayesian symbolic regression,” Sustainable Produc-
tion and Consumption, vol. 30, pp. 596-607, 2022.

P. Truscott and M. F. Korns, “Explaining unemployment rates with
symbolic regression,” Genetic Programming Theory and Practice XI,
pp. 119-135, 2014.

A. FE Sheta, S. E. M. Ahmed, and H. Faris, “Evolving stock market
prediction models using multi-gene symbolic regression genetic pro-
gramming,” Artificial Intelligence and Machine Learning, vol. 15, no. 1,
pp. 11-20, 2015.

P. Venegas, 1. Britez, and F. Gobet, “Ensemble models using symbolic
regression and genetic programming for uncertainty estimation in esg
and alternative investments,” Big Data in Finance: Opportunities and
Challenges of Financial Digitalization, pp. 69-91, 2022.

W. T. Hale, E. Safikou, and G. M. Bollas, “Inference of faults through
symbolic regression of system data,” Computers & Chemical Engineer-
ing, vol. 157, p. 107619, 2022.

X. Chen, R. Bai, R. Qu, H. Dong, and J. Chen, “A data-driven
genetic programming heuristic for real-world dynamic seaport container
terminal truck dispatching,” in 2020 IEEE Congress on Evolutionary
Computation (CEC), pp. 1-8, IEEE, 2020.

Z. Huang, Y. Mei, and M. Zhang, “Investigation of linear genetic pro-
gramming for dynamic job shop scheduling,” in 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 1-8, IEEE, 2021.

M. Xu, Y. Mei, F. Zhang, and M. Zhang, “Genetic programming with
lexicase selection for large-scale dynamic flexible job shop scheduling,”
IEEE Transactions on Evolutionary Computation, 2023.

W. Yi, R. Qu, L. Jiao, and B. Niu, “Automated design of metaheuristics
using reinforcement learning within a novel general search framework,”
IEEE Transactions on Evolutionary Computation, 2022.

M. A. Lewis, A. H. Fagg, A. Solidum, et al., “Genetic programming
approach to the construction of a neural network for control of a walking
robot.,” in ICRA, pp. 2618-2623, Citeseer, 1992.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

P. Silva, C. P. Santos, V. Matos, and L. Costa, “Automatic generation
of biped locomotion controllers using genetic programming,” Robotics
and Autonomous Systems, vol. 62, no. 10, pp. 1531-1548, 2014.

N. J. Christensen, S. Demharter, M. Machado, L. Pedersen, M. Salvatore,
V. Stentoft-Hansen, and M. T. Iglesias, “Identifying interactions in
omics data for clinical biomarker discovery using symbolic regression,”
Bioinformatics, vol. 38, no. 15, pp. 3749-3758, 2022.

A. Makady, A. de Boer, H. Hillege, O. Klungel, W. Goettsch, et al.,
“What is real-world data? a review of definitions based on literature
and stakeholder interviews,” Value in health, vol. 20, no. 7, pp. 858—
865, 2017.

M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Why are nonlinear
fits to data so challenging?,” Physical review letters, vol. 104, no. 6,
p. 060201, 2010.

D. Mayne, “Nonlinear model predictive control: Challenges and oppor-
tunities,” Nonlinear model predictive control, pp. 23—44, 2000.

M. Quade, M. Abel, K. Shafi, R. K. Niven, and B. R. Noack, “Prediction
of dynamical systems by symbolic regression,” Physical Review E,
vol. 94, no. 1, p. 012214, 2016.

C. Wilstrup and J. Kasak, “Symbolic regression outperforms other
models for small data sets,” arXiv preprint arXiv:2103.15147, 2021.
Y.-Y. Song and L. Ying, “Decision tree methods: applications for
classification and prediction,” Shanghai archives of psychiatry, vol. 27,
no. 2, p. 130, 2015.

X. Chen, R. Bai, R. Qu, and J. Dong, “Neural network assisted genetic
programming in dynamic container port truck dispatching,” in 2023
IEEE International Conference on Intelligent Transportation Systems
(ITSC), pp. 1-6, IEEE, 2023.

P-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-end
symbolic regression with transformers,” Advances in Neural Information
Processing Systems, vol. 35, pp. 10269-10281, 2022.

W. La Cava, P. Orzechowski, B. Burlacu, F. O. de Franga, M. Virgolin,
Y. Jin, M. Kommenda, and J. H. Moore, “Contemporary symbolic
regression methods and their relative performance,” arXiv preprint
arXiv:2107.14351, 2021.

J. He and X. Yao, “From an individual to a population: An analysis of
the first hitting time of population-based evolutionary algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 495-511,
2002.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H.
Moore, “Pmlb: a large benchmark suite for machine learning evaluation
and comparison,” BioData mining, vol. 10, pp. 1-13, 2017.



