
VARIABLE-DEPTH ADAPTIVE LARGE NEIGHBOURHOOD SEARCH ALGORITHM

FOR OPEN PERIODIC VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Binhui Chen(a) , Rong Qu(b), Hisao Ishibuchi(c)

(a),(b)School of Computer Science, The University of Nottingham, United Kingdom

(c)1) Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen,

China. 2) Department of Computer Science and Intelligent Systems, Osaka Prefecture University, Japan

(a)Binhui.Chen@nottingham.ac.uk, (b)Rong.Qu@nottingham.ac.uk ,(c)hisaoi@cs.osakafu-u.ac.jp

ABSTRACT

Open Periodic Vehicle Routing Problem with Time

Windows (OPVRPTW) is a practical transportation

routing and scheduling problem arising from a real-world

scenario, which shares some common features with some

classic VRP variants. It has a large scale and tightly

constrained solution space, which requires to well

balance the diversification and intensification when

searching it. Working at large neighbourhood depth

prevents the search from trapping into local optima

prematurely, while small depth provides thorough

exploitation in the local area. Variable Depth

Neighbourhood Search uses variable depth to implement

the balance and obtains satisfying results in the literature.

Considering the characteristics of the multi-dimensional

solution structure and tight constraints in OPVRPTW, a

Variable-Depth Adaptive Large Neighbourhood Search

(VD-ALNS) algorithm is proposed in this paper. In the

adaptive large neighbourhood search framework,

specially tailored four destroy operators and three repair

operators work at variable depth in VD-ALNS. The

contribution of each operator is investigated. Comparing

to existing methods, VD-ALNS makes a good trade-off

between exploration and exploitation and produces

promising results on both small and big size benchmark

instances.

Keywords: adaptive large neighbourhood search,

variable depth neighbourhood search, open periodic

vehicle routing problem with time windows,

metaheuristic

1. INTRODUCTION

Vehicle Routing Problem (VRP) is a well-studied

domain in Operational Research, which rises a large

number of variants. In the classic model of Vehicle

Routing Problem with Time windows (VRPTW)

(Solomon 1987) starting from a depot, a fleet of vehicles

visit a number of customers to complete their demands

satisfying the time constraints (Time Window). The

depot and customers visited compose the route of a

vehicle, and the total demands on the route cannot exceed

the capacity of the vehicle. All vehicles have to return to

the depot within the planning horizon. This circle trip of

each vehicle is called a close route (Hamilton Cycle)

(Tarantilis et al. 2005). The objective of VRPTW is to

minimize the total cost of all routes (e.g., travel distance,

the number of vehicles used). Derived from various real-

world problems, a large number of extended models are

proposed by adding various Side Constraints to VRPTW

(e.g. driver working hour regulations, demand type,

vehicle type and customer preference), while solution

methods of both exact approaches and heuristic

algorithms are deeply studied (Toth and Vigo 2001).

1.1. Variants of Vehicle Routing Problem

Among the large number of variants of VRP, there are

three classical variants available for reference to our

study, which are reviewed in this section. Based on

VRPTW, when the demands of customers are pickup and

delivery of shipments, the problems are called Vehicle

Routing Problem with Pickups and Deliveries (VRPPD)

(Golden et al. 2008). In this case, each vehicle has to pick

up goods from a number of pickup points, then deliver

them to the appointed destinations within the associated

time windows. If the depot is the only one pickup point

while multiple customer locations are delivery points, or

contrarily, a number of pickup points (customers) with

the only one delivery point depot, the problem would be

defined as a One-to-Many-to-One problem. Whilst the

customers can be both pickup and delivery points, then it

is a Many-to-Many problem. In One-to-One problems,

one customer's pickup demand is another customer's

delivery demand. Furthermore, if the demands can be

consolidated, it is called Less-than Truckload

Transportation problem, otherwise, it is a Full Truckload

Transportation problem (Wieberneit 2008).

In Multi-Period Vehicle Routing Problem

(MPVRP), the service to a customer could be performed

over a multi-period horizon (Mourgaya and Vanderbeck

2007, Hemmelmayr et al. 2012). Especially, in grocery

distribution, soft drink industry and waste collection,

there would be a specified service frequency for each

customer over the multi-period horizon. In this so-called

Periodic Vehicle Routing Problem (PVRP) (Eksioglu et

al. 2009), the servicing days to customers are more

mailto:Binhui.Chen@nottingham.ac.uk
mailto:Rong.Qu@nottingham.ac.uk

flexible. Reasonably plan the servicing days of

customers and routing of vehicles, so as to minimize the

total cost of all workdays is the objective of this type of

problems.

In practice, for cost reason, many companies hire

external carriers, e.g. third party logistic provider and

private trucks, instead of establishing their own fleet.

Those hired vehicles do not return to the starting

collection depot when they complete the tasks assigned,

and all routes end at the last customers serviced. The

routes are called open routes (Hamilton Paths instead of

Hamilton Cycles). This type of problems are classified to

Open Vehicle Routing Problems (OVRP), which is first

proposed by Eppen and Schrage (1981).

1.2. Existing Methods

As a well-known NP-hard problem (Toth and Vigo

2001), a huge number of both exact methods and

heuristic algorithms have been developed for VRPs.

Exact methods always generate the optimal solutions and

solve small and medium size of problems well (Baldacci

et al. 2012). However, when facing the larger scale of

real-world problems with thousands or more customers

and complex constraints, exact methods become time-

consuming and unrealistic (El-Sherbeny 2010). Heuristic

and Metaheuristic algorithms generate good optimal

solutions approximations in acceptable computational

time. In the latest three decades, metaheuristic

approaches have made great achievements in solving

large-scale VRPs (Bräysy and Gendreau 2001).

In Population-Based Metaheuristics, the iterative

improvement is conducted in a population of solutions

(Talbi 2009). They have shown high-performance in

multi-Objective and small to medium size problems

(Lourens 2005, Ghoseiri and Ghannadpour 2010).

However, when facing the high-dimensional complex

structure of solution and large problem size in real-world

problems, they would be intractable to population-based

metaheuristics. Thus, we focus on the Single Solution-

Based Metaheuristics in this paper.

Single Solution-Based Metaheuristics, by calling

neighbourhood operators, explore only one new solution

in each iteration, e.g. Tabu Search (TS), Variable

Neighbourhood Search (VNS), and Large

Neighbourhood Search (LNS). TS rejects a number of

specific solutions (tabu list) to avoid search cycle, and

worse solutions within a certain range are accepted so as

to escape a local optima trap. A construction heuristic

followed by TS is proposed for PVRPTW in (Cordeau et

al. 2001), considering travel time, capacity, duration and

time windows. An improved TS approach using the

Forward Time Slack (Savelsbergh 1992) is later

proposed to further optimize the route (Cordeau et al.

2004). TS has been applied widely, and many other

applications in VRPs can be found in (Laporte et al.

2000).

Mladenoviċ and Hansen (1997) propose VNS,

which systematically changes neighbourhood structures

during exploring solution space. VNS has been applied

to many optimization problem domains and obtains good

results (Hansen et al. 2010). Redi et al. (2013) propose a

VNS algorithm for OVRPTW, which outperforms

almost all previous algorithms. Differently, Variable-

Depth Neighbourhood Search (VDNS) uses one type of

operator but at variable neighbourhood depth. It is widely

applied in Very Large Scale Neighbourhood search

(Pisinger and Ropke 2010). Chen et al. (2016) develop

an algorithm which proposes compounded

neighbourhood operators combining VNS and VDNS for

VRPTW, and a number of newly found best solutions of

the benchmark are produced.

LNS (Shaw 1997, 1998) applies destroy operators

(removal heuristics) and repair operators (insertion

heuristics) to remove a number of customers/demands

from the current solution and reinsert them into the

destroyed solution, producing a new solution with a great

change from the previous one. Schrimpf et al. (2000)

propose a similar scheme which is called Ruin &

Recreate. Pisinger and Ropke (2007) introduce a general

heuristic named Adaptive Large Neighbourhood Search

(ALNS), which employs an LNS strategy with adaptive

operator selection, solves five different variants of VRPs.

When traditional operators of small change (e.g. λ-

opt, CROSS-exchange (Bräysy and Gendreau 2005)) are

used to explore the tightly constrained large

neighbourhood, the search is easy to trap into local

optima. LNS operators (destroy & repair) efficiently

conquer this weakness by bringing significant change to

the current solution. ALNS produces promising results in

a large number of benchmarks and outperforms most

existing methods (Pisinger and Popke 2010; Laporte et

al. 2010).

In the subsequent research, ALNS is applied to

various practical VRPs and shows powerful ability to

solve real-world large scale VRPs with tight constraints.

An ALNS algorithm for Pickup and Delivery Problem

with Time Windows is proposed by Ropke and Pisinger

(2006). In (Prescott-Gagnon et al. 2009), ALNS is used

in both stages of the proposed algorithm, which

respectively optimize the two objectives of VRPTW.

ALNS is also used to tackle the Two-Echelon Vehicle

Routing Problem and Location Routing Problem, whose

solutions contain two-level planning (i.e. depots

selection and satellite facilities scheduling), in

(Hemmelmayr et al. 2012). An ALNS algorithm for

Reverse OVRPTW is proposed by Schopka and Kopfer

(2016). In this problem, the routes start from scattered

customers and end at a common depot. To enhance the

intensity of search, local search is employed after

Destroy & Repair in (Dayarian et al. 2013), which

addresses MPVRP with up to 200 customers.

In the ALNS for Vehicle Routing Problems with

Multiple Routes proposed by Azi et al. (2014), the

operation depths of neighbourhood operators are

different when the algorithm is running at different

levels. E.g. when the algorithm is respectively running at

the levels of workday, route and customer, the operator

of Random Removal would randomly remove workdays,

routes and customers from the operated solution,

correspondingly. However, in that paper, the different

depths are used only once at each level. Wen et al. (2011)

use LNS operators like traditional neighbourhood

operators in a VNS framework. More ALNS algorithms

for practical VRPs can be found in (Ribeiro and Laporte

2012; Masson et al. 2013).

In this paper, we propose a Variable-Depth

Adaptive Large Neighbourhood Search algorithm (VD-

ALNS) for the Open Periodic Vehicle Routing Problem

with Time Windows (OPVRPTW) (Chen et al. 2017).

Inpired by the idea of systematically adjusting

neighbourhood during the search from VNS and VDNS,

the operation depth of LNS operators in our algorithm is

variable. Comparing to the existing methods, the

proposed algorithm produces promising results.

2. PROBLEM MODEL

Based on a practical one-to-one Full Truckload

Transportation problem happens at the Ningbo Port,

which is the second biggest port in China, Chen et al.

(2017) propose an OPVRPTW model. A fleet of 100

identical trucks is available in the depot to complete

container transportation tasks among nine terminals. The

objective of this problem is minimizing the total

unloaded travel distance of the fleet.

First of all, this problem is a Periodic Vehicle

Routing Problem whose planning horizon consists of two

to four days, while each day is split into two shifts. One

shipment request may contain a number of containers

(service frequency). At the beginning of a working day,

the trucks leave the depot to complete a number of

assigned tasks of container pickup and delivery between

terminals and then return to the depot at the end of the

day. In the middle of a workday, a shift handover takes

place for each truck to satisfy the associated regulations

about driver working hours in Labour Law. The driver

working in the Odd-Indexed shift (the first shift of a day)

handovers a truck to the driver working in the Even-

Indexed shift (the second shift of a day) at a terminal. The

terminal can be the first pickup point (source terminal) to

the even-indexed shift driver or the last delivery point

(destination terminal) to the odd-indexed shift driver.

The routes in this problem are open, since routes in odd-

indexed shifts do not end at the depot, and routes in even-

indexed shifts do not start from the depot.

Every container to be transported (𝑖) has a time

window [𝑎𝑖 , 𝑏𝑖], which is defined by the available time

(ai) to pick up 𝑖 at the source terminal and the deadline

(bi) of delivering 𝑖 to the destination terminal. In this

Open Periodic Vehicle Routing Problem with Time

Windows, one truck can carry only one container every

single time for its capacity. We use the same problem

model as (Chen et al. 2017), where all the actions of

transporting a container are packaged into one task node

including: loading the container into a truck at the source

terminal, travelling from the source to the destination

terminal, and unloading at the destination terminal.

Therefore, the travel between two nodes is always

unloaded travel, because the loaded travel has been

packaged into the task nodes.

To connect the route of a truck from an odd-indexed

shift to the following even-indexed shift, Artificial

Depots are used in the middle of each workday. In one

shift, every route starts from a starting depot and ends at

a termination depot. Artificial nodes are termination

depots in odd-indexed shifts and starting depots in even-

indexed shifts. The main notations used in this model are

summarized in Table 1.

In Figure 1, a small example of one workday

schedule (two consecutive shifts) is presented. As shown

in the figure, a fleet of five trucks (𝐾 = 5) completes 14

transportation tasks. In the top route, a truck leaves the

physical depot and completes two tasks in the Shift 1

(odd-indexed). Then, the truck is handover to the driver

of the Shift 2 (even-indexed) at the artificial depot.

Eventually, the truck returns to the physical depot after

completing three tasks. The physical move of this truck

is demonstrated on the right side of Figure 1. It is worth

to note that, the second and third routes in Shift 1 and the

third and fourth routes in Shift 2 are empty routes, which

directly connect artificial depots and the physical depot.

That means no task is completed on these routes. Notice

that the cost of an empty route is not always zero, e.g. the

cost of the fourth route in Shift 2 could be non-zero. The

cost of empty route will be zero, only if the connected

artificial node actually represents the physical depot.

This problem can be formally defined as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆 (1)

Subject to

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑗 ∈ 𝑁\{0} (2)

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁\{0}𝑠∈𝑆 = 1, ∀ 𝑖 ∈ 𝑁\{0} (3)

∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓
𝑠 , ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊 (4)

𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙

𝑖∈𝑁\{0}

𝑥𝑖𝑗
𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗

𝑠

𝑖={0}∪𝑊

,

 ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆 (5)

𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} , ∀𝑗 ∈ 𝑁\{0} (6)

𝑥𝑖𝑗
𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑇𝑗 , ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (7)

𝑥𝑖𝑗
𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑍𝑠 ,

∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆 (8)

𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖 , ∀𝑖 ∈ 𝑁\{0} (9)

𝑥𝑖𝑗
𝑠 ∈ {0,1} , ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆 (10)

𝑥𝑣𝑤
𝑠 = 0 , ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆 (11)

In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑):

∑ 𝑥0𝑗
𝑠 = 𝐾 , ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊 (12)

𝑥𝑖0
𝑠 = 0 , ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑 (13)

∑ ∑ 𝑥𝑖𝑤
𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁 (14)

Table 1: The List of Notations

Input Parameters:

𝐾 Fleet size.

𝑆
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑)

and even-indexed shifts (𝑆𝑒𝑣𝑒𝑛).

[𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠.

𝑁 = {0,1,2,⋯ , 𝑛} Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot.

[𝑎𝑖 , 𝑏𝑖]
The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a

truck arrives at the source of 𝑖 early, it has to wait until 𝑎𝑖.

𝑊

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in

𝑆𝑜𝑑𝑑 or source terminals in 𝑆𝑒𝑣𝑒𝑛 on each day, which is decided by if the associated trucks in

𝑆𝑜𝑑𝑑 can arrive at their terminals before the end of the shift. This set varies in different solutions,

i.e. a physical terminal may not appear or may appear more than once in 𝑊.

𝐴
Set of arcs. Each arc (𝑖, 𝑗) represents that node 𝑗 is immediately serviced/visited after

servicing/visiting node 𝑖.

𝑐𝑖𝑗
The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i

and the source terminal of task j is the same, 𝑐𝑖𝑗 = 0.

𝑡𝑖𝑗
The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time

from the destination of 𝑖 to the source of 𝑗. Otherwise, it is the travel time from or to a depot.

𝑇𝑖 The arrival time at node 𝑖.

𝐵𝑖 The time to begin the service of node 𝑖.

𝑙𝑖
The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-

up source to delivery destination) and unloading time. The service time of a depot is zero.

Decision Variable:

𝑥𝑖𝑗
𝑠

A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the

solution in shift 𝑠, otherwise is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed

Figure 1：A scheduling example of two consequent shifts with five trucks.

In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛):

∑ 𝑥𝑗𝑤
𝑠−1 = ∑ 𝑥𝑤𝑒

𝑠 , ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁 (15)

𝑥0𝑗
𝑠 = 0 , ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛 (16)

∑ ∑ 𝑥𝑤𝑗
𝑠

𝑗∈𝑁 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊 (17)

∑ 𝑥𝑖0
𝑠 = 𝐾 , ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊 (18)

The objective of this problem (equation 1) is to

minimize the total unloaded travel distance. Constraints

(2) and (3) denote that every task node can be visited

exactly once and all the tasks are visited. Constraint (4)

specifies that a task may only be serviced after the

previous task is completed. Constraints (2) - (4) together

make sure arcs of over more than one shift are

unacceptable. Constraint (5) is the arrival time at a task

node. Constraint (6) defines the beginning time of

servicing a task node. This time is calculated by the

arrival time plus the waiting time at the source of a task.

Constraints (5) and (6) enforce the correct successive

relationship between consecutive nodes.

Constraints (7) and (8) are the time window

constraints of each shift, while constraint (9) represents

the time constraint on each task. The domain of the

respective decision variable is defined by constraints (10)

and (11). Especially, constraint (11) prohibits the travel

between two artificial depots.

In odd-indexed shifts and even-indexed shifts, the

constraints for starting and termination depots are

different. Constraints (12) and (14) represent that K

trucks leave the physical depot (0) at the beginning of an

odd-indexed shift, and they would stop at artificial depots

at the end of the shift. Constraint (13) represents that no

truck returns to the physical depot in odd-indexed shifts.

Constraints (16) - (18) place the reverse restraints in

even-indexed shifts. Constraint (15) defines the shift

change from an odd-indexed shift to the following even-

indexed shift on artificial depots, where the incoming of

each artificial terminal in Sodd equals its outgoing in the

following Seven.

It is easy to find that, this problem is tightly

constrained with an exponential growing search space

(|S|·K·n!). It has been proofed that exact methods are not

suitable to solve this problem for the exorbitant

computing requirement (Chen et al. 2017). To take

advantage of ALNS in addressing the tightly constrained

problems with large neighbourhood, a Variable-Depth

ALNS algorithm (VD-ALNS) is proposed in the next

section.

3. VARIABLE-DEPTH ADAPTIVE LARGE

NEIGHBOURHOOD SEARCH

3.1. Framework of VD-ALNS

The framework of VD-ALNS is shown in ALGORITHM

1. At the beginning, we use an emergency-based

construction heuristic (Chen et al. 2017) to generate the

initial solution. In this construction heuristic, shifts are

considered chronologically, and the tasks with higher

emergency will be first assigned. Namely, according to

their time windows, those tasks that must be completed

before the next shift will be assigned first. Starting from

the initial solution, four destroy operators and three

repair operators are used to produce new solutions by

modifying the current solution (S𝑐𝑢𝑟𝑟𝑒𝑛𝑡), pursuing the

solution with higher quality.

ALGORITHM 1: Framework of VD-ALNS

Input: An initial feasible solution (𝑆) generated by

construction heuristic from (Chen et al. 2017),

Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋 and

LEN_SEGMENT.

Step 1. Set up the initial weights and scores of

operators.

 𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}.
Step 2. Set up the other initial parameters.

 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.

Step 3.
 while Stopping Criterion is not met do

 Step 3.1 Variable-Depth Setting.

 if 𝑆 is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋

iterations

 if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then

 𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇.

 else

 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.

 end

 end
 Step 3.2 Operators Selection and Execution.

Select a Destroy Operator (𝐷𝑖) and a Repair

Operator (𝑅𝑗), based on 𝑊𝑒𝑖𝑔ℎ𝑡.

Execute 𝐷𝑖 and 𝑅𝑗 at Depth, and obtain a new

solution: 𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).

 Step 3.3 Accept or Reject.

A Record-to-Record Travel algorithm is

employed to determine should the newly

generated solution be accepted (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′)
or rejected. If the quality of 𝑆′ is better than 𝑆,

update the best-found solution 𝑆 ← 𝑆′.
 Step 3.4 Weight Adjustment.

The Scores of 𝐷𝑖 and 𝑅𝑗 (𝑆𝑐𝑜𝑟𝑒𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑗)

will be updated every iteration, according to

the quality o𝑆′f.
Every LEN_SEGMENT iteration, the 𝑊𝑒𝑖𝑔ℎ𝑡
will be updated once, while Score will be reset.

 end

Output: An improved solution 𝑆.

The 𝑊𝑒𝑖𝑔ℎ𝑡 and 𝑆𝑐𝑜𝑟𝑒 in Step 1 are two scalars

which record the contributions of operators in solution

improvement, and their values are set to equal for all

operators at the beginning. After setting the initial

parameters in Steps 1 and 2, the algorithm iteratively

explores the solution space until the Stopping Criterion

is met in Step 3. Here we define the stopping conditions

as follows: The quality of the best-found solution (𝑆) has

not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 iterations or

the improvement is less than 1% in the last

𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 iterations.

In Step 3.1, 𝐷𝑒𝑝𝑡ℎ is the range where the operators

work at, which can be the whole planning horizon

(𝐻𝑂𝑅𝐼𝑍𝑂𝑁) or a specified shift (𝑆𝐻𝐼𝐹𝑇). 𝐷𝑒𝑝𝑡ℎ is

systematically shifted between 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 and 𝑆𝐻𝐼𝐹𝑇

to balance the exploration and exploitation. In Step 3.2,

we select a pair of a destroy operator (𝐷𝑖) and a repair

operator (𝑅𝑗) to generate a new solution (𝑆′).

Every single operator should have its own weight

and score (𝑊𝑒𝑖𝑔ℎ𝑡𝑖 and 𝑆𝑐𝑜𝑟𝑒𝑖). However, it is

controversial whether we should give an operator two

different weights when it uses two different depths. For

example, should an operator have two weights to

separately record its improvement contribution at depths

of 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 and 𝑆𝐻𝐼𝐹𝑇 , or record all previous

contribution with only one weight? Different answers to

this question represent the different view between VDNS

and VNS (Pisinger and Ropke 2010). Using two

independent weights would prevent using the guidance

based on the search experience at the other depth,

because the searching performance history at different

depths is separately recorded as employing two

independent operators. But, in our preliminary

experiments, it is found that search experience at

different operation depths can promote each other. In

VD-ALNS, thus, we adopt the VDNS idea, which

considers this issue as one operator working in two

scenarios, and records an operator's information with

only one scalar.

A pair of operators is selected by Roulette Wheel

based on the weights of operators in Step 3.2. The

probability of an operator 𝑖 being selected is calculated

with Eq. (19) where ℎ is the number of candidate

operators.

𝑃𝑟𝑖 =
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘
ℎ
𝑘=1

 (19)

Step 3.3 decides if accept 𝑆′ as 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and update

𝑆 , while Step 3.4 adjusts the scores and weights of

operators according to the quality of 𝑆′. These adaptive

weights guide the search to the promising solution

region. More details are introduced in Sections 3.2 – 3.5.

3.2. Variable-Depth Setting

Variable search depth endows a balanced search

performance. When 𝐷𝑒𝑝𝑡ℎ is 𝑆𝐻𝐼𝐹𝑇 , the destroy

operators remove a number of nodes from one specified

shift, while the repair operators reinsert the removed

nodes into that shift then. All the shifts would be

specified sequentially. On the other hand, when 𝐷𝑒𝑝𝑡ℎ

is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁, the removal and reinsertion happen in the

whole planning horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 is a

greater depth than 𝑆𝐻𝐼𝐹𝑇 , and it may cause a greater

change in a solution, which improves the diversification

of search. Contrarily, using the 𝐷𝑒𝑝𝑡ℎ of 𝑆𝐻𝐼𝐹𝑇

modifies routes in a single shift in each iteration. It

locally optimizes the solution which increases the

intensification of search.

We regularly switch 𝐷𝑒𝑝𝑡ℎ to seek a trade-off

between exploration and exploitation. Searching with

smaller depth exploits a relatively smaller solution area

intensively, while larger search depth avoids search

trapping into local optima. In the proposed algorithm,

𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is

not improved in 𝐼𝑇𝐸𝑀𝐴𝑋 iterations, so as to keep both the

diversification and intensification in searching the large

scale tightly constrained solution space.

3.3. Operators of Destroy and Repair

Four destroy operators and three repair operators are

developed in this paper, which use diverse heuristics to

remove and reinsert nodes to an existing solution.

3.3.1. Destroy Operators

𝑞 nodes would be removed by an destroy operator

(Removal Heuristic) in each iteration. The value of 𝑞

increases by 5 when the solution is not improved in the

last iteration. Because too small 𝑞 is hard to bring change

to the solution, while too large 𝑞 will significantly

increase the repair operation time and cause the

algorithm degenerating to random search, a lower bound

of max{0.1𝑛, 10} and an upper bound of

min{0.5𝑛, 60} are given to 𝑞, here 𝑛 is the total number

of nodes.

1. Random Removal: The 𝑞 nodes to be removed

are randomly selected.

2. Worst Removal: This is a greedy heuristic,

where the top 𝑞 nodes causing the greatest cost

increase will be removed. In other words,

removing the q task nodes brings the greatest

reduction of the cost in the solution.

3. Worst Edge Removal: This is also a greedy

heuristic, which deletes 𝑞 nodes connected by

the arcs with the highest cost.

4. Related Removal: Shaw (1997) proposes this

destroy operator which claims that, if nodes

close to one another are removed together, there

would be an opportunity for interchanging them

in the latter repaired solution. In VD-ALNS, we

define the relatedness of two task nodes (𝑖 and

𝑗) from five aspects: Service Time (𝑅𝑖𝑗
𝑆𝑇), Time

window (𝑅𝑖𝑗
𝑇𝑊), Service Starting Time (𝑅𝑖𝑗

𝑆𝑆𝑇),

Vehicle used (𝑅𝑖𝑗
𝑉) and Source and Destination

𝑅𝑖𝑗
𝑆𝐷).

𝑅𝑖𝑗
𝑆𝑇 =

|𝑙𝑖−𝑙𝑗|

(𝑙𝑖+𝑙𝑗)∙0.5
 (20)

𝑅𝑖𝑗
𝑇𝑊 =

0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)

𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗}
 (21)

𝑅𝑖𝑗
𝑆𝑆𝑇 =

|𝐵𝑖−𝐵𝑗|

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛
 (22)

𝑅𝑖𝑗
𝑉 = {

0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (23)

𝑅𝑖𝑗
𝑆𝐷 =

{

0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (24)

Correspondingly, the relatedness of two task nodes

(𝑅𝑖𝑗) is a linear combination of the five components

above-mentioned (Eq. (25)). The values of the five linear

coefficients are discussed in Section 4.2. In Relatedness

Removal, the first node to be removed is randomly

selected, then the other nodes are sorted in ascending

order of relatedness to the first node and stored in a

candidate list of 𝑃.

𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗
𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗

𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗
𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗

𝑉 + 𝜀 ∙ 𝑅𝑖𝑗
𝑆𝐷

(𝑠. 𝑡. 𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀 = 1) (25)

The rest 𝑞 − 1 nodes to be removed are randomly

selected with the preference of smaller 𝑅𝑖𝑗 , where the

nodes with the index of ⌈𝑁𝜌𝐷⌉ in 𝑃 will be removed.

Here, 𝑁 is the number of candidate nodes, 𝜌 is a random

number between 0 and 1, and 𝐷 is a constant greater or

equal to 1. The greater 𝐷 is, the stronger the preference

would be, while 𝐷 is set to 3 in VD-ALNS. This random

selection scheme with preference is also used in some

other ALNS methods (Ropke and Pisinger 2006;

Prescott-Gagnon 2009; Azi et al. 2014).

3.3.2. Repair Operators

The nodes removed in the Destroy phase will be

reinserted into the destroyed solution following the

specific rules of each repair operator (Insertion

Heuristic).

1. Random Insertion: The removed nodes would

be randomly inserted into their feasible

positions.

2. Greedy Insertion: The removed nodes would be

inserted into their best feasible positions. Here

the best position means the position causing the

least cost increase.

3. Regret2 Insertion: This greedy insertion

heuristic is proposed by Pisinger and Ropke

(2007), which always inserts the node having

largest REGRET into its best feasible position

first. The REGRET of a node is the cost

difference between inserting the node to its best

feasible position and its second best feasible

position.

3.4. Acceptance Criterion

We use Record-to-Record Travel acceptance criterion

(Dueck1993) to determine if the newly generated

solution (𝑆′) is acceptable as the new starting point of

exploration. Comparing the quality of solutions (i.e.

COST (Eq. 1)), if 𝑆′ is better than the best-found solution

𝑆 (i.e. 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)), 𝑆′ will be accepted as the

current solution (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡). Besides, a new solution worse

than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is still acceptable as long as the gap

between their COST is less than the DEVIATION (i.e.

0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)).

3.5. Weight Adjustment

To obtain the weights, the scores of operators should be

calculated first. In each iteration, a reward (𝜎 ≥ 0) will

be added to 𝑆𝑐𝑜𝑟𝑒𝑖 which is the score of the employed

operator. The value of 𝜎 is decided by the quality of 𝑆′
(see Eq. 26), and we will discuss it further in Section 4.2.

𝜎 =

{

𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)

𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆′)

𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

 (26)

The weights are adjusted according to the operators'

performance (improvement contribution) shown in the

last Segment which is a single 𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇 iteration

in Step 3.4 of Algorithm 1 in Section 3. At the beginning

of the current Segment 𝑡 , the weight of each operator

(𝑊𝑒𝑖𝑔ℎ𝑡𝑖) is updated according to its score obtained

from the previous Segment 𝑡 − 1 (see Eq. (27)). In the

equation, 𝑟 is a reaction factor, which controls how

quickly the adjustment scheme reacts. 𝑢𝑖 is the number

of usage of operator 𝑖 in Segment 𝑡 − 1.

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑡−1 + (1 − 𝑟) ∙
𝑆𝑐𝑜𝑟𝑒𝑖

𝑢𝑖
 (27)

After updating the 𝑊𝑒𝑖𝑔ℎ𝑡s, the accumulated score of

each operator will be reset to zero to start the calculation

of the new rewards in Segment 𝑡.

4. EXPERIMENTS AND ANALYSIS

4.1. Benchmark

Bai et al. (2015) generate the Ningbo Port dataset

including 15 real-life instances extracted from the

Ningbo Port container transportation historical data, and

16 artificial instances with diverse features. In the real-

life instances, the planning horizons are four, six and

eight shifts, respectively, while there are four or eight

shifts in artificial instances. The artificial instances are

classified by their time window tightness (Tight/Loose)

and workload balance at terminals (Balanced/

Unbalanced). The name of each instance gives the

information about the instance. For example, the instance

NP4-1 is the first real-life instance with four shifts, and

the instance named TU8-7 is the seventh artificial

instance with eight shifts whose time window is tight and

workload at terminals is unbalanced.

The sizes of these 31 instances are large comparing

to the classical VRP datasets (Solomon1987; Gehring

and Homberger 1999). To test the efficiency of the

proposed algorithms in small size instances, Chen et al.

(2017) extract a 25% scaled down dataset from the

Ningbo Port dataset, while the features of instances are

kept. We test VD-ALNS on both datasets.

4.2. Parameter Tuning and Sensitivity

The tuning is conducted on one parameter at one time,

while the other parameters are fixed. It is easy to

understand that, higher 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋 and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋

mean more iterations in search, which might bring better

solutions but demand more running time. 𝐼𝑇𝐸𝑀𝐴𝑋

represents the times of the same 𝐷𝑒𝑝𝑡ℎ value would be

used in one cycle. The trade-off between the solution

quality and running time as well as the balance between

search thoroughness and efficiency is what all

metaheuristics have to consider. The values of

parameters used in VD-ALNS are presented in Table 2.

Table 2: Parameters in VD-ALNS.
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX

Value 30 15 5 0 150 200 4*No. of shifts

Parameter α β γ δ ε r LEN_SEGMENT

Value 0.3 0.2 0.1 0.2 0.2 70 0.4

In the adaptive weight adjustment, four levels of

rewards (𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0) are given according to

the quality of the newly generated solution 𝑆’. Firstly, 𝜎4

is set to zero to reward zero to the employed operator if

𝑆’ is rejected. Then, 𝜎3 is set to 5 as a base unit, and 𝜎1

and 𝜎2 are adjusted to find the best setting. It is observed

that too large 𝜎1 would cause premature search. When

the reward to the operator producing the new best

solution is too large, the algorithm would degenerate to a

Hill Climbing method.

When tuning the linear coefficients in the definition

of Relatedness (Eq. (25)), it starts with giving all the five

components equal weights (α = β = γ = δ = ε = 0.2).

Then, each coefficient is gradually increased to test the

contribution of the associated component to the total

relatedness. It is found that when the weight of Service

Time Relatedness (𝑅𝑖𝑗
𝑆𝑇) is properly high, the quality of

generated solutions is better. This observation indicates

that reassigning two tasks with a higher similarity of

Service Time has the higher possibility to produce a new

better solution. Since the Service Staring Time of a task

may change for various reasons (e.g., a task is assigned

to a new truck, a precedent task is reassigned, etc.), 𝑅𝑖𝑗
𝑆𝑆𝑇

is hard to represent the relatedness of two tasks and

shows low contribution in tuning tests. A lower

coefficient is given to it.

Too small LEN_SEGMENT may lead to the weights

of operators changing frequently and search converging

prematurely, while large LEN_SEGMENT cannot

provide guidance in time. Our preliminary experiments

show that the best performance is found when

LEN_SEGMENT is between 50 and 80. In Eq. (27), the

higher 𝑟 is, the slower the algorithm reacts to the latest

guidance information. VD-ALNS performs the best

when 𝑟 is between 0.4 and 0.6.

4.3. Experiment Results

To verify the contribution of variable depth, a standard

ALNS variant for OPVRPTW is also implemented to be

compared, which uses the Destroy and Repair operators

only at the depth of HORIZON for globally searching.

Comparing to other metaheuristics using small change

operators, both VD-ALNS and ALNS have the stronger

ability to escape from local optima in a tightly

constrained solution space. They are compared to VNS-

RLS (Chen et al. 2017), which uses neighbourhood

operators with small changes.

The comparison results on the 25% scaled down

instances are presented in Tables 3 and 4. The three

algorithms are compared from four aspects: best-found

solution (Best), average solution (Ave), evaluation times

(Times) and standard deviation (S.D.). All the results are

obtained from 30 runs. In these tables, we convert the

objective value into Heavy-Loaded Distance Rate

(HLDR) (Eq. (28)), which is widely used by logistic

companies in practice. This objective also pursues the

lowest unloaded travel distance like Eq. (1), but it

converts the problem into a maximization problem. The

lower and upper bounds of optimal solutions, which are

obtained by CPLEX (Chen et al. 2017), are also given.

The NF in tables means no feasible solution is generated.

𝐻𝐿𝐷𝑅 =
𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (28)

Table 3: HLDR comparison on 25% scaled down real-

life instances. (Best-found HLDR in bold.)
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-

RLS

Best 82.89% 62.32% 75.64% 59.76% 79.24%

Ave 81.51% 61.42% 74.92% 59.18% 78.48%

Times 469,233 311,885 319,202 347,134 326,956

S.D. 1.16% 0.60% 0.62% 0.35% 0.42%

ALNS

Best 81.15% 65.51% 75.17% 61.86% 77.14%

Ave 79.80% 65.08% 73.60% 61.47% 76.15%

Times 385 500 458 499 395

S.D. 0.72% 0.33% 0.80% 0.27% 0.57%

VD-

ALNS

Best 81.74% 65.45% 75.54% 62.53% 77.67%

Ave 79.61% 65.16% 74.15% 61.75% 77.03%

Times 483 529 503 549 573

S.D. 1.20% 0.25% 0.82% 0.27% 0.53%

Lower Bound 78.36% 65.14% 64.83% 54.39% NF

Upper Bound 92.36% 97.04% 100% 97.72% 100%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 76.24% 73.39% 62.32% 80.50% 82.44%

Aver 74.99% 72.83% 62.06% 79.84% 80.53%

Times 698.514 624,078 253,037 541,548 365,435

S.D. 0.96% 0.41% 0.20% 0.41% 1.72%

ALNS

Best 79.07% 70.28% 65.00% 78.43% 82.15%

Ave 78.03% 69.42% 64.26% 77.07% 80.58%

Times 420 449 412 426 450

S.D. 0.69% 0.49% 0.42% 0.80% 0.69%

VD-

ALNS

Best 79.95% 70.75% 65.31% 78.26% 82.75%

Ave 78.33% 69.85% 64.40% 77.07% 80.34%

Times 549 537 553 515 496

S.D. 0.92% 0.49% 0.47% 0.76% 1.19%

Lower Bound NF NF 54.30% NF 66.11%

Upper Bound NF NF 95.20% NF 98.39%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 76.91% 77.76% 75.35% 60.90% 72.27%

Ave 74.72% 77.16% 74.93% 60.47% 71.68%

Times 607,961 525,479 442,103 430,962 516,872

S.D. 1.20% 0.37% 0.31% 0.32% 0.36%

ALNS

Best 74.74% 74.32% 75.08% 61.85% 71.60%

Ave 73.90% 73.07% 74.29% 61.66% 71.05%

Times 445 444 442 421 439

S.D. 0.54% 0.49% 0.59% 0.14% 0.29%

VD-

ALNS

Best 75.50% 74.76% 75.09% 61.92% 71.58%

Ave 74.22% 73.53% 74.53% 61.70% 71.10%

Times 579 524 528 456 527

S.D. 0.57% 0.58% 0.36% 0.14% 0.31%

Lower Bound NF NF NF NF NF

Upper Bound 98.98% 100% 100% NF 100%

Table 4: HLDR comparison on 25% scaled down

artificial instances. (Best-found HLDR in bold.)
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97%

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68%

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33%

ALNS

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12%

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35%

Times 438 421 426 410 396 287 371 287

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43%

VD-

ALNS

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31%

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19%

Times 445 448 457 443 472 477 411 448

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48%

Lower

Bound
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36%

Upper

Bound
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29%

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93%

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18%

ALNS

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89%

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28%

Times 398 396 403 461 437 318 334 385

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42%

VD-

ALNS

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41%

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81%

Times 515 499 549 535 598 590 482 577

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39%

Lower

Bound
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74%

Upper

Bound
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43%

From the experiment results we can find that, VD-

ALNS beats ALNS in almost all instances, which

indicates that the variable neighbourhood depth scheme

does improve the search performance of ALNS. This

scheme enhances the exploit ability in local area leading

to the growth of total evaluation times in ALNS.

Comparing to VNS-RLS, on 6 of 15 real-life instances

and half of artificial instances, VD-ALNS finds better or

equal solutions, which shows no significantly difference.

However, VD-ALNS takes remarkably less evaluation

times and 90% running time of VNS-RLS to obtain that

results. All the three methods have close stability where

their difference on S.D. is lower than 1%.

Table 5: HLDR comparison on original real-life dataset.

(Best-found HLDR in bold.)
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5

VNS-RLS

Best 83.29% 69.85% 72.90% 66.61% 80.65%

Ave 81.88% 69.56% 72.20% 65.91% 80.48%

Times 779,504 575,894 661,384 923,891 718,219

S.D. 0.55% 0.16% 0.38% 0.47% 0.17%

ALNS

Best 81.68% 69.08% % 66.63% 78.16%

Ave 80.21% 68.62% % 66.11% 77.78%

Times 212 281 271 267

S.D. 0.99% 0.36% % 0.29% 0.22%

VD-

ALNS

Best 82.30% 69.13% 73.94% 67.05% 78.96%

Ave 81.42% 68.83% 73.01% 66.28% 78.11%

Times 313 501 243 345 297

S.D. 0.58% 0.21% 0.86% 0.56% 0.49%

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20%

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5

VNS-

RLS

Best 79.64% 74.14% 58.94% 79.52% 79.99%

Aver 79.07% 73.72% 58.62% 79.10% 78.36%

Times 1.03×106 1.16×106 513,974 1.05×106 984,987

S.D. 0.47% 0.21% 0.23% 0.53% 0.99%

ALNS

Best % 69.16% 65.27% % 77.43%

Ave % 64.76% 64.79% % 76.64%

Times 44 251 274

S.D. % 3.04% 0.35% % 0.56%

VD-

ALNS

Best 81.74% % 65.16% % 77.39%

Ave 77.04% % 64.84% % 76.52%

Times 483 303 387

S.D. 1.20% % 0.24% % 0.54%

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30%

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5

VNS-

RLS

Best 73.80% 75.27% 74.20% 61.97% 73.62%

Ave 73.48% 74.86% 73.96% 61.91% 73.26%

Times 1.49×106 978,695 867,663 693,779 1.18×106

S.D. 0.15% 0.28% 0.22% 0.06% 0.35%

ALNS

Best % % % % %

Ave % % % % %

Times

S.D. % % % % %

VD-

ALNS

Best % % % % 73.07%

Ave % % % % 72.59%

Times 365

S.D. % % % % 0.34%

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09%

Table 6: HLDR comparison on original artificial dataset.

(Best-found HLDR in bold.)
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8

VNS-

RLS

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80%

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61%

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08%

ALNS

Best % % % % % % % %

Ave % % % % % % % %

Times

S.D. % % % % % % % %

VD-

ALNS

Best % 77.15% 69.03% 73.66% 61.04% 65.33% % %

Ave % 76.83% 68.51% 72.78% 60.40% 64.80% % %

Times 253 309 315 400 255

S.D. % 0.18% 0.38% 0.64% 0.43% 0.49% % %

Upper

Bound
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50%

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8

VNS-

RLS

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50%

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23%

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16%

ALNS

Best % % % % % % % %

Ave % % % % % % % %

Times

S.D. % % % % % % % %

VD-

ALNS

Best 88.71% 89.74% % % % 62.30% % %

Ave 85.96% 86.67% % % % 61.29% % %

Times 339 347 343

S.D. 2.43% 1.77% % % % 0.76% % %

Upper

Bound
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54%

Tables 5 and 6 present the results on the original

Ningbo Port instances. The upper bounds are obtained

with the relaxation of removing the travels of leaving and

returning to depot (Bai et al. 2015). It can be found that,

with the variable depth scheme, VD-ALNS outperforms

ALNS again from the aspects of average and best-found

solution. On ** benchmark instances, new best solutions

are generated by VD-ALNS.

4.4. Evaluating the Contribution of Operators

Table 7 provides a statistic on the Destroy and Repair

operators. On the scaled down dataset, we ran VD-ALNS

while a single operator is excluded and the others are

kept. When each operator is excluded by turn, the

degeneration caused by missing that specific operator is

recorded. The second and third columns show the

average degeneration on the best-found solution and

average solution, while the last two columns give the

maximum degeneration on the dataset.

Table 7: Evaluation of contribution of each operator

Operator
Best sol.

deg.

Avg.

deg.

Max best

sol. deg.

Max avg.

deg.

Random Removal 0.15% 0.23% 1.08% 0.13%
Worst Removal 0.33% 0.60% 2.18% 2.14%
Related Removal 0.09% 0.08% 1.32% 0.68%
Worst Edge Removal 0.55% 0.56% 2.87% 2.14%
Random Insertion 0.21% 0.12% 1.80% 1.09%
Greedy Insertion 4.84% 5.34% 9.64% 7.69%
Regret2 Insertion 0.54% 0.25% 4.07% 1.31%

The results indicate the usefulness of each operator

in VD-ALNS. It can be found that, Worst Edge Removal

is the most efficient destroy operator, followed by the

Worst Removal. The Related Removal contributes the

least in this case. Among repair operators, Greedy

Insertion is the most useful one, followed by the Regret2

Insertion. Overall, greedy heuristics provide effective

complement on search intensification and outperform the

other heuristics. It proofs that the using of exact method

is a crucial factor to the performance of ALNS.

4.5. Analysis of Runtime

The Destroy and Repair operators in ALNS bring greater

change than traditional neighbourhood operators by

operating more nodes and greater perturbation in each

usage of the operators. Therefore, the calculation time

spent on choosing removal nodes and insertion places is

considerable. To obtain the results presented in the

tables, the evaluation times of ALNS and VD-ALNS are

significantly less than VNS-RLS, but the running time of

VD-ALNS is around 43% more than VNS-RLS on the

original instances, while it is slightly less than VNS-RLS

on small instances. This observation indicates that the

runtime of VD-ALNS increases faster than VNS-RLS

with the growth of instance size.

Choosing the insertion position is time-consuming.

Actually, repair operator computing time accounts for an

obviously larger proportion, which is around 3.5 times of

destroy operators’ on scaled down instances. What’s

more, on the original dataset, the repair operation may

spend more than 95% total running time.

5. CONCLUSIONS

Open Periodic Vehicle Routing Problem with Time

Windows (OPVRPTW) has a large scale search space

with tight side constraints, which arises from a real-world

container transportation problem. This paper proposed a

Variable-Depth Adaptive Large Neighbourhood Search

algorithm (VD-ALNS) for OPVRPTW, using specially

tailored four destroy operators and three repair operators

at variable neighbourhood depth. In this vehicle routing

problem with high-dimensional solution structure, the

variable depth scheme significantly promotes the

performance of the proposed algorithm.

On both small and big size benchmarks, it was

demonstrated that the proposed variable depth scheme

can handle the trade-off between exploration and

exploitation and efficiently find good solutions.

Comparing to the existing solution metaheuristic with

small change operators, a number of new best-found

solutions were produced by VD-ALNS. In the future

research, multi-objective feature and other trade-off

strategies between solution quality and search speed will

be able to cooperate with ALNS. It will be also possible

to apply advanced customized exact methods to both

destroy and repair operators.

ACKNOWLEDGMENTS

This research was supported by Ningbo Science &

Technology Bureau (2014A35006), Royal Society

International Exchange Scheme, and School of

Computer Science, the University of Nottingham.

REFERENCES

Azi N., Gendreau M., and Potvin J.Y., 2014. An adaptive

large neighborhood search for a vehicle routing

problem with multiple routes. Computers &

Operations Research 41 (2014), 167–173.

Bai R., Xue N., Chen J., and Roberts G.W., 2015. A set-

covering model for a bidirectional multi-shift full

truckload vehicle routing problem. Transportation

Research Part B: Methodological 79 (2015), 134–

148.

Baldacci R., Mingozzi A., and Roberti R., 2012. Recent

exact algorithms for solving the vehicle routing

problem under capacity and time window

constraints. European Journal of Operational

Research 218, 1 (2012), 1–6.

Bräysy O. and Gendreau M., 2001. Metaheuristics for the

vehicle routing problem with time windows. Report

STF42 A 1025 (2001).

Bräysy O. and Gendreau M., 2005. Vehicle routing

problem with time windows, Part I: Route

construction and local search algorithms.

Transportation science 39, 1 (2005), 104–118.

Chen B., Qu R., Bai R., and Ishibuchi H., 2016. A

variable neighbourhood search algorithm with

compound neighbourhoods for VRPTW. Springer,

25–35.

Chen B., Qu R., Bai R., and Laesanklang W., 2017. A

Reinforcement Learning Based Variable

Neighborhood Search Algorithm for Open Periodic

Vehicle Routing Problem with Time Windows.

Submitted to the Special Issue of the Journal

“Networks” on Vehicle Routing and Logistic, 2017.

Cordeau J.F., Laporte G., and Mercier A., 2001. A

unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the

Operational research society 52, 8 (2001), 928–936.

Cordeau J.F., Laporte G., and Mercier A., 2004.

Improved tabu search algorithm for the handling of

route duration constraints in vehicle routing

problems with time windows. Journal of the

Operational Research Society 55, 5 (2004), 542–

546.

Dayarian I., Crainic T.G., Gendreau M., and Rei W.,

2013. An adaptive large neighborhood search

heuristic for a multi-period vehicle routing problem.

Report. Technical Report CIRRELT-2013-60,

Interuniversity Research Center on Enterprise

Networks, Logistics and Transportation

(CIRRELT).

Dueck G., 1993. New Optimization Heuristics: The

Great Deluge Algorithm and the Record-to-Record

Travel. J. Comput. Phys. 104, 1 (1993), 86–92.

Eksioglu B., Vural A.V., and Reisman A., 2009. The

vehicle routing problem: A taxonomic review.

Computers & Industrial Engineering 57, 4 (2009),

1472–1483.

El-Sherbeny N.A., 2010. Vehicle routing with time

windows: An overview of exact, heuristic and

metaheuristic methods. Journal of King Saud

University-Science 22, 3 (2010), 123–131.

Eppen G. and Schrage L., 1981. Centralized ordering

policies in a multi-warehouse system with lead

times and random demand. Multi-level

production/inventory control systems: Theory and

practice 16 (1981), 51–67.

Gehring H. and Homberger J., 1999. A parallel hybrid

evolutionary metaheuristic for the vehicle routing

problem with time windows. In Proceedings of

EUROGEN99, Vol. 2. Citeseer, 57–64.

Ghoseiri K., and Ghannadpour S.F., 2010. Multi-

objective vehicle routing problem with time

windows using goal programming and genetic

algorithm. Applied Soft Computing 10, 4 (2010),

1096–1107.

Golden B.L., Raghavan S., and Wasil E.A., 2008. The

Vehicle Routing Problem: Latest Advances and

New Challenges: latest advances and new

challenges. Vol. 43. Springer Science & Business

Media.

Hansen P., Mladenoviċ N., and Pėrez J.A.M., 2010.

Variable neighbourhood search: methods and

applications. Annals of Operations Research 175, 1

(2010), 367–407.

Hemmelmayr V.C., Cordeau J.F., and Crainic T.G., 2012.

An adaptive large neighborhood search heuristic for

Two-Echelon Vehicle Routing Problems arising in

city logistics. Computers & Operations Research 39,

12 (2012), 3215–3228.

Laporte G., Gendreau M., Potvin J.Y., and Semet F.,

2000. Classical and modern heuristics for the

vehicle routing problem. International transactions

in operational research 7, 45 (2000), 285–300.

Laporte G., Musmanno R., and Vocaturo F., 2010. An

adaptive large neighbourhood search heuristic for

the capacitated arc-routing problem with stochastic

demands. Transportation Science 44, 1 (2010),

125–135.

Lourens T., 2005. Using population-based incremental

learning to optimize feasible distribution logistic

solutions. Thesis.

Masson R., Lehuėdė F., and Pėton O., 2013. An adaptive

large neighborhood search for the pickup and

delivery problem with transfers. Transportation

Science 47, 3 (2013), 344–355.

Mladenoviċ N. and Hansen P., 1997. Variable

neighborhood search. Computers & Operations

Research 24, 11 (1997), 1097–1100.

Mourgaya M. and Vanderbeck F., 2007. Column

generation based heuristic for tactical planning in

multi-period vehicle routing. European Journal of

Operational Research 183, 3 (2007), 1028–1041.

Redi A.A.N.P., Maghfiroh M.F.N., and Yu V.F., 2013.

An improved variable neighborhood search for the

open vehicle routing problem with time windows.

In Industrial Engineering and Engineering

Management (IEEM), 2013 IEEE International

Conference on. IEEE, 1641–1645.

Pisinger D. and Ropke S., 2007. A general heuristic for

vehicle routing problems. Computers & operations

research 34, 8 (2007), 2403–2435.

Pisinger D. and Ropke S., 2010. Large neighborhood

search. Springer, 399–419.

Prescott-Gagnon E., Desaulniers G, and Rousseau L.M.,

2009. A branch-and-price-based large

neighborhood search algorithm for the vehicle

routing problem with time windows. Networks 54,

4 (2009), 190–204.

Ribeiro G.M. and Laporte G., 2012. An adaptive large

neighborhood search heuristic for the cumulative

capacitated vehicle routing problem. Computers &

Operations Research 39, 3 (2012), 728–735.

Ropke S. and Pisinger D., 2006. An adaptive large

neighborhood search heuristic for the pickup and

delivery problem with time windows.

Transportation science 40, 4 (2006), 455–472.

Savelsbergh M.W.P., 1992. The vehicle routing problem

with time windows: Minimizing route duration.

ORSA journal on computing 4, 2 (1992), 146–154.

Schopka K. and Kopfer H., 2016. An Adaptive Large

Neighborhood Search for the Reverse Open

Vehicle Routing Problem with Time Windows.

Springer, 243–257.

Schrimpf G., Schneider J., Stamm-Wilbrandt H., and

Dueck G., 2000. Record breaking optimization

results using the ruin and recreate principle. J.

Comput. Phys. 159, 2 (2000), 139–171.

Shaw P., 1997. A new local search algorithm providing

high quality solutions to vehicle routing problems.

APES Group, Dept of Computer Science,

University of Strathclyde, Glasgow, Scotland, UK

(1997).

Shaw P., 1998. Using constraint programming and local

search methods to solve vehicle routing problems.

Springer, 417–431.

Solomon M.M., 1987. Algorithms for the vehicle routing

and scheduling problems with time window

constraints. Operations research 35, 2 (1987), 254–

265.

Talbi E.G., 2009. Metaheuristics: from design to

implementation. Vol. 74. John Wiley & Sons.

Tarantilis C.D., Ioannou G., Kiranoudis C.T., and

Prastacos G.P., 2005. Solving the open vehicle

routeing problem via a single parameter

metaheuristic algorithm. Journal of the Operational

Research Society 56, 5 (2005), 588–596.

Toth P. and Vigo D., 2001. The vehicle routing problem.

Siam.

Wen M., Krapper E., Larsen J., and Stidsen T.K., 2011.

A multilevel variable neighborhood search

heuristic for a practical vehicle routing and driver

scheduling problem. Networks 58, 4 (2011), 311–

322.

Wieberneit N., 2008. Service network design for freight

transportation: a review. OR spectrum 30, 1 (2008),

77–112.

