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ABSTRACT 

Open Periodic Vehicle Routing Problem with Time 

Windows (OPVRPTW) is a practical transportation 

routing and scheduling problem arising from a real-world 

scenario, which shares some common features with some 

classic VRP variants. It has a large scale and tightly 

constrained solution space, which requires to well 

balance the diversification and intensification when 

searching it. Working at large neighbourhood depth 

prevents the search from trapping into local optima 

prematurely, while small depth provides thorough 

exploitation in the local area. Variable Depth 

Neighbourhood Search uses variable depth to implement 

the balance and obtains satisfying results in the literature. 

Considering the characteristics of the multi-dimensional 

solution structure and tight constraints in OPVRPTW, a 

Variable-Depth Adaptive Large Neighbourhood Search 

(VD-ALNS) algorithm is proposed in this paper. In the 

adaptive large neighbourhood search framework, 

specially tailored four destroy operators and three repair 

operators work at variable depth in VD-ALNS. The 

contribution of each operator is investigated. Comparing 

to existing methods, VD-ALNS makes a good trade-off 

between exploration and exploitation and produces 

promising results on both small and big size benchmark 

instances. 
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1. INTRODUCTION 

Vehicle Routing Problem (VRP) is a well-studied 

domain in Operational Research, which rises a large 

number of variants. In the classic model of Vehicle 

Routing Problem with Time windows (VRPTW) 

(Solomon 1987) starting from a depot, a fleet of vehicles 

visit a number of customers to complete their demands 

satisfying the time constraints (Time Window). The 

depot and customers visited compose the route of a 

vehicle, and the total demands on the route cannot exceed 

the capacity of the vehicle. All vehicles have to return to 

the depot within the planning horizon. This circle trip of 

each vehicle is called a close route (Hamilton Cycle) 

(Tarantilis et al. 2005). The objective of VRPTW is to 

minimize the total cost of all routes (e.g., travel distance, 

the number of vehicles used). Derived from various real-

world problems, a large number of extended models are 

proposed by adding various Side Constraints to VRPTW 

(e.g. driver working hour regulations, demand type, 

vehicle type and customer preference), while solution 

methods of both exact approaches and heuristic 

algorithms are deeply studied (Toth and Vigo 2001). 

 

1.1. Variants of Vehicle Routing Problem 

Among the large number of variants of VRP, there are 

three classical variants available for reference to our 

study, which are reviewed in this section. Based on 

VRPTW, when the demands of customers are pickup and 

delivery of shipments, the problems are called Vehicle 

Routing Problem with Pickups and Deliveries (VRPPD) 

(Golden et al. 2008). In this case, each vehicle has to pick 

up goods from a number of pickup points, then deliver 

them to the appointed destinations within the associated 

time windows. If the depot is the only one pickup point 

while multiple customer locations are delivery points, or 

contrarily, a number of pickup points (customers) with 

the only one delivery point depot, the problem would be 

defined as a One-to-Many-to-One problem. Whilst the 

customers can be both pickup and delivery points, then it 

is a Many-to-Many problem. In One-to-One problems, 

one customer's pickup demand is another customer's 

delivery demand. Furthermore, if the demands can be 

consolidated, it is called Less-than Truckload 

Transportation problem, otherwise, it is a Full Truckload 

Transportation problem (Wieberneit 2008). 

In Multi-Period Vehicle Routing Problem 

(MPVRP), the service to a customer could be performed 

over a multi-period horizon (Mourgaya and Vanderbeck 

2007, Hemmelmayr et al. 2012).  Especially, in grocery 

distribution, soft drink industry and waste collection, 

there would be a specified service frequency for each 

customer over the multi-period horizon. In this so-called 

Periodic Vehicle Routing Problem (PVRP) (Eksioglu et 

al. 2009), the servicing days to customers are more 
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flexible. Reasonably plan the servicing days of 

customers and routing of vehicles, so as to minimize the 

total cost of all workdays is the objective of this type of 

problems. 

In practice, for cost reason, many companies hire 

external carriers, e.g. third party logistic provider and 

private trucks, instead of establishing their own fleet. 

Those hired vehicles do not return to the starting 

collection depot when they complete the tasks assigned, 

and all routes end at the last customers serviced. The 

routes are called open routes (Hamilton Paths instead of 

Hamilton Cycles). This type of problems are classified to 

Open Vehicle Routing Problems (OVRP), which is first 

proposed by Eppen and Schrage (1981). 

 

1.2. Existing Methods 

As a well-known NP-hard problem (Toth and Vigo 

2001), a huge number of both exact methods and 

heuristic algorithms have been developed for VRPs. 

Exact methods always generate the optimal solutions and 

solve small and medium size of problems well (Baldacci 

et al. 2012). However, when facing the larger scale of 

real-world problems with thousands or more customers 

and complex constraints, exact methods become time-

consuming and unrealistic (El-Sherbeny 2010). Heuristic 

and Metaheuristic algorithms generate good optimal 

solutions approximations in acceptable computational 

time. In the latest three decades, metaheuristic 

approaches have made great achievements in solving 

large-scale VRPs (Bräysy and Gendreau 2001).   

In Population-Based Metaheuristics, the iterative 

improvement is conducted in a population of solutions 

(Talbi 2009). They have shown high-performance in 

multi-Objective and small to medium size problems 

(Lourens 2005, Ghoseiri and Ghannadpour 2010). 

However, when facing the high-dimensional complex 

structure of solution and large problem size in real-world 

problems, they would be intractable to population-based 

metaheuristics. Thus, we focus on the Single Solution-

Based Metaheuristics in this paper. 

Single Solution-Based Metaheuristics, by calling 

neighbourhood operators, explore only one new solution 

in each iteration, e.g. Tabu Search (TS), Variable 

Neighbourhood Search (VNS), and Large 

Neighbourhood Search (LNS). TS rejects a number of 

specific solutions (tabu list) to avoid search cycle, and 

worse solutions within a certain range are accepted so as 

to escape a local optima trap. A construction heuristic 

followed by TS is proposed for PVRPTW in (Cordeau et 

al. 2001), considering travel time, capacity, duration and 

time windows. An improved TS approach using the 

Forward Time Slack (Savelsbergh 1992) is later 

proposed to further optimize the route (Cordeau et al. 

2004). TS has been applied widely, and many other 

applications in VRPs can be found in (Laporte et al. 

2000). 

Mladenoviċ and Hansen (1997) propose VNS, 

which systematically changes neighbourhood structures 

during exploring solution space. VNS has been applied 

to many optimization problem domains and obtains good 

results (Hansen et al. 2010). Redi et al. (2013) propose a 

VNS algorithm for OVRPTW, which outperforms 

almost all previous algorithms. Differently, Variable-

Depth Neighbourhood Search (VDNS) uses one type of 

operator but at variable neighbourhood depth. It is widely 

applied in Very Large Scale Neighbourhood search 

(Pisinger and Ropke 2010). Chen et al. (2016) develop 

an algorithm which proposes compounded 

neighbourhood operators combining VNS and VDNS for 

VRPTW, and a number of newly found best solutions of 

the benchmark are produced.   

LNS (Shaw 1997, 1998) applies destroy operators 

(removal heuristics) and repair operators (insertion 

heuristics) to remove a number of customers/demands 

from the current solution and reinsert them into the 

destroyed solution, producing a new solution with a great 

change from the previous one. Schrimpf et al. (2000) 

propose a similar scheme which is called Ruin & 

Recreate. Pisinger and Ropke (2007) introduce a general 

heuristic named Adaptive Large Neighbourhood Search 

(ALNS), which employs an LNS strategy with adaptive 

operator selection, solves five different variants of VRPs.  

When traditional operators of small change (e.g. λ-

opt, CROSS-exchange (Bräysy and Gendreau 2005)) are 

used to explore the tightly constrained large 

neighbourhood, the search is easy to trap into local 

optima. LNS operators (destroy & repair) efficiently 

conquer this weakness by bringing significant change to 

the current solution. ALNS produces promising results in 

a large number of benchmarks and outperforms most 

existing methods (Pisinger and Popke 2010; Laporte et 

al. 2010).  

In the subsequent research, ALNS is applied to 

various practical VRPs and shows powerful ability to 

solve real-world large scale VRPs with tight constraints. 

An ALNS algorithm for Pickup and Delivery Problem 

with Time Windows is proposed by Ropke and Pisinger 

(2006). In (Prescott-Gagnon et al. 2009), ALNS is used 

in both stages of the proposed algorithm, which 

respectively optimize the two objectives of VRPTW. 

ALNS is also used to tackle the Two-Echelon Vehicle 

Routing Problem and Location Routing Problem, whose 

solutions contain two-level planning (i.e. depots 

selection and satellite facilities scheduling), in 

(Hemmelmayr et al. 2012). An ALNS algorithm for 

Reverse OVRPTW is proposed by Schopka and Kopfer 

(2016). In this problem, the routes start from scattered 

customers and end at a common depot. To enhance the 

intensity of search, local search is employed after 

Destroy & Repair in (Dayarian et al. 2013), which 

addresses MPVRP with up to 200 customers.  

In the ALNS for Vehicle Routing Problems with 

Multiple Routes proposed by Azi et al. (2014), the 

operation depths of neighbourhood operators are 

different when the algorithm is running at different 

levels. E.g. when the algorithm is respectively running at 

the levels of workday, route and customer, the operator 

of Random Removal would randomly remove workdays, 

routes and customers from the operated solution, 

correspondingly. However, in that paper, the different 



depths are used only once at each level. Wen et al. (2011) 

use LNS operators like traditional neighbourhood 

operators in a VNS framework. More ALNS algorithms 

for practical VRPs can be found in (Ribeiro and Laporte 

2012; Masson et al. 2013). 

In this paper, we propose a Variable-Depth 

Adaptive Large Neighbourhood Search algorithm (VD-

ALNS) for the Open Periodic Vehicle Routing Problem 

with Time Windows (OPVRPTW) (Chen et al. 2017). 

Inpired by the idea of systematically adjusting 

neighbourhood during the search from VNS and VDNS, 

the operation depth of LNS operators in our algorithm is 

variable. Comparing to the existing methods, the 

proposed algorithm produces promising results.   

 

2. PROBLEM MODEL 

Based on a practical one-to-one Full Truckload 

Transportation problem happens at the Ningbo Port, 

which is the second biggest port in China, Chen et al. 

(2017) propose an OPVRPTW model. A fleet of 100 

identical trucks is available in the depot to complete 

container transportation tasks among nine terminals. The 

objective of this problem is minimizing the total 

unloaded travel distance of the fleet. 

First of all, this problem is a Periodic Vehicle 

Routing Problem whose planning horizon consists of two 

to four days, while each day is split into two shifts. One 

shipment request may contain a number of containers 

(service frequency). At the beginning of a working day, 

the trucks leave the depot to complete a number of 

assigned tasks of container pickup and delivery between 

terminals and then return to the depot at the end of the 

day. In the middle of a workday, a shift handover takes 

place for each truck to satisfy the associated regulations 

about driver working hours in Labour Law. The driver 

working in the Odd-Indexed shift (the first shift of a day) 

handovers a truck to the driver working in the Even-

Indexed shift (the second shift of a day) at a terminal. The 

terminal can be the first pickup point (source terminal) to 

the even-indexed shift driver or the last delivery point 

(destination terminal) to the odd-indexed shift driver. 

The routes in this problem are open, since routes in odd-

indexed shifts do not end at the depot, and routes in even-

indexed shifts do not start from the depot. 

Every container to be transported ( 𝑖 ) has a time 

window [𝑎𝑖 , 𝑏𝑖], which is defined by the available time 

(ai) to pick up 𝑖 at the source terminal and the deadline 

(bi) of delivering 𝑖  to the destination terminal. In this 

Open Periodic Vehicle Routing Problem with Time 

Windows, one truck can carry only one container every 

single time for its capacity. We use the same problem 

model as (Chen et al. 2017), where all the actions of 

transporting a container are packaged into one task node 

including: loading the container into a truck at the source 

terminal, travelling from the source to the destination 

terminal, and unloading at the destination terminal. 

Therefore, the travel between two nodes is always 

unloaded travel, because the loaded travel has been 

packaged into the task nodes.     

To connect the route of a truck from an odd-indexed 

shift to the following even-indexed shift, Artificial 

Depots are used in the middle of each workday. In one 

shift, every route starts from a starting depot and ends at 

a termination depot. Artificial nodes are termination 

depots in odd-indexed shifts and starting depots in even-

indexed shifts. The main notations used in this model are 

summarized in Table 1. 

In Figure 1, a small example of one workday 

schedule (two consecutive shifts) is presented. As shown 

in the figure, a fleet of five trucks (𝐾 = 5) completes 14 

transportation tasks. In the top route, a truck leaves the 

physical depot and completes two tasks in the Shift 1 

(odd-indexed). Then, the truck is handover to the driver 

of the Shift 2 (even-indexed) at the artificial depot. 

Eventually, the truck returns to the physical depot after 

completing three tasks. The physical move of this truck 

is demonstrated on the right side of Figure 1. It is worth 

to note that, the second and third routes in Shift 1 and the 

third and fourth routes in Shift 2 are empty routes, which 

directly connect artificial depots and the physical depot. 

That means no task is completed on these routes. Notice 

that the cost of an empty route is not always zero, e.g. the 

cost of the fourth route in Shift 2 could be non-zero. The 

cost of empty route will be zero, only if the connected 

artificial node actually represents the physical depot.  

This problem can be formally defined as follows. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒        ∑ ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁∪𝑊𝑖∈𝑁∪𝑊𝑠∈𝑆         (1) 

 

Subject to 

 

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑗 ∈ 𝑁\{0}          (2) 

∑ ∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁\{0}𝑠∈𝑆 = 1,              ∀ 𝑖 ∈ 𝑁\{0}          (3) 

∑ 𝑥𝑖𝑗
𝑠

𝑖∈𝑁∪𝑊 = ∑ 𝑥𝑗𝑓
𝑠  ,   ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆𝑓∈𝑁∪𝑊   (4) 

𝑇𝑗 = ∑ (𝐵𝑖 + 𝑙𝑖 + 𝑡𝑖𝑗) ∙

𝑖∈𝑁\{0}

𝑥𝑖𝑗
𝑠 + ∑ (𝑌𝑠 + 𝑡𝑖𝑗) ∙ 𝑥𝑖𝑗

𝑠

𝑖={0}∪𝑊

, 

                                     ∀𝑗 ∈ 𝑁\{0}, 𝑠 ∈ 𝑆    (5) 

𝐵𝑗 = 𝑇𝑗 +𝑚𝑎𝑥{𝑎𝑗 − 𝑇𝑗 , 0} ,          ∀𝑗 ∈ 𝑁\{0}          (6) 

𝑥𝑖𝑗
𝑠 ∙ 𝑌𝑠 ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑇𝑗  ,    ∀𝑖 ∈ {0} ∪𝑊, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆  (7) 

𝑥𝑖𝑗
𝑠 ∙ (𝐵𝑖 + 𝑙𝑖) ≤ 𝑥𝑖𝑗

𝑠 ∙ 𝑍𝑠 ,                                             

∀𝑖 ∈ 𝑁 ∪𝑊, 𝑗 ∈ {0} ∪𝑊, 𝑠 ∈ 𝑆    (8) 

𝑎𝑖 ≤ 𝐵𝑖 ≤ 𝑏𝑖 − 𝑙𝑖  ,                    ∀𝑖 ∈ 𝑁\{0}          (9) 

𝑥𝑖𝑗
𝑠 ∈ {0,1} ,                   ∀𝑖, 𝑗 ∈ 𝑁 ∪𝑊, 𝑠 ∈ 𝑆     (10) 

𝑥𝑣𝑤
𝑠 = 0 ,                   ∀𝑣 ∈ 𝑊,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆     (11) 

 

In odd-indexed shifts (∀s ∈ 𝑆𝑜𝑑𝑑): 

 

∑ 𝑥0𝑗
𝑠 = 𝐾 ,                 ∀ 𝑠 ∈ 𝑆𝑜𝑑𝑑𝑗∈𝑁\{0}∪𝑊          (12) 

𝑥𝑖0
𝑠 = 0 ,           ∀𝑖 ∈ 𝑁\{0} ∪𝑊, 𝑠 ∈ 𝑆𝑜𝑑𝑑          (13) 

∑ ∑ 𝑥𝑖𝑤
𝑠 = 𝐾 ,                  ∀𝑠 ∈ 𝑆𝑜𝑑𝑑𝑤∈𝑊𝑖∈𝑁          (14)



Table 1: The List of Notations 

Input Parameters: 

𝐾 Fleet size. 

𝑆 
The set of time-continuous working shifts, which can be divided into odd-indexed shifts (𝑆𝑜𝑑𝑑) 

and even-indexed shifts (𝑆𝑒𝑣𝑒𝑛). 

[𝑌𝑆, 𝑍𝑆] Time window of shift 𝑠. 

𝑁 =  {0,1,2,⋯ , 𝑛}  Set of 𝑛 + 1 nodes. Each node represents a task except node 0 is the physical depot. 

[𝑎𝑖 , 𝑏𝑖] 
The time window for node 𝑖. The time window for a depot is zero at the boundary of a shift. If a 

truck arrives at the source of 𝑖 early, it has to wait until 𝑎𝑖. 

𝑊 

Set of Artificial Depots. This set of nodes are introduced to represent the destination terminals in 

𝑆𝑜𝑑𝑑  or source terminals in 𝑆𝑒𝑣𝑒𝑛  on each day, which is decided by if the associated trucks in 

𝑆𝑜𝑑𝑑  can arrive at their terminals before the end of the shift. This set varies in different solutions, 

i.e. a physical terminal may not appear or may appear more than once in 𝑊. 

𝐴 
Set of arcs. Each arc (𝑖, 𝑗)  represents that node 𝑗  is immediately serviced/visited after 

servicing/visiting node 𝑖. 

𝑐𝑖𝑗  
The cost (distance) of unloaded travel from node 𝑖 to node 𝑗. If the destination terminal of task i 

and the source terminal of task j is the same, 𝑐𝑖𝑗 = 0. 

𝑡𝑖𝑗 
The travel time from node 𝑖 to node 𝑗. When both 𝑖 and 𝑗 are task nodes, 𝑡𝑖𝑗 is the travel time 

from the destination of 𝑖 to the source of 𝑗. Otherwise, it is the travel time from or to a depot. 

𝑇𝑖  The arrival time at node 𝑖. 

𝐵𝑖 The time to begin the service of node 𝑖. 

𝑙𝑖 
The time for servicing node 𝑖, which includes the loading time, transportation time (from pick-

up source to delivery destination) and unloading time. The service time of a depot is zero. 

Decision Variable: 

𝑥𝑖𝑗
𝑠  

A binary decision variable for nodes 𝑖, 𝑗 ∈ 𝑁 ∪𝑊. Its value is 1 if arc (𝑖, 𝑗) is included in the 

solution in shift 𝑠, otherwise is 0. 𝑖 and 𝑗 ∈ 𝑊 at the same time is not allowed 

 

 

 

 

 
 

Figure 1：A scheduling example of two consequent shifts with five trucks. 

 



In even-indexed shifts (∀s ∈ 𝑆𝑒𝑣𝑒𝑛): 

 

∑ 𝑥𝑗𝑤
𝑠−1 = ∑ 𝑥𝑤𝑒

𝑠  ,     ∀𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑒∈𝑁𝑗∈𝑁      (15) 

𝑥0𝑗
𝑠 = 0 ,                  ∀𝑗 ∈ 𝑁\{0} ∪W, s ∈ 𝑆𝑒𝑣𝑒𝑛      (16) 

∑ ∑ 𝑥𝑤𝑗
𝑠

𝑗∈𝑁 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑤∈𝑊      (17) 

∑ 𝑥𝑖0
𝑠 = 𝐾 ,                        ∀𝑠 ∈ 𝑆𝑒𝑣𝑒𝑛𝑖∈𝑁\{0}∪𝑊      (18) 

 

The objective of this problem (equation 1) is to 

minimize the total unloaded travel distance. Constraints 

(2) and (3) denote that every task node can be visited 

exactly once and all the tasks are visited. Constraint (4) 

specifies that a task may only be serviced after the 

previous task is completed. Constraints (2) - (4) together 

make sure arcs of over more than one shift are 

unacceptable. Constraint (5) is the arrival time at a task 

node. Constraint (6) defines the beginning time of 

servicing a task node. This time is calculated by the 

arrival time plus the waiting time at the source of a task. 

Constraints (5) and (6) enforce the correct successive 

relationship between consecutive nodes. 

Constraints (7) and (8) are the time window 

constraints of each shift, while constraint (9) represents 

the time constraint on each task. The domain of the 

respective decision variable is defined by constraints (10) 

and (11). Especially, constraint (11) prohibits the travel 

between two artificial depots.  

In odd-indexed shifts and even-indexed shifts, the 

constraints for starting and termination depots are 

different. Constraints (12) and (14) represent that K 

trucks leave the physical depot (0) at the beginning of an 

odd-indexed shift, and they would stop at artificial depots 

at the end of the shift. Constraint (13) represents that no 

truck returns to the physical depot in odd-indexed shifts. 

Constraints (16) - (18) place the reverse restraints in 

even-indexed shifts. Constraint (15) defines the shift 

change from an odd-indexed shift to the following even-

indexed shift on artificial depots, where the incoming of 

each artificial terminal in Sodd equals its outgoing in the 

following Seven. 

It is easy to find that, this problem is tightly 

constrained with an exponential growing search space 

(|S|·K·n!). It has been proofed that exact methods are not 

suitable to solve this problem for the exorbitant 

computing requirement (Chen et al. 2017). To take 

advantage of ALNS in addressing the tightly constrained 

problems with large neighbourhood, a Variable-Depth 

ALNS algorithm (VD-ALNS) is proposed in the next 

section. 

 

3. VARIABLE-DEPTH ADAPTIVE LARGE 

NEIGHBOURHOOD SEARCH 

 

3.1. Framework of VD-ALNS 

The framework of VD-ALNS is shown in ALGORITHM 

1. At the beginning, we use an emergency-based 

construction heuristic (Chen et al. 2017) to generate the 

initial solution. In this construction heuristic, shifts are 

considered chronologically, and the tasks with higher 

emergency will be first assigned. Namely, according to 

their time windows, those tasks that must be completed 

before the next shift will be assigned first. Starting from 

the initial solution, four destroy operators and three 

repair operators are used to produce new solutions by 

modifying the current solution (S𝑐𝑢𝑟𝑟𝑒𝑛𝑡), pursuing the 

solution with higher quality.  

 

ALGORITHM 1: Framework of VD-ALNS 

Input: An initial feasible solution (𝑆) generated by 

construction heuristic from (Chen et al. 2017), 

Stopping Criterion, 𝐼𝑇𝐸𝑀𝐴𝑋  and 

LEN_SEGMENT.  

Step 1. Set up the initial weights and scores of 

operators. 

        𝑊𝑒𝑖𝑔ℎ𝑡 ← {1,⋯ ,1}.  
 𝑆𝑐𝑜𝑟𝑒 ← {0,⋯ ,0}. 
Step 2. Set up the other initial parameters.  

 S𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆, 𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  

Step 3.     
   while Stopping Criterion is not met do 

 Step 3.1 Variable-Depth Setting. 

    if 𝑆  is not improved in the last 𝐼𝑇𝐸𝑀𝐴𝑋  

iterations 

        if 𝐷𝑒𝑝𝑡ℎ = 𝐻𝑂𝑅𝐼𝑍𝑂𝑁 then 

       𝐷𝑒𝑝𝑡ℎ ← 𝑆𝐻𝐼𝐹𝑇. 

    else 

                      𝐷𝑒𝑝𝑡ℎ ← 𝐻𝑂𝑅𝐼𝑍𝑂𝑁.  

              end 

           end 
 Step 3.2 Operators Selection and Execution.  

Select a Destroy Operator (𝐷𝑖 ) and a Repair 

Operator (𝑅𝑗), based on 𝑊𝑒𝑖𝑔ℎ𝑡.  

Execute 𝐷𝑖  and 𝑅𝑗 at Depth, and obtain a new 

solution: 𝑆′ ← 𝑅𝑗(𝐷𝑖(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)).      

        Step 3.3 Accept or Reject.   

A Record-to-Record Travel algorithm is 

employed to determine should the newly 

generated solution be accepted (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑆′) 
or rejected. If the quality of 𝑆′ is better than 𝑆, 

update the best-found solution 𝑆 ← 𝑆′. 
 Step 3.4 Weight Adjustment.  

The Scores of 𝐷𝑖  and 𝑅𝑗  (𝑆𝑐𝑜𝑟𝑒𝑖  and 𝑆𝑐𝑜𝑟𝑒𝑗 ) 

will be updated every iteration, according to 

the quality o𝑆′f.  
Every LEN_SEGMENT  iteration, the 𝑊𝑒𝑖𝑔ℎ𝑡 
will be updated once, while Score will be reset.   

    end    

Output: An improved solution 𝑆. 

 

The 𝑊𝑒𝑖𝑔ℎ𝑡  and 𝑆𝑐𝑜𝑟𝑒  in Step 1 are two scalars 

which record the contributions of operators in solution 

improvement, and their values are set to equal for all 

operators at the beginning. After setting the initial 

parameters in Steps 1 and 2, the algorithm iteratively 

explores the solution space until the Stopping Criterion 

is met in Step 3. Here we define the stopping conditions 

as follows: The quality of the best-found solution (𝑆) has 

not been improved in the last 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋  iterations or 



the improvement is less than 1% in the last 

𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋  iterations. 

In Step 3.1, 𝐷𝑒𝑝𝑡ℎ is the range where the operators 

work at, which can be the whole planning horizon 

(𝐻𝑂𝑅𝐼𝑍𝑂𝑁 ) or a specified shift (𝑆𝐻𝐼𝐹𝑇 ). 𝐷𝑒𝑝𝑡ℎ  is 

systematically shifted between 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  and 𝑆𝐻𝐼𝐹𝑇 

to balance the exploration and exploitation. In Step 3.2, 

we select a pair of a destroy operator (𝐷𝑖) and a repair 

operator (𝑅𝑗) to generate a new solution (𝑆′).  

Every single operator should have its own weight 

and score ( 𝑊𝑒𝑖𝑔ℎ𝑡𝑖  and 𝑆𝑐𝑜𝑟𝑒𝑖 ). However, it is 

controversial whether we should give an operator two 

different weights when it uses two different depths. For 

example, should an operator have two weights to 

separately record its improvement contribution at depths 

of 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  and 𝑆𝐻𝐼𝐹𝑇 , or record all previous 

contribution with only one weight? Different answers to 

this question represent the different view between VDNS 

and VNS (Pisinger and Ropke 2010). Using two 

independent weights would prevent using the guidance 

based on the search experience at the other depth, 

because the searching performance history at different 

depths is separately recorded as employing two 

independent operators. But, in our preliminary 

experiments, it is found that search experience at 

different operation depths can promote each other. In 

VD-ALNS, thus, we adopt the VDNS idea, which 

considers this issue as one operator working in two 

scenarios, and records an operator's information with 

only one scalar.  

A pair of operators is selected by Roulette Wheel 

based on the weights of operators in Step 3.2. The 

probability of an operator 𝑖 being selected is calculated 

with Eq. (19) where ℎ  is the number of candidate 

operators. 

 

𝑃𝑟𝑖 =
𝑊𝑒𝑖𝑔ℎ𝑡𝑖

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑘
ℎ
𝑘=1

                           (19) 

 

Step 3.3 decides if accept 𝑆′ as 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and update 

𝑆 , while Step 3.4 adjusts the scores and weights of 

operators according to the quality of 𝑆′. These adaptive 

weights guide the search to the promising solution 

region. More details are introduced in Sections 3.2 – 3.5. 

 

3.2. Variable-Depth Setting 

Variable search depth endows a balanced search 

performance. When 𝐷𝑒𝑝𝑡ℎ  is 𝑆𝐻𝐼𝐹𝑇 ,  the destroy 

operators remove a number of nodes from one specified 

shift, while the repair operators reinsert the removed 

nodes into that shift then. All the shifts would be 

specified sequentially. On the other hand, when 𝐷𝑒𝑝𝑡ℎ 

is 𝐻𝑂𝑅𝐼𝑍𝑂𝑁, the removal and reinsertion happen in the 

whole planning horizon. Obviously, 𝐻𝑂𝑅𝐼𝑍𝑂𝑁  is a 

greater depth than 𝑆𝐻𝐼𝐹𝑇 , and it may cause a greater 

change in a solution, which improves the diversification 

of search. Contrarily, using the 𝐷𝑒𝑝𝑡ℎ  of 𝑆𝐻𝐼𝐹𝑇 

modifies routes in a single shift in each iteration. It 

locally optimizes the solution which increases the 

intensification of search.  

We regularly switch 𝐷𝑒𝑝𝑡ℎ  to seek a trade-off 

between exploration and exploitation. Searching with 

smaller depth exploits a relatively smaller solution area 

intensively, while larger search depth avoids search 

trapping into local optima. In the proposed algorithm, 

𝐷𝑒𝑝𝑡ℎ would be switched to the other value when 𝑆 is 

not improved in 𝐼𝑇𝐸𝑀𝐴𝑋 iterations, so as to keep both the 

diversification and intensification in searching the large 

scale tightly constrained solution space. 

 

3.3. Operators of Destroy and Repair 

Four destroy operators and three repair operators are 

developed in this paper, which use diverse heuristics to 

remove and reinsert nodes to an existing solution. 

 

3.3.1. Destroy Operators  

𝑞  nodes would be removed by an destroy operator 

(Removal Heuristic) in each iteration. The value of 𝑞 

increases by 5 when the solution is not improved in the 

last iteration. Because too small 𝑞 is hard to bring change 

to the solution, while too large 𝑞  will significantly 

increase the repair operation time and cause the 

algorithm degenerating to random search, a lower bound 

of max{0.1𝑛, 10}  and an upper bound of 

min{0.5𝑛, 60} are given to 𝑞, here 𝑛 is the total number 

of nodes. 

1. Random Removal: The 𝑞 nodes to be removed 

are randomly selected. 

2. Worst Removal: This is a greedy heuristic, 

where the top 𝑞 nodes causing the greatest cost 

increase will be removed. In other words, 

removing the q task nodes brings the greatest 

reduction of the cost in the solution. 

3. Worst Edge Removal: This is also a greedy 

heuristic, which deletes 𝑞 nodes connected by 

the arcs with the highest cost. 

4. Related Removal: Shaw (1997) proposes this 

destroy operator which claims that, if nodes 

close to one another are removed together, there 

would be an opportunity for interchanging them 

in the latter repaired solution. In VD-ALNS, we 

define the relatedness of two task nodes (𝑖 and 

𝑗) from five aspects: Service Time (𝑅𝑖𝑗
𝑆𝑇), Time 

window (𝑅𝑖𝑗
𝑇𝑊), Service Starting Time (𝑅𝑖𝑗

𝑆𝑆𝑇), 

Vehicle used (𝑅𝑖𝑗
𝑉 ) and Source and Destination 

𝑅𝑖𝑗
𝑆𝐷). 

 

𝑅𝑖𝑗
𝑆𝑇 =

|𝑙𝑖−𝑙𝑗|

(𝑙𝑖+𝑙𝑗)∙0.5
                                                 (20) 

𝑅𝑖𝑗
𝑇𝑊 =

0.5∙(|𝑎𝑖−𝑎𝑗|+|𝑏𝑖−𝑏𝑗|)

𝑚𝑎𝑥{𝑏𝑖,𝑏𝑗}−𝑚𝑖𝑛{𝑎𝑖,𝑎𝑗}
                               (21) 

𝑅𝑖𝑗
𝑆𝑆𝑇 =

|𝐵𝑖−𝐵𝑗|

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝐻𝑜𝑟𝑖𝑧𝑜𝑛
                      (22) 

𝑅𝑖𝑗
𝑉 = {

0 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 𝑏𝑦 𝑎 𝑠𝑎𝑚𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒
0.5 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑠𝑒𝑟𝑣𝑖𝑒𝑐𝑒𝑑 𝑏𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠ℎ𝑖𝑓𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

   (23) 



𝑅𝑖𝑗
𝑆𝐷 =

{
 
 

 
 
0 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝐴𝑁𝐷

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
0.5 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑂𝑅

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

         (24) 

 

Correspondingly, the relatedness of two task nodes 

(𝑅𝑖𝑗 ) is a linear combination of the five components 

above-mentioned (Eq. (25)). The values of the five linear 

coefficients are discussed in Section 4.2. In Relatedness 

Removal, the first node to be removed is randomly 

selected, then the other nodes are sorted in ascending 

order of relatedness to the first node and stored in a 

candidate list of 𝑃. 

 

𝑅𝑖𝑗 = 𝛼 ∙ 𝑅𝑖𝑗
𝑆𝑇 + 𝛽 ∙ 𝑅𝑖𝑗

𝑇𝑊 + 𝛾 ∙ 𝑅𝑖𝑗
𝑆𝑆𝑇 + 𝛿 ∙ 𝑅𝑖𝑗

𝑉 + 𝜀 ∙ 𝑅𝑖𝑗
𝑆𝐷  

(𝑠. 𝑡.  𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜀 = 1)    (25) 

 

The rest 𝑞 − 1 nodes to be removed are randomly 

selected with the preference of smaller 𝑅𝑖𝑗 , where the 

nodes with the index of ⌈𝑁𝜌𝐷⌉ in 𝑃  will be removed. 

Here, 𝑁 is the number of candidate nodes, 𝜌 is a random 

number between 0 and 1, and 𝐷 is a constant greater or 

equal to 1. The greater 𝐷 is, the stronger the preference 

would be, while 𝐷 is set to 3 in VD-ALNS. This random 

selection scheme with preference is also used in some 

other ALNS methods (Ropke and Pisinger 2006; 

Prescott-Gagnon 2009; Azi et al. 2014).  

 

3.3.2. Repair Operators 

The nodes removed in the Destroy phase will be 

reinserted into the destroyed solution following the 

specific rules of each repair operator (Insertion 

Heuristic). 

1. Random Insertion: The removed nodes would 

be randomly inserted into their feasible 

positions. 

2. Greedy Insertion: The removed nodes would be 

inserted into their best feasible positions. Here 

the best position means the position causing the 

least cost increase. 

3. Regret2 Insertion: This greedy insertion 

heuristic is proposed by Pisinger and Ropke 

(2007), which always inserts the node having 

largest REGRET into its best feasible position 

first. The REGRET of a node is the cost 

difference between inserting the node to its best 

feasible position and its second best feasible 

position. 

 

3.4. Acceptance Criterion 

We use Record-to-Record Travel acceptance criterion 

(Dueck1993) to determine if the newly generated 

solution (𝑆′) is acceptable as the new starting point of 

exploration. Comparing the quality of solutions (i.e. 

COST (Eq. 1)), if 𝑆′ is better than the best-found solution 

𝑆 (i.e. 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)), 𝑆′ will be accepted as the 

current solution (𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡). Besides, a new solution worse 

than 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is still acceptable as long as the gap 

between their COST is less than the DEVIATION (i.e. 

0.01 ∙ 𝐶𝑂𝑆𝑇(𝑆)). 
 

3.5. Weight Adjustment 

To obtain the weights, the scores of operators should be 

calculated first. In each iteration, a reward (𝜎 ≥ 0) will 

be added to 𝑆𝑐𝑜𝑟𝑒𝑖 which is the score of the employed 

operator. The value of 𝜎 is decided by the quality of 𝑆′ 
(see Eq. 26), and we will discuss it further in Section 4.2. 

 

𝜎 =

{
  
 

  
 
𝜎1 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑎𝑛𝑑 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆)

𝜎2 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆) < 𝐶𝑂𝑆𝑇(𝑆′) < 𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝜎3 𝑆′𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝐴𝑁𝐷

𝐶𝑂𝑆𝑇(𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝐶𝑂𝑆𝑇(𝑆′)

𝜎4 𝑆′𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑

           (26) 

 

The weights are adjusted according to the operators' 

performance (improvement contribution) shown in the 

last Segment which is a single 𝐿𝐸𝑁_𝑆𝐸𝐺𝑀𝐸𝑁𝑇 iteration 

in Step 3.4 of Algorithm 1 in Section 3. At the beginning 

of the current Segment 𝑡 , the weight of each operator 

(𝑊𝑒𝑖𝑔ℎ𝑡𝑖 ) is updated according to its score obtained 

from the previous Segment 𝑡 − 1 (see Eq. (27)). In the 

equation, 𝑟  is a reaction factor, which controls how 

quickly the adjustment scheme reacts. 𝑢𝑖 is the number 

of usage of operator 𝑖 in Segment 𝑡 − 1. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑖
𝑡 = 𝑟 ∙ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑡−1 + (1 − 𝑟) ∙
𝑆𝑐𝑜𝑟𝑒𝑖

𝑢𝑖
       (27) 

 

After updating the 𝑊𝑒𝑖𝑔ℎ𝑡s, the accumulated score of 

each operator will be reset to zero to start the calculation 

of the new rewards in Segment 𝑡. 
 

4. EXPERIMENTS AND ANALYSIS 

 

4.1. Benchmark 

Bai et al. (2015) generate the Ningbo Port dataset 

including 15 real-life instances extracted from the 

Ningbo Port container transportation historical data, and 

16 artificial instances with diverse features. In the real-

life instances, the planning horizons are four, six and 

eight shifts, respectively, while there are four or eight 

shifts in artificial instances. The artificial instances are 

classified by their time window tightness (Tight/Loose) 

and workload balance at terminals (Balanced/ 

Unbalanced). The name of each instance gives the 

information about the instance. For example, the instance 

NP4-1 is the first real-life instance with four shifts, and 

the instance named TU8-7 is the seventh artificial 

instance with eight shifts whose time window is tight and 

workload at terminals is unbalanced.  

The sizes of these 31 instances are large comparing 

to the classical VRP datasets (Solomon1987; Gehring 

and Homberger 1999). To test the efficiency of the 

proposed algorithms in small size instances, Chen et al. 

(2017) extract a 25% scaled down dataset from the 

Ningbo Port dataset, while the features of instances are 

kept. We test VD-ALNS on both datasets. 

 



4.2. Parameter Tuning and Sensitivity 

The tuning is conducted on one parameter at one time, 

while the other parameters are fixed. It is easy to 

understand that, higher 𝑈𝑁𝐼𝑀𝑃𝑅𝑀𝐴𝑋  and 𝐼𝑁𝐶𝑅𝐸𝑀𝐴𝑋 

mean more iterations in search, which might bring better 

solutions but demand more running time. 𝐼𝑇𝐸𝑀𝐴𝑋  

represents the times of the same 𝐷𝑒𝑝𝑡ℎ value would be 

used in one cycle. The trade-off between the solution 

quality and running time as well as the balance between 

search thoroughness and efficiency is what all 

metaheuristics have to consider. The values of 

parameters used in VD-ALNS are presented in Table 2. 

 

Table 2: Parameters in VD-ALNS. 
Parameter 𝜎1 𝜎2 𝜎3 𝜎4 UNIMPRMAX INCREMAX ITEMAX 

Value 30 15 5 0 150 200 4*No. of shifts 

Parameter α β γ δ ε r LEN_SEGMENT 

Value 0.3 0.2 0.1 0.2 0.2 70 0.4 

 

In the adaptive weight adjustment, four levels of 

rewards (𝜎1 > 𝜎2 > 𝜎3 > 𝜎4 ≥ 0) are given according to 

the quality of the newly generated solution 𝑆’. Firstly, 𝜎4 

is set to zero to reward zero to the employed operator if 

𝑆’ is rejected. Then, 𝜎3 is set to 5 as a base unit, and 𝜎1 

and 𝜎2 are adjusted to find the best setting. It is observed 

that too large 𝜎1  would cause premature search. When 

the reward to the operator producing the new best 

solution is too large, the algorithm would degenerate to a 

Hill Climbing method. 

When tuning the linear coefficients in the definition 

of Relatedness (Eq. (25)), it starts with giving all the five 

components equal weights (α = β = γ = δ = ε = 0.2). 

Then, each coefficient is gradually increased to test the 

contribution of the associated component to the total 

relatedness. It is found that when the weight of Service 

Time Relatedness (𝑅𝑖𝑗
𝑆𝑇) is properly high, the quality of 

generated solutions is better. This observation indicates 

that reassigning two tasks with a higher similarity of 

Service Time has the higher possibility to produce a new 

better solution. Since the Service Staring Time of a task 

may change for various reasons (e.g., a task is assigned 

to a new truck, a precedent task is reassigned, etc.), 𝑅𝑖𝑗
𝑆𝑆𝑇  

is hard to represent the relatedness of two tasks and 

shows low contribution in tuning tests. A lower 

coefficient is given to it.  

Too small LEN_SEGMENT may lead to the weights 

of operators changing frequently and search converging 

prematurely, while large LEN_SEGMENT cannot 

provide guidance in time. Our preliminary experiments 

show that the best performance is found when 

LEN_SEGMENT is between 50 and 80. In Eq. (27), the 

higher 𝑟 is, the slower the algorithm reacts to the latest 

guidance information. VD-ALNS performs the best 

when 𝑟 is between 0.4 and 0.6. 

 

4.3. Experiment Results 

To verify the contribution of variable depth, a standard 

ALNS variant for OPVRPTW is also implemented to be 

compared, which uses the Destroy and Repair operators 

only at the depth of HORIZON for globally searching. 

Comparing to other metaheuristics using small change 

operators, both VD-ALNS and ALNS have the stronger 

ability to escape from local optima in a tightly 

constrained solution space. They are compared to VNS-

RLS (Chen et al. 2017), which uses neighbourhood 

operators with small changes.  

The comparison results on the 25% scaled down 

instances are presented in Tables 3 and 4. The three 

algorithms are compared from four aspects: best-found 

solution (Best), average solution (Ave), evaluation times 

(Times) and standard deviation (S.D.). All the results are 

obtained from 30 runs. In these tables, we convert the 

objective value into Heavy-Loaded Distance Rate 

(HLDR) (Eq. (28)), which is widely used by logistic 

companies in practice. This objective also pursues the 

lowest unloaded travel distance like Eq. (1), but it 

converts the problem into a maximization problem. The 

lower and upper bounds of optimal solutions, which are 

obtained by CPLEX (Chen et al. 2017), are also given. 

The NF in tables means no feasible solution is generated. 

 

𝐻𝐿𝐷𝑅 =
𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐿𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒+𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
        (28) 

 

Table 3: HLDR comparison on 25% scaled down real-

life instances. (Best-found HLDR in bold.) 
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-

RLS 

Best 82.89% 62.32% 75.64% 59.76% 79.24% 

Ave 81.51% 61.42% 74.92% 59.18% 78.48% 

Times 469,233 311,885 319,202 347,134 326,956 

S.D. 1.16% 0.60% 0.62% 0.35% 0.42% 

ALNS 

Best 81.15% 65.51% 75.17% 61.86% 77.14% 

Ave 79.80% 65.08% 73.60% 61.47% 76.15% 

Times 385 500 458 499 395 

S.D. 0.72% 0.33% 0.80% 0.27% 0.57% 

VD-

ALNS 

Best 81.74% 65.45% 75.54% 62.53% 77.67% 

Ave 79.61% 65.16% 74.15% 61.75% 77.03% 

Times 483 529 503 549 573 

S.D. 1.20% 0.25% 0.82% 0.27% 0.53% 

Lower Bound 78.36% 65.14% 64.83% 54.39% NF 

Upper Bound 92.36% 97.04% 100% 97.72% 100% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 76.24% 73.39% 62.32% 80.50% 82.44% 

Aver 74.99% 72.83% 62.06% 79.84% 80.53% 

Times 698.514 624,078 253,037 541,548 365,435 

S.D. 0.96% 0.41% 0.20% 0.41% 1.72% 

ALNS 

Best 79.07% 70.28% 65.00% 78.43% 82.15% 

Ave 78.03% 69.42% 64.26% 77.07% 80.58% 

Times 420 449 412 426 450 

S.D. 0.69% 0.49% 0.42% 0.80% 0.69% 

VD-

ALNS 

Best 79.95% 70.75% 65.31% 78.26% 82.75% 

Ave 78.33% 69.85% 64.40% 77.07% 80.34% 

Times 549 537 553 515 496 

S.D. 0.92% 0.49% 0.47% 0.76% 1.19% 

Lower Bound NF NF 54.30% NF 66.11% 

Upper Bound NF NF 95.20% NF 98.39% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 76.91% 77.76% 75.35% 60.90% 72.27% 

Ave 74.72% 77.16% 74.93% 60.47% 71.68% 

Times 607,961 525,479 442,103 430,962 516,872 

S.D. 1.20% 0.37% 0.31% 0.32% 0.36% 

ALNS 

Best 74.74% 74.32% 75.08% 61.85% 71.60% 

Ave 73.90% 73.07% 74.29% 61.66% 71.05% 

Times 445 444 442 421 439 

S.D. 0.54% 0.49% 0.59% 0.14% 0.29% 

VD-

ALNS 

Best 75.50% 74.76% 75.09% 61.92% 71.58% 

Ave 74.22% 73.53% 74.53% 61.70% 71.10% 

Times 579 524 528 456 527 

S.D. 0.57% 0.58% 0.36% 0.14% 0.31% 

Lower Bound NF NF NF NF NF 

Upper Bound 98.98% 100% 100% NF 100% 

 



Table 4: HLDR comparison on 25% scaled down 

artificial instances. (Best-found HLDR in bold.) 
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 76.92% 83.42% 69.08% 66.41% 60.71% 61.08% 48.75% 54.97% 

Ave 74.80% 81.61% 67.78% 64.95% 59.29% 60.62% 48.54% 54.68% 

Times 313,707 280,849 286,059 298,651 321,835 290,082 166,248 193,536 

S.D. 0.95% 1.09% 0.65% 0.75% 0.64% 0.29% 0.30% 0.33% 

ALNS 

Best 78.85% 81.85% 68.41% 66.94% 58.87% 59.35% 49.42% 54.12% 

Ave 77.84% 80.08% 67.36% 66.06% 57.84% 58.60% 48.87% 53.35% 

Times 438 421 426 410 396 287 371 287 

S.D. 0.67% 1.01% 0.51% 0.39% 0.52% 0.37% 0.39% 0.43% 

VD-

ALNS 

Best 79.16% 83.42% 68.92% 67.01% 59.84% 60.16% 49.42% 55.31% 

Ave 77.98% 80.92% 67.45% 66.22% 58.74% 59.37% 49.05% 54.19% 

Times 445 448 457 443 472 477 411 448 

S.D. 0.75% 0.95% 0.65% 0.36% 0.47% 0.46% 0.38% 0.48% 

Lower 

Bound 
66.62% 76.41% 69.91% 69.30% NF 58.65% 50.37% 55.36% 

Upper 

Bound 
100% 94.87% 86.31% 83.51% 79.94% 73.90% 52.17% 66.38% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 91.25% 93.56% 63.05% 66.31% 65.76% 66.58% 56.46% 52.29% 

Ave 89.76% 92.09% 61.78% 63.25% 64.86% 65.58% 55.79% 51.93% 

Times 492,628 547,853 296,837 517,855 438,295 439,782 269,164 281,479 

S.D. 0.95% 0.87% 0.54% 1.16% 0.44% 0.49% 0.29% 0.18% 

ALNS 

Best 87.37% 87.87% 63.61% 66.12% 64.84% 60.34% 55.37% 51.89% 

Ave 83.02% 84.41% 62.75% 64.89% 63.61% 58.13% 54.69% 51.28% 

Times 398 396 403 461 437 318 334 385 

S.D. 2.40% 1.40% 0.59% 0.74% 0.54% 0.73% 0.23% 0.42% 

VD-

ALNS 

Best 88.71% 89.62% 64.37% 67.01% 65.30% 63.08% 55.52% 52.41% 

Ave 84.32% 84.35% 62.99% 65.26% 63.93% 59.95% 54.78% 51.81% 

Times 515 499 549 535 598 590 482 577 

S.D. 1.87% 1.95% 0.59% 0.54% 0.57% 1.29% 0.14% 0.39% 

Lower 

Bound 
NF NF 56.85% 52.40% 57.42% NF 47.65% 50.74% 

Upper 

Bound 
100% 100% 82.33% 88.75% 78.33% 86.84% 71.59% 70.43% 

 

From the experiment results we can find that, VD-

ALNS beats ALNS in almost all instances, which 

indicates that the variable neighbourhood depth scheme 

does improve the search performance of ALNS. This 

scheme enhances the exploit ability in local area leading 

to the growth of total evaluation times in ALNS. 

Comparing to VNS-RLS, on 6 of 15 real-life instances 

and half of artificial instances, VD-ALNS finds better or 

equal solutions, which shows no significantly difference. 

However, VD-ALNS takes remarkably less evaluation 

times and 90% running time of VNS-RLS to obtain that 

results. All the three methods have close stability where 

their difference on S.D. is lower than 1%.  

 

Table 5: HLDR comparison on original real-life dataset. 

(Best-found HLDR in bold.) 
Instance NP4-1 NP4-2 NP4-3 NP4-4 NP4-5 

VNS-RLS 

Best 83.29% 69.85% 72.90% 66.61% 80.65% 

Ave 81.88% 69.56% 72.20% 65.91% 80.48% 

Times 779,504 575,894 661,384 923,891 718,219 

S.D. 0.55% 0.16% 0.38% 0.47% 0.17% 

ALNS 

Best 81.68% 69.08% % 66.63% 78.16% 

Ave 80.21% 68.62% % 66.11% 77.78% 

Times 212 281  271 267 

S.D. 0.99% 0.36% % 0.29% 0.22% 

VD-

ALNS 

Best 82.30% 69.13% 73.94% 67.05% 78.96% 

Ave 81.42% 68.83% 73.01% 66.28% 78.11% 

Times 313 501 243 345 297 

S.D. 0.58% 0.21% 0.86% 0.56% 0.49% 

Upper Bound 90.43% 70.23% 79.58% 73.72% 81.20% 
      

Instance NP6-1 NP6-2 NP6-3 NP6-4 NP6-5 

VNS-

RLS 

Best 79.64% 74.14% 58.94% 79.52% 79.99% 

Aver 79.07% 73.72% 58.62% 79.10% 78.36% 

Times 1.03×106 1.16×106 513,974 1.05×106 984,987 

S.D. 0.47% 0.21% 0.23% 0.53% 0.99% 

ALNS 

Best % 69.16% 65.27% % 77.43% 

Ave % 64.76% 64.79% % 76.64% 

Times  44 251  274 

S.D. % 3.04% 0.35% % 0.56% 

VD-

ALNS 

Best 81.74% % 65.16% % 77.39% 

Ave 77.04% % 64.84% % 76.52% 

Times 483  303  387 

S.D. 1.20% % 0.24% % 0.54% 

Upper Bound 83.93% 76.67% 66.90% 80.97% 84.30% 
      

Instance NP8-1 NP8-2 NP8-3 NP8-4 NP8-5 

VNS-

RLS 

Best 73.80% 75.27% 74.20% 61.97% 73.62% 

Ave 73.48% 74.86% 73.96% 61.91% 73.26% 

Times 1.49×106 978,695 867,663 693,779 1.18×106 

S.D. 0.15% 0.28% 0.22% 0.06% 0.35% 

ALNS 

Best % % % % % 

Ave % % % % % 

Times      

S.D. % % % % % 

VD-

ALNS 

Best % % % % 73.07% 

Ave % % % % 72.59% 

Times     365 

S.D. % % % % 0.34% 

Upper Bound 77.04% 77.55% 78.82% 62.53% 76.09% 

 

Table 6: HLDR comparison on original artificial dataset. 

(Best-found HLDR in bold.) 
Instance LB4-1 LB4-2 TB4-3 TB4-4 LU4-5 LU4-6 TU4-7 TU4-8 

VNS-

RLS 

Best 73.52% 78.08% 69.32% 72.24% 64.67% 68.12% 53.21% 53.80% 

Ave 72.93% 77.70% 68.54% 71.42% 64.38% 67.52% 53.03% 53.61% 

Times 642,796 617,656 616,237 635,130 724,154 782,608 399,970 290,599 

S.D. 0.32% 0.32% 0.42% 0.49% 0.20% 0.40% 0.16% 0.08% 

ALNS 

Best % % % % % % % % 

Ave % % % % % % % % 

Times         

S.D. % % % % % % % % 

VD-

ALNS 

Best % 77.15% 69.03% 73.66% 61.04% 65.33% % % 

Ave % 76.83% 68.51% 72.78% 60.40% 64.80% % % 

Times  253 309 315 400 255   

S.D. % 0.18% 0.38% 0.64% 0.43% 0.49% % % 

Upper 

Bound 
79.47% 86.33% 84.05% 88.74% 74.11% 74.47% 64.05% 63.50% 

         

Instance LB8-1 LB8-2 TB8-3 TB8-4 LU8-5 LU8-6 TU8-7 TU8-8 

VNS-

RLS 

Best 85.49% 94.03% 69.59% 66.85% 67.81% 68.41% 59.60% 54.50% 

Ave 84.11% 92.83% 69.04% 65.70% 67.20% 68.07% 59.21% 54.23% 

Times 1.44×106 1.13×106 669,136 1.47×106 1,11×106 1.03×106 572,065 859,770 

S.D. 0.95% 1.05% 0.38% 0.76% 0.34% 0.21% 0.21% 0.16% 

ALNS 

Best % % % % % % % % 

Ave % % % % % % % % 

Times         

S.D. % % % % % % % % 

VD-

ALNS 

Best 88.71% 89.74% % % % 62.30% % % 

Ave 85.96% 86.67% % % % 61.29% % % 

Times 339 347    343   

S.D. 2.43% 1.77% % % % 0.76% % % 

Upper 

Bound 
98.26% 97.97% 87.06% 92.44% 74.27% 71.36% 70.29% 56.54% 

 

Tables 5 and 6 present the results on the original 

Ningbo Port instances. The upper bounds are obtained 

with the relaxation of removing the travels of leaving and 

returning to depot (Bai et al. 2015). It can be found that, 

with the variable depth scheme, VD-ALNS outperforms 

ALNS again from the aspects of average and best-found 

solution. On ** benchmark instances, new best solutions 

are generated by VD-ALNS. 

 

4.4. Evaluating the Contribution of Operators 

Table 7 provides a statistic on the Destroy and Repair 

operators. On the scaled down dataset, we ran VD-ALNS 

while a single operator is excluded and the others are 

kept. When each operator is excluded by turn, the 

degeneration caused by missing that specific operator is 

recorded. The second and third columns show the 

average degeneration on the best-found solution and 

average solution, while the last two columns give the 

maximum degeneration on the dataset. 



 

Table 7: Evaluation of contribution of each operator 

Operator 
Best sol. 

deg. 

Avg. 

deg. 

Max best 

sol. deg. 

Max avg. 

deg. 

Random Removal 0.15% 0.23% 1.08% 0.13% 
Worst Removal 0.33% 0.60% 2.18% 2.14% 
Related Removal 0.09% 0.08% 1.32% 0.68% 
Worst Edge Removal 0.55% 0.56% 2.87% 2.14% 
Random Insertion 0.21% 0.12% 1.80% 1.09% 
Greedy Insertion 4.84% 5.34% 9.64% 7.69% 
Regret2 Insertion 0.54% 0.25% 4.07% 1.31% 

 

The results indicate the usefulness of each operator 

in VD-ALNS. It can be found that, Worst Edge Removal 

is the most efficient destroy operator, followed by the 

Worst Removal. The Related Removal contributes the 

least in this case. Among repair operators, Greedy 

Insertion is the most useful one, followed by the Regret2 

Insertion. Overall, greedy heuristics provide effective 

complement on search intensification and outperform the 

other heuristics. It proofs that the using of exact method 

is a crucial factor to the performance of ALNS. 

 

4.5. Analysis of Runtime 

The Destroy and Repair operators in ALNS bring greater 

change than traditional neighbourhood operators by 

operating more nodes and greater perturbation in each 

usage of the operators. Therefore, the calculation time 

spent on choosing removal nodes and insertion places is 

considerable. To obtain the results presented in the 

tables, the evaluation times of ALNS and VD-ALNS are 

significantly less than VNS-RLS, but the running time of 

VD-ALNS is around 43% more than VNS-RLS on the 

original instances, while it is slightly less than VNS-RLS 

on small instances. This observation indicates that the 

runtime of VD-ALNS increases faster than VNS-RLS 

with the growth of instance size. 

Choosing the insertion position is time-consuming. 

Actually, repair operator computing time accounts for an 

obviously larger proportion, which is around 3.5 times of 

destroy operators’ on scaled down instances. What’s 

more, on the original dataset, the repair operation may 

spend more than 95% total running time.  

 

5. CONCLUSIONS 

Open Periodic Vehicle Routing Problem with Time 

Windows (OPVRPTW) has a large scale search space 

with tight side constraints, which arises from a real-world 

container transportation problem. This paper proposed a 

Variable-Depth Adaptive Large Neighbourhood Search 

algorithm (VD-ALNS) for OPVRPTW, using specially 

tailored four destroy operators and three repair operators 

at variable neighbourhood depth. In this vehicle routing 

problem with high-dimensional solution structure, the 

variable depth scheme significantly promotes the 

performance of the proposed algorithm.  

On both small and big size benchmarks, it was 

demonstrated that the proposed variable depth scheme 

can handle the trade-off between exploration and 

exploitation and efficiently find good solutions. 

Comparing to the existing solution metaheuristic with 

small change operators, a number of new best-found 

solutions were produced by VD-ALNS. In the future 

research, multi-objective feature and other trade-off 

strategies between solution quality and search speed will 

be able to cooperate with ALNS. It will be also possible 

to apply advanced customized exact methods to both 

destroy and repair operators. 
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