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Abstract. An earlier Case-based Reasoning (CBR) approach developed by the 
authors for educational course timetabling problems employed structured     
cases to represent the complex relationships between courses. The retrieval 
searches for structurally similar cases in the case base. In this paper, the 
approach is further developed to solve a wider range of problems. We also 
attempt to retrieve those cases that have common similar structures with some 
differences. Costs that are assigned to these differences have an input upon the 
similarity measure. A large number of experiments are performed consisting of 
different randomly produced timetabling problems and the results presented 
here strongly indicate that a CBR approach could provide a significant step 
forward in the development of automated systems to solve difficult timetabling 
problems. They show that using relatively little effort, we can retrieve these 
structurally similar cases to provide high quality timetables for new timetabling 
problems. 

 
 

1. Introduction 
 
 
1.1 CBR in Scheduling and Timetabling Problems 
 
A timetabling problem can be thought of as a special case of the general scheduling 
problem. As far as the authors are aware, there are few publications in the literature on 
using CBR to solve such problems. In 1989, SMARTplan was proposed by Koton [1]. 



  

It used CBR to solve the airlift management problem by decomposing the problem 
and then combining the retrieved cases for the new problem. Hennessy utilised the 
theory of scheduling in a CBR system presented in 1992 to solve the autoclave 
management and loading problem [2]. In 1993, Bezirgan developed CBR-1 for 
dynamic job shop scheduling utilising rules from a pool storing different methods [3]. 
Miyashita and Sycara implemented the CBR system called CABIN in 1994 [4]. This 
system addressed the job shop scheduling problem by retrieving previous repair 
tactics. MacCarthy and Jou proposed general CBR frameworks for scheduling in 1995 
[5] and in 1996 they presented a survey about CBR research in scheduling [6]. In 
1997, Cunningham proposed an approach to reuse portions of good schedules to solve 
traditional travelling salesman problems [7]. Schmidt, in 1998, stored scheduling 
tactics in the case base to help solving job shop scheduling problems [8]. 

Several types of timetabling problem are currently being studied such as course 
timetabling, exam timetabling, bus or rail timetabling and employee timetabling [9]. 
Our CBR system addresses educational course timetabling. The course timetabling 
problem was defined by Carter in [10]. It can be viewed as a multi-dimensional 
assignment problem. In a timetable, a number of courses are assigned into classrooms 
and a limited number of timeslots (periods of time) within a week. Students and 
teachers are assigned to courses. 

Different timetabling problems have different constraints. This can make them 
very difficult to solve. A common constraint is ‘no person is assigned to two or more 
courses simultaneously’ which is known as a hard constraint because it should, under 
no circumstances, be violated. Other constraints known as soft constraints are 
desirable but it is not essential to satisfy them. Indeed, it would usually be impossible 
to satisfy all of them in a given problem. Examples are when two events should or 
should not be consecutive, or when one event should be before another. 

In the early days of educational timetabling research, graph theoretic methods 
represented the state of the art [11]. Techniques like graph colouring were used to 
solve the problems. Other research using integer linear programming techniques to 
represent the timetabling problem was also carried out [12]. In more recent times, 
various meta-heuristic methods such as Tabu search [13], Simulated Annealing [14], 
Genetic Algorithms [15] and Memetic Algorithms [16, 17] have been employed to 
solve a variety of educational timetabling problems. Good results have been obtained 
in some specific problems by these approaches. A series of international conferences 
on the Practice and Theory of Automated Timetabling (PATAT) provides a forum for 
a wide variety of research work on timetabling and many relevant publications can be 
found in [18, 19, 20]. 

In real world applications, many timetables are produced by modifying “last year’s 
timetable” to create a solution for the problem in hand. This is because the constraints 
in the new problem do not usually change significantly from the old one. Thus part of 
the previous timetable could be re-used and a significant amount of effort could be 
avoided. This observation provided some of the motivation for our research into CBR 
for timetabling problems. 
 
 



  

1.2 Structured Cases in CBR 
 
The method of using a set of feature-value pairs to represent cases is heavily used in 
most traditional CBR applications [21]. The nearest-neighbour method has been used 
extensively and the similarity is obtained by calculating a weighted sum of the 
individual similarity between every feature-value pair of the case from the case base 
and a new case. However, in some domains, objects in the problems are heavily 
related, such as in the timetabling problem. The constraints between the events 
(exams, courses, meeting, etc) represent relations between objects in the problems. 
These relations affect their solutions significantly. A list of feature-value pairs is 
incapable of giving sufficiently important information about these relations to develop 
a solution. A similarity measure would be limited in reflecting the deeper similarities 
between the problems. Thus the retrieval process may not retrieve strongly similar 
cases in the case base without this important information. The adaptation based on 
these retrieved cases may be very difficult and may take as much effort as solving the 
new problem from scratch. 

Structured cases have been discussed in the literature to represent problems with 
heavily inter-related objects, but no general theory or methodology has been 
identified. In most approaches, cases are represented by trees [23], graphs [24, 25] 
and semantic nets [24]. Many applications deal with the layout/design [26, 27] or 
planning problems [24, 25]. Gebhardt [28] provides more details of most existing 
CBR systems employing structured cases. 

In [22] the authors presented an approach that employed attribute graphs to 
represent course timetabling problems structurally. The relations (constraints in the 
problems) between each pair of objects (courses in the problems) have a significant 
effect on the solution. The attribute graph represents a sophisticated level of 
knowledge about the constraints and the problem. The retrieval is also based on this 
information which is provided to find structurally similar cases for reuse. In this paper 
the proposed structured CBR approach for course timetabling problems is improved to 
deal with a wider range of problems than those dealt with in [22]. Section 2 describes 
the case base, the retrieval and adaptation processes of the proposed system. An 
analysis and discussions on a number of experiments carried out on the system is 
given in Section 3, followed by some concluding comments and directions for future 
work in Section 4. 
 
 

2. The Structured CBR Approach 
 
 
2.1 Modelling Course Timetabling Problems by Attribute Graphs 
 
Attribute graphs were used to represent course timetabling problems structurally in 
[22]. Vertices represent courses and edges illustrate constraints between courses. The 
degree of a vertex is the number of edges adjacent to it. Fig. 1 presents a simple 
example of an attribute graph representing a course timetabling problem. Hard 



  

constraints and soft constraints are indicated by solid and dotted edges respectively. In 
the notation x:y, x is the label and y represents the value of the attribute. Physics, Lab 
and MathA are labelled by 1, indicating that they are multiple courses. Values 2, 3, 2 
give the times they should be held per week respectively. Other courses labelled 0 
(ordinary courses) should be held just once a week. The courses adjacent to edges 
labelled 7 cannot be held simultaneously. Database should be consecutive to Lab if 
possible (the edge between them is labelled 5) and MathA should not be consecutive 
to MathB if possible (the edge between them is labelled 6). The directed edge between 
ComputerA and ComputerB is labelled 4, denoting that ComputerA should be held 
before ComputerB. 
 

Label Attribute Value(s) Notes 
0 Ordinary course N/A Takes place once a week 
1 Multiple course N (No. of times) Takes place N times a week 
2 Pre-fixed course S (Slot No.) Assigned to timeslot S 
3 Exclusive course S (Slot No.) Not assigned to timeslot S 

 
Vertex attributes of course timetabling problems 

 
Label Attribute Values(s) Notes 

4 Before/after 1 or 0 (direction) One before/after another course 
5 Consecutive N/A Be consecutive with each other 
6 Non-consecutive N/A Not consecutive with each other 
7 Conflict N/A Conflict with each other 

 
Edge attributes of course timetabling problems 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A course timetabling problem represented by an attribute graph 
 
 
2.2 The Graph Isomorphism Problem and the Retrieval Algorithm 
 
The problem of finding structurally similar cases in the case base for a new case 
represented by attribute graphs is a graph or sub-graph isomorphism problem. This 
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problem is known to be NP-Complete [29]. The approach we used in [22] was based 
on Messmer’s algorithm [30] in which all the possible (partial) permutations of the 
vertices representing (partial) graphs are stored in a decision tree. Those representing 
the same (sub-)structures are stored under the same node. In a decision tree, each node 
represents an attribute and has one child for each of the attribute’s values [31]. Our 
approach adapted this algorithm to build the case base into a decision tree that 
contains the attribute graphs of all the previous solved cases [22]. Each pair of 
attributes is assigned a value (individual similarities) to indicate how similar they are. 
If this individual similarity exceeds a given threshold, then it reports that these 
vertices or edges are not similar. The retrieval starts from the root node and classifies 
the new case into some nodes in the tree by comparing the permutations of the courses 
in the new case with those stored in the decision tree. Then all the (partial) 
permutations under these nodes have the same (sub-)structures with similar attributes 
of the new cases and will be retrieved to give a solution for the new problem. A 
similarity measure is given by a weighted sum of the individual similarities between 
the pairs of the matched vertices and edges. More details can be found in [22]. 
 
2.3 Retrieval of Structurally Similar Cases 
 
Partially Similar Cases with Differences: The previous retrieval process [22] 
retrieves the graphs of the cases from the case base that are graph or sub-graph 
isomorphic to the new case. However, cases in the case base that have common or 
partially similar (sub-)structures can also be reusable. In the retrieval phase developed 
here, not only the cases that are graph or sub-graph isomorphic to the new case are 
retrieved from the case base, but we also examine (partial) matches with some 
differences. We will describe this broader and more intelligent retrieval process in this 
section. 

Cases in the case base need not contain all the corresponding similar edges in the 
new cases to be reused. For example in Fig. 2, graph B is neither graph nor sub-graph 
isomorphic to graph A shown in Fig. 1. However, graph B can be graph isomorphic to 
graph A if some vertices and edges are inserted. When dealing with difficult real 
world timetabling problems our approach has to be more flexible than just considering 
cases in the case base that are graph isomorphic to the new case. Note we can say that 
graph B is partially similar to graph A. In graph A, not all of its vertices and edges can 
match those of graph C in Fig. 2 (Physics, ComputerA and ComputerB cannot find a 
matching course in graph C). Also, not all of the vertices and edges in graph C can 
find a match with those in graph A (the course labelled with 1:2 with adjacent edges 
illustrated by light lines does not have a matching course with matching edges in 
graph A). These two cases have common parts that are partially similar with each 
other in either vertices or edges. 

In the approach developed here, new cases like graphs B and C can all be seen as 
partially similar (but clearly have some significant differences) to graph A. The 
timetable associated with graph A could be reusable for the cases of graph B and C. 
This approach retrieves a large number of useful cases thus allowing an investigation 
of a much wider range of timetabling problems. 

 



  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Cases partially similar with some differences with case in Fig. 1 

Similarity Measure: The similarity measure takes into account the costs assigned to 
the substitutions, deletions and insertions of vertices and edges labelled with particular 
attributes from or into the new case. Deleting vertices and edges with different 
attributes from the cases in the case base are assigned lower costs than those of 
inserting vertices and edges into them. Also inserting and deleting the edges of hard 
constraints is assigned a higher cost than for the soft constraints. Costs are assigned so 
that the operations of deletion, insertion and substitution on the attribute graphs 
simulate the adaptation steps (explained in the later subsection) on the timetables 
retrieved. Deleting, inserting and substituting the less important vertices and edges has 
less of an effect on adapting the timetables. Thus such cases have lower costs assigned 
because of the need for less adaptation. The similarity measure between new case C2 
and case C1 in the case base is presented in formula (1). 
 

 
(1) 

 
 
The notations in formula (1) represent the following: 

n: number of matched vertices 
m, k: numbers of the vertices or edges needed to be inserted into and deleted from 

C2 respectively 
pi,j: cost assigned for substituting vertex or edge i in C2 with vertex or edge j of C1 
aa, dd: costs assigned for inserting and deleting a vertex or edge labelled with 

attribute into and from C2 
P: the sum of the costs of substitution of every possible pair of vertices or edges in 

C2 to those of C1 
A, D: the sum of the costs of inserting and deleting all of the vertices or edges into 

and from C2 respectively 
We can see that the closer the value S(C1, C2) is to 1, the more similar C1 and C2 are. 
 
Branch and Bound in Retrieval: The retrieval needs to search through the decision 
tree to find all the cases in the case base that are similar to the new case. The size of 
the decision tree storing all the possible permutations of the previous cases may be 
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large, resulting in extensive searching. Thus the retrieval process may be difficult and 
time consuming. Branch and bound [32] is employed to reduce the size of the search 
tree in the retrieval phase. When the permutation of the courses of the new case is 
input into the case base, the retrieval starts from the root node and first searches down 
along the branches as far as possible in the tree that stores the most similar (sub-
)structures. All the possible candidate branches under one node that have a similar 
sub-structure and attributes with the new case are sorted by their summed costs. The 
branches storing the (sub-)structures whose costs exceed the given threshold are 
considered not to be similar to the (sub-)structures of the new cases and are all 
discarded. Thus the size of the search tree for retrieval can be greatly reduced because 
the retrieval does not need to search all the branches in the decision tree. 

Backtracking is used when the retrieval cannot find a complete match. The 
retrieval backtracks to the parent node and the branch that has the lowest cost among 
the remaining branches will be chosen. This process continues until a complete match 
is found. All the complete and partial matches identified during the retrieval will be 
collected for potential adaptation. 

Usually in timetabling problems, the more conflicts a course has with the other 
courses, the more difficult it is to schedule it. All the courses of the new case are 
sorted by their difficulties (here the degrees of the vertices in the attribute graph) in 
decreasing order and input into the decision tree for retrieval. Thus the retrieval 
process can first try to find the match for the more important courses. 
 
Reuse and Adaptation of the Solutions: Adaptation of the timetables of all the 
retrieved cases is performed according to the (partial) matches found. The adaptation 
steps for each retrieved case are: 
1. According to the match found, matched courses are substituted and all the un-

matched courses in the retrieved case are deleted. 
2. All the courses that violate the constraints in the newly formed timetable are 

removed and inserted into an unscheduled list sorted by their difficulties in 
decreasing order. The courses in the new case that are not yet scheduled are also 
inserted into the sorted unscheduled list. 

3. All the courses in the unscheduled list are rescheduled by the graph heuristic 
method described below. 

Different constructive methods can be used to generate the timetables based on the 
partial solutions. The CBR approach presented here employs a simple graph heuristic 
method in the adaptation that is the same as that employed in [33] to construct a 
timetable based on the retrieved cases. It is briefly described below. 
 
1. From the first one that is the most important, the courses in the unscheduled list 

are scheduled to the first timeslot with no violations (penalty-free); 
2. The courses that cannot be assigned to a penalty-free timeslot will be scheduled to 

the timeslots that lead to the lowest penalty after all the others have been 
scheduled; 

3. In the case of a tie, randomly assign the course to the first timeslot available. 
 



  

The best timetable with the lowest penalty is selected as the solution of the new case. 
 
Penalty Function: Every timetable generated for the new case is evaluated by the 
following formula (2): 
 
Penalty = H X 100 + U X 100 + S X 5         (2) 
 
Here H is the number of violations of hard constraints (the clashes between courses) 
and U is the number of unscheduled courses. H and U are assigned a cost of 100 to 
ensure that an infeasible timetable has a high cost. S is the total number of the 
violations of the soft constraints. They are assigned lower costs (at 5) because it is 
desirable to avoid them but not essential when a penalty-free timetable cannot be 
found. In different real-world timetabling problems, soft constraints could have 
different weights. 
 
 
 

3. Experiments with Different Case Bases and Course Timetabling 
Problems 

 
 
To test the computational performance of the system on different case bases, different 
groups of random cases with different features have been defined systematically and 
stored in the case base. The determination of a number of cases needed to build a case 
base is not an easy task. In order to have different case bases we generated cases with 
a range of properties that real-world problems may have. Thus an investigation of the 
system on a range of possible case bases can be carried out. Also different new cases 
are randomly generated so that the general performance of the system can be tested on 
a set of different new cases that the system may meet. 

Case bases with three different types of random cases were produced to solve a 
group of small new cases. These are 15-course simple, 15-course complex and 20-
course simple cases. The complex cases have vertices whose degrees are at the lowest 
1 and at the highest 4. The degrees of vertices in simple cases are at the lowest 1 and 
at the highest 3. The complex cases have more constraints than those simple cases and 
are usually more difficult to solve. The attributes are randomly selected from Tables 1 
and 2. The timetables of these cases are generated by using the graph heuristic method 
and stored in the case base. Small new cases with 5, 10 and 15 courses, also randomly 
generated, are tested to give an easy evaluation on the CBR approach developed. The 
system is developed in C++ and the experiments are run on Pentium 450Mhz PC with 
128MB of RAM under the Windows environment. A schematic diagram of the system 
is given in Fig. 4. 

 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Schematic diagram of the CBR system used for evaluation 

 
3.1 Time and Memory Needed to Build the Decision Tree in the Case Base 
 
In every case base we store 5, 10, 15 or 20 of the three types of cases. Table 1 gives 
the time spent and space needed to build these 12 different case bases. In the notation 
x/y, x gives the time in seconds and y is the number of nodes in the decision tree. 

Table 1. Time spent on building the case base by 15-course simple, 15-course 
complex and 20-course cases 

 5 10 15 20 
15-simple 

15-complex 
20-simple 

5.04/12689 
8.48/23569 

125.85/92449 

12.58/32647 
22.76/58475 

273.84/141163 

16.57/32647 
46.88/93523 

373.09/160887 

24.83/52153 
77.69/132750 

598.36/193473 
 
 
We can see that because the number of permutations grows explosively with the 
number of vertices in the graph, adding 20-course cases into the case base takes much 
more time and space than for both simple and complex 15-course cases. The time and 
number of nodes grows rapidly but not explosively with the number of cases in the 
case base. This is because many of the (partial) permutations of the cases may be 
stored under the node that is built for previous cases if they have the same (sub-
)structures. 
 
 
3.2 Time Spent in Retrieval 
 
Table 2 gives the retrieval time for different new cases from the 12 different case 
bases. The values separated by ‘/’ give the retrieval time (in seconds) in the case base 
with 5, 10, 15 and 20 cases respectively. We can see that the retrieval time changes in 
the same way as that for building the same case bases. 

15-simple cases 20-simple cases 15-complex cases 

new case 
selection 

5-course 
new cases 

15-course 
new cases 

10-course 
new cases 

5, 10, 15 or 20 cases 

Case 
base 

retrieval 
adaptation by 

graph heuristic 
method 

timetable for 
new cases 



  

 

Table 2. Retrieval time in different case bases 

 5-course new cases 10-course new cases 15-course new cases 
15-simple 0.01/0.02/0.03/0.04 0.01/0.02/0.03/0.045 0.01/0.03/0.03/0.05 

15-complex 0.01/0.03/0.2/0.2 0.02/0.04/0.5/0.3 0.02/0.2/0.6/0.3 
20-simple 1.08/2.85/3.86/5.1 2.5/2.9/3.9/4.9 3.1/3.87/4.1/5.2 

 
 
3.3 The Number of New Cases that Find Matches from the Case Base 
 
With too few matched vertices, the retrieved cases cannot provide enough information 
for adaptation. Only matches that have enough courses (here more than half) in the 
retrieved cases are seen as helpful and retrieved for adaptation. From all the retrieved 
cases, a set of the most similar cases is selected as a set of candidates for the 
adaptation. 

To test how many new cases can retrieve cases from the case base with different 
complexity, two groups of experiments were conducted on the case bases storing 
simple or complex 15-course cases. The results are given in Tables 5 and 6 
respectively. The values before and after ‘/’ give the percentages of new cases that 
could retrieve partial and complete matches from the case base respectively. The 
values in parentheses give the overall percentage, as either partial or complete 
matches found. 
 

Table 3. The percentages of new cases that find case(s) from the 15-course simple 
case base 

No. of 15-simple 
cases in case base 

5-course new 
case 

10-course 
new cases 

15-course 
new case 

Average 
percentages 

5 100/100 (100) 100/0 (100) 30/0 (30) 76.67 
10 100/100 (100) 100/0 (100) 70/0 (70) 90 
15 100/100 (100) 100/0 (100) 70/0 (70) 90 
20 100/100 (100) 100/45 (100) 70/0 (70) 90 

 
 

Table 4. The percentages of new cases that find cases from the 15-course complex 
case base 

No. of 15-complex 
cases in case base 

5-course new 
case 

10-course 
new cases 

15-course 
new case 

Average 
percentages 

5 100/100(100) 100/0(100) 35/5(35) 78.3 
10 100/100(100) 100/0(100) 70/5(70) 90 
15 100/100(100) 100/70(100) 85/75(85) 98.33 
20 100/100(100) 100/70(100) 85/80(85) 98.33 

 



  

 
 
It can be seen from Table 3 that all of the 5-course and 10-course new cases can find 
(partial) match(s) from a case base with simple 15-course cases. No complete match 
can be found for new cases with 10 or more courses when the case base consists of 
less than 20 cases. Table 4 shows that storing complex cases in the case base enables 
more new cases to find matches. Higher percentages of larger new cases (10-course 
and 15-course new cases) retrieve cases (complete or partial matches) from the case 
base. 

We can also see that when 10, 15 or 20 simple cases are stored in the case base, 
the same number of new cases (90%) can retrieve matches. Also, the same number of 
new cases (98.3%) can find matched cases in the case bases with 15 or 20 complex 
cases. This is because the attribute graphs of a certain number of cases in the case base 
provide a certain number of different (sub-)structures in the decision tree. Additional 
cases do not provide new (sub-)structures in the decision tree. Attribute graphs of 
complex cases can provide more (sub-)structures, thus more new cases can retrieve 
cases from the case base with more than 10 or 15-course complex cases. 

The effect of storing larger cases with 20 courses in the case base is tested in a 
further experiment and the results are given in Table 5. The overall percentages of 
successful retrievals are higher than those with smaller simple cases but lower than 
those with smaller complex cases. 

Table 5. The percentages of new cases that find cases from the 20-course case base 

No. of 20-simple 
cases in case base 

5-course new 
case 

10-course new 
cases 

15-course 
new case 

Average 
percentages 

5 100/100(100) 100/0(100) 85/0(85) 95 
10 100/100(100) 100/0(100) 85/0(85) 95 
15 100/100(100) 100/0(100) 85/0(85) 95 
20 100/100(100) 100/45(100) 85/0(85) 95 

 
 
Fig. 5 gives a chart of average percentages of new cases that can retrieve case(s) from 
the case base with different numbers of three types of cases. We can observe that 
storing more than 15 complex 15-course cases provides a higher percentage of success 
in retrieval than storing both simple 15-course and simple 20-course cases. By storing 
a sufficient number of complex cases, sufficient (sub-)structures can be stored in the 
decision tree for reuse. It is actually the number of (sub-)structures, not the number 
and size of the cases, that affects the percentage of successful retrievals. Thus it is not 
necessary to store more cases. 
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Fig. 4. Percentage of new cases that retrieve case(s) from different case bases 

 
 
3.4 Adaptation of Retrieved Cases 
 
20 different cases with 5, 10 or 15 courses are tested on the case bases with 5, 10 15 
or 20 of the three types of cases respectively. So altogether 720 (=20×3×4×3) 
experiments were carried out. The graph heuristic method described in Section 3 is 
used in the adaptation to adapt all the retrieved cases and the timetable that has the 
lowest penalty is used as the solution for the new cases. For comparison, the same 
graph heuristic method is also used to generate a timetable from scratch for each new 
case that can retrieve cases from the case base. All the timetables generated by these 
methods are evaluated by using the penalty function given in (2). The number of 
schedule steps needed during adaptation is also taken into account in the comparison. 
The average penalties and schedule steps for these two methods are presented in 
Tables 8, 9 and 10. The y in ‘x/y’ gives the number of schedule steps needed to obtain 
a timetable that has a penalty x. Values in parentheses give the penalty and schedule 
steps of the timetables generated by adapting complete matches for the new cases. 
 

Table 6. Penalties and schedule steps by graph heuristic (GH) and CBR approach 
with different 15-course simple case bases 

5-course new case 10-course new cases 15-course new case No. of 
cases CBR GH CBR GH CBR GH 

5 6/7(6/8) 11/15 22.8/35.8 30.5/45.6 39.2/68 39.2/76 
10 6/6(5/6) 11/15 16.5/30.2 30.5/45.6 33.2/59 36.1/59 
15 6/6(5/6)  11/15 16.5/30.3 30.5/45.6 33/59.8 36.1/69 
20 6/5(5/6) 11/15 17/28(23/40) 30.5/45.6 30/54.3 34/66.1 

 



  

Table 7. Penalties and schedule steps by graph heuristic (GH) and CBR approach 
with different 15-course complex case bases 

5-course new case 10-course new cases 15-course new case No. of 
cases CBR GH CBR GH CBR GH 

5 7/7(6/5) 11/15 19.3/30.5 30.5/45.6 30/49 15/50 
10 6/6(6/5) 11/15 18.5/31.2 30.5/45.6 30/49 15/50 
15 6/6(5/5) 11/15 17/31(28/39) 30.5/45.6 30/60(39/65) 39.7/69 
20 6/6(5/5) 11/15 16/27(28/39) 30.5/45.6 27/61(39/68) 39.7/69 

 

Table 8. Penalties and schedule steps by graph heuristic (GH) and CBR approach 
with different 20-course case bases 

5-course new case 10-course new cases 15-course new case No. of 
cases CBR GH CBR GH CBR GH 

5 6/6.7(5/6) 11/15 16.5/28.7 30.5/45.6 37.9/55 40/66.4 
10 6/6(5/5.5) 11/15 15.8/28.3 30.5/45.6 36.8/55.7 39.4/67 
15 6/6.5(5/5.3) 11/15 16.4/27.3 30.5/45.6 61.7/79.3 53.4/81 
20 6/6(5.3/5.4) 11/15 18/29(10/4) 30.5/45.6 62.2/76.5 46/72.4 

 
From the results shown in Tables 8, 9 and 10 we can see that in all of the experiments 
solving 5-course and 10-course new cases, the timetables constructed by the graph 
heuristic method based on the partial solutions from the proposed CBR approach need 
much fewer scheduling steps and have less penalties than those constructed from 
scratch using the graph heuristic (GH) approach. The knowledge and experiences 
stored in the previously solved problems that are structurally similar to the new 
problems are re-used and not too much effort needs to be taken to get high quality 
results. 

In solving the larger 15-course new cases by the case base with 5 or 10 15-course 
complex cases, the CBR approach finds timetables with higher penalties than those 
from the graph heuristic approach and takes almost the same number of schedule steps 
in adaptation. This is because only storing a small number of (less than 10) complex 
cases cannot provide enough good cases (sub-structures) and the complexity of the 
retrieved cases makes the adaptation difficult. Storing more complex cases provides 
much better results. Also, larger retrieved cases may cause more adaptation because 
more courses in the timetables of these cases may need more adaptation. This is why 
in Table 8 some of the retrieved larger cases provide high penalty timetables for the 
new cases. 

It can also be seen that not all of the timetables adapted from the complete 
matching cases are better than those from the partial matching cases (although most of 
them are much better than those generated by the graph heuristic approach). This 
might be because the larger good structures of the complete matches in the timetables 
are more likely to be destroyed in the adaptations for the new cases.  
 
 



  

4 Conclusions and Future Work 
 
 
The CBR approach described in this paper avoids large amounts of computation and 
provides good results in solving timetabling problems. It shows that the retrieved 
cases that have similar (sub-)structures can provide high quality partial solutions for 
the new cases. This is because by retrieving structurally similar cases from the case 
base, solutions generated on similar constraints may be easily reused for the new case 
without significant adaptations. Timetables constructed by using the graph heuristic 
method on the basis of these partial solutions take less scheduling effort to get lower 
penalty solutions than those constructed by only using the same graph heuristic 
method from scratch. 

The CBR system also shows that storing a certain number of cases in the case base 
can provide the same number of (sub-)structures as those obtained by storing more 
cases. We found that storing a certain number of complex cases works better than 
storing larger or more simple cases for providing the sub-structures for re-use. It is the 
number of (sub-)structures, not the number of cases in the case base that contributes to 
the successful retrieval of partial solutions for adaptation. It is important to build a 
case base with just a certain number of cases because the size of the decision tree 
grows rapidly when the size and the number of the cases in the case base increases. 

The current approach gives promising results on solving relatively small problems. 
This provides a good basis for solving larger problems. Research is now being 
undertaken for solving larger timetabling problems based on the current system. All 
the cases in the current system are produced randomly to test the general performance. 
Tests on real-world specific timetabling problems will also be carried out. Other 
adaptation methods will also be studied in future work. 

It is also likely that this CBR approach in timetabling can be used to solve more 
general problems in other domains that have inter-related objects and that can be 
modelled using attribute graphs. 
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