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Automated Algorithm Design (AutoDes) with Hyper-heuristics
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Automated Algorithm Design (AutoDes)

▶ Decisions to make when designing algorithms

▪ Algorithm specific decisions
▪ Simulated annealing; Tabu search; Variable neighbourhood search
▪ Genetic algorithms; Estimation of distribution algorithm
▪ Swarm Intelligence
▪ Heuristics / operators
▪ And some more …
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Automated Algorithm Design (AutoDes)

▶ Decisions to make when designing algorithms

▪ Problem specific decisions
▪ Operators
▪ Solution representation
▪ Evaluation function

▪ General decisions
▪ Initialisation
▪ Stopping condition
▪ Acceptance criteria
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▶ Recent / advanced research developments

▪ Integration of other computational intelligence techniques
▪ Hybridisation of evolutionary and local search algorithms
▪ Machine learning and optimisation
▪ Data-driven optimisation
▪ Hyper-heuristics
▪ And many more …

Automated Algorithm Design (AutoDes)
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▶ Recent / advanced research developments

▪ Automated algorithm design, w.r.t. decision space (of algorithm design) [Qu20]
▪ Automated composition: components of algorithms
▪ Automated configuration: parameter selection/setting
▪ Automated selection: given algorithms

Automated Algorithm Design (AutoDes)
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▪ Search space: parameter configurations of target algorithms
▪ Objective: To automatically configure parameters of pre-defined target algorithms offline 

against a given set of training instances
oTarget algorithms: stochastic local search [Pag19], multi-objective evolutionary algorithms [Lop12]
oParameters: numerical, categorical
oCOPs: TSP, VRP, flowshop scheduling problems

▪ Platforms: automatically search for the configuration of parameter space for target 
algorithms
oParamILS1: [Hut09]
oF-Race/I-Race2: [Bir10]

1. http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
2. http://iridia.ulb.ac.be/irace/

Automated Algorithm Design (AutoDes)

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
http://iridia.ulb.ac.be/irace/
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▪ Search space: a family/portfolio of algorithms/solvers
▪ Objective: according to the grouping/clustering of a set of training instances against 

certain features, to automatically select from the given target algorithms offline
oTarget algorithms: evolutionary algorithms [Aka17], solvers [Liu19]
oCOPs: TSP, function optimisation

▪ Platforms
oPopulation-based Algorithm Portfolios (PAP): [Tan14]
oHydra: [Xu10]

Automated Algorithm Design (AutoDes)
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▪ Search space: a set of basic building blocks/components of algorithms
▪ Objective: To automatically compose new algorithms online by searching for the best 

composition of components for solving the given problem instances online
oTarget algorithms: evolutionary algorithms [Bez14], general new algorithms, i.e. hyper-heuristics 

[Bur13,Pil18]
oCOPs:  timetabling, NRP, TSP, job shop scheduling, VRP

▪ Platforms:
oHyFlex: [Bur11]
oEvoHyp:  timetabling, NRP, TSP, VRP, etc. [Pil17]

Automated Algorithm Design (AutoDes)
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▪ “A high-level approach that, given a particular problem instance and a number of low-level 
heuristics, can select and apply an appropriate low-level heuristic at each decision point” 
[Bur13]

▪ Objective: to find
▪ the right high-level method or sequence of easy-to-implement low-level heuristics in a given 

situation, rather than trying to solve the problem directly
▪ an adequate combination of the provided components to effectively solve the given problem(s)

▪ Platforms:
oHyFlex: [Bur11]
oEvoHyp:  timetabling, NRP, TSP, VRP, etc. [Pil17]

AutoDes – Hyper-heuristics
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▪ Low level heuristics: Constructive

▪ Build solutions incrementally
▪ Education timetabling (graph coloring), production scheduling (dispatching rules)
▪ Bin packing (heuristic rules), workforce scheduling (resource selection)
▪ Constraint satisfaction (variable ordering), VRP (both constructive and perturbative)

▪ Research issues
o Two search spaces
o Landscape analysis on heuristic space

AutoDes – Selection Hyper-heuristics
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▪ Low level heuristics: Perturbative

▪ Improves candidate solutions
▪ Heuristic selection, acceptance criteria

▪ Research issues
oOnline learning
oReinforcement learning

oCross Domain Heuristic Challenge (CHeSc)
oHyFlex

AutoDes – Selection Hyper-heuristics
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▪ Learning to select an appropriate / elite set of low-level heuristics / components

▪ Online learning
▪ Different low level heuristics effective at different stages
▪ Step-by-step reduction during the search, snapshot performance

▪ Offline learning
o Evaluation of collective / accumulative performance
o Statistical analysis, landscape probing

AutoDes – Selection Hyper-heuristics
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▪ Learning to select / compose low-level heuristics / components

▪ Online learning
▪ Select / predict the most suitable low level heuristics based on their performance during the search
▪ Reinforcement learning: Markov chain / models, choice function
▪ States: problem-specific features, general / problem independent features

▪ Offline learning
o Choose low-level heuristics or acceptance criteria based on

offline training
o Classification models, logistic regression, neural networks,

apprenticeship learning, etc.

AutoDes – Selection Hyper-heuristics
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Modelling and Learning in Automated Algorithm Composition
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▶ General Combinatorial Optimisation Problem
▪ Decision variables: algorithmic components a

▶ GCOP methods
▪ Search for algorithmic components a

to find algorithmic compositions c in an algorithm space C
c match direct solutions s in the solution space S for p

▪ Automated algorithm composition

GCOP Space C Solution space S
Encoding Compositions c upon a ∈ A Direct solutions s ∈S on p

Upper 
Bound

Depends on |A| and parameters of 
a ∈ A

Depends on the number of 
variables in s for p

Operator Any methods composing a into c Search operators on s ∈ S

Objective 
Function

Performance of c that produces s Solution quality of s ∈ S for p

GCOP, c ∈ C

compose

operate upon

GCOP methods

p, s ∈ S

AutoDes – The GCOP Model



19

▶ The algorithmic compositions c ∈ C are measured by objective function F(c) → R
The direct solutions s ∈ S are measured by objective function f(s) → R

▶ s are obtained using c, i.e. c → s
Let matching function M: f(s) → F(c)

▶ The objective of GCOP: to find optimal c* GCOP, c ∈ C

compose

operate upon

GCOP methods

p, s ∈ S

AutoDes – The GCOP Model
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▶ Modelling of VRP and NRP algorithms

AutoDes – The GCOP Model
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▶ General Search Framework [Yi22]
▪ Automated Algorithm Composition

AutoDes – The Framework
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▶ Learning on automated algorithm composition [Men22]

AutoDes – The Framework
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▶ Within unified algorithm design framework 
▪ Learning on heuristic / components compositions

▪ Search space and landscape analysis of high level heuristic compositions c
▪ High level heuristic compositions c: one-dimensional string

▪ Easy to measure distances / differences: simpler solution encoding

▪ Distribution of costs for local optimal c

▪ Fitness distance correlation (fdc) of local to global optimum

AutoDes – Fundamental Issues
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▶ Theory
▪ Modelling and standardisation of algorithm design
▪ General framework / platforms
▪ Search space / landscape analysis
▪ Common problem representation / encoding

▶ Machine learning + optimisation
▪ Hidden patterns / new knowledge
▪ Reusability and interpretability

AutoDes – Future Research
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