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Automated Algorithm Design (AutoDes) with Hyper-heuristics
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Automated Algorithm Design (AutoDes) S

» Decisions to make when designing algorithms

= Algorithm specific decisions
= Simulated annealing; Tabu search; Variable neighbourhood search
= Genetic algorithms; Estimation of distribution algorithm
= Swarm Intelligence
= Heuristics / operators
= And some more ...

IEEE
Computational

\. : Q!,%t?z'fem ¢ IEEE




Automated Algorithm Design (AutoDes) S

» Decisions to make when designing algorithms

= Problem specific decisions = General decisions
= Operators = |nitialisation
= Solution representation = Stopping condition
= Evaluation function = Acceptance criteria
IEEE
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Automated Algorithm Design (AutoDes) S

» Recent / advanced research developments

= Integration of other computational intelligence techniques
= Hybridisation of evolutionary and local search algorithms

Data-driven optimisation
Hyper-heuristics
And many more ...
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Automated Algorithm Design (AutoDes) S

» Recent / advanced research developments

= Automated algorithm design, w.r.t. decision space (of algorithm design) [Qu20]
= Automated composition: components of algorithms
= Automated configuration: parameter selection/setting
= Automated selection: given algorithms
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Automated Algorithm Design (AutoDes) S

- Search space: parameter configurations of target algorithms

- Objective: To automatically configure parameters of pre-defined target algorithms offline
against a given set of training instances
o Target algorithms: stochastic local search [Pag19], multi-objective evolutionary algorithms [Lop12]
oParameters: numerical, categorical
oCOPs: TSP, VRP, flowshop scheduling problems

Platforms: automatically search for the configuration of parameter space for target
algorithms

oParamILS!: [Hut09]

o F-Race/I-Race?: [Bir10]

1. http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/
2. http://iridia.ulb.ac.be/irace/
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Automated Algorithm Design (AutoDes) S

- Search space: a family/portfolio of algorithms/solvers
- Objective: according to the grouping/clustering of a set of training instances against
certain features, to automatically select from the given target algorithms offline

o Target algorithms: evolutionary algorithms [Akal7], solvers [Liu19]
o COPs: TSP, function optimisation

- Platforms
o Population-based Algorithm Portfolios (PAP): [Tan14]
oHydra: [Xu10]
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Automated Algorithm Design (AutoDes) S

- Search space: a set of basic building blocks/components of algorithms
- Objective: To automatically compose new algorithms online by searching for the best
composition of components for solving the given problem instances online
o Target algorithms: evolutionary algorithms [Bez14], general new algorithms, i.e. hyper-heuristics
[Burl3,Pil18]
oCOPs: timetabling, NRP, TSP, job shop scheduling, VRP

Platforms:
oHyFlex: [Burll]
oEvoHyp: timetabling, NRP, TSP, VRP, etc. [Pil17]
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AutoDes - Hyper-heuristics

- “A high-level approach that, given a particular problem instance and a number of low-level

heuristics, can select and apply an appropriate low-level heuristic at each decision point”

[Burl3]
- Objective: to find

= the right high-level method or sequence of easy-to-implement low-level heuristics in a given
situation, rather than trying to solve the problem directly

= an adequate combination of the provided components to effectively solve the given problem(s)

- Platforms:
oHyFlex: [Burll]
oEvoHyp: timetabling, NRP, TSP, VRP, etc. [Pil17]
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AutoDes - Selection Hyper-heuristics

- Low level heuristics: Constructive

= Build solutions incrementally

= Education timetabling (graph coloring), production scheduling (dispatching rules)

= Bin packing (heuristic rules), workforce scheduling (resource selection)

= Constraint satisfaction (variable ordering), VRP (both constructive and perturbative)

= Research issues
o Two search spaces . : N A ol
5 Landscape analysis on heuristic space Feedback . Nature of the heuristic search space
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AutoDes - Selection Hyper-heuristics

- Low level heuristics: Perturbative

= Improves candidate solutions
= Heuristic selection, acceptance criteria

= Research issues
o Online learning
o Reinforcement learning

Feedback ' Nature of the heuristic search space

o Cross Domain Heuristic Challenge (CHeSc) : .
o HYFleX Heuristic selection construction
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AutoDes - Selection Hyper-heuristics

- Learning to select an appropriate / elite set of low-level heuristics / components

= Online learning
= Different low level heuristics effective at different stages
= Step-by-step reduction during the search, snapshot performance

= Offline learning
o Evaluation of collective / accumulative performance
o Statistical analysis, landscape probing

Feedback ' Nature of the heuristic search space
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AutoDes - Selection Hyper-heuristics

- Learning to select / compose low-level heuristics / components

= Online learning
= Select / predict the most suitable low level heuristics based on their performance during the search
= Reinforcement learning: Markov chain / models, choice function
= States: problem-specific features, general / problem independent features

= Offline learning
o Choose low-level heuristics or acceptance criteria based on

Ofﬂine training Feedback ' Nature of the heuristic search space
o Classification models, logistic regression, neural networks, g e s T
apprenticeship learning, etc. _ ; S heuristics
()”]',”C Methodologies to select
learning perturbation
Hyper- heuristics
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Modelling and Learning in Automated Algorithm Composition
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AutoDes — The GCOP Model

» General Combinatorial Optimisation Problem

= Decision variables: algorithmic components a
» GCOP methods GCOP methods

= Search for algorithmic components a
to find algorithmic compositions ¢ in an algorithm space C COMpose
¢ match direct solutions s in the solution space S for p

= Automated algorithm composition

<=
<=

operate upon

GCOP Space C Solution space S i ]
Encoding | Compositions cupon a € A Direct solutions seSon p
Upper Depends on |A| and parameters of | Depends on the number of
Bound aeA variables in s for p

Operator | Any methods composing ainto ¢ Search operatorson se S

Objective | Performance of cthat produces s | Solution quality of s e Sfor p
Function
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AutoDes — The GCOP Model

» The algorithmic compositions ¢ € C are measured by objective function F(c) 2 R
The direct solutions s € S are measured by objective function f(s) > R

GCOP methods

» Sare obtained usingc, i.e.c 2> s
Let matching function M: f(s) = F(c) compose

<=
<=

» The objective of GCOP: to find optimal c*

F(c*|lc" — s") + f(s) =min(f(s)) Oierate Uion
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AutoDes — The GCOP Model

» Modelling of VRP and NRP algorithms

a € Ai.0 in GCOP for VRP
h1l.,, h1: selection criteria/heuristics

a€ Alg

a in GCOP for solving NRP

h1l,: selection criteria such as the
cost of constraint violations, shift type
balance, etc.

Oins(kshIWahlb)

greedy, insertion [30]: insert k nodes
chosen by hl,, to a route chosen by
h1.

Ochg(kahlw ’hlb)

change shift: use h1l, to change the
shift type of k£ nurses chosen by Al,,.

Ochg(k),hlw,hlb)

shift [31]: use h1, to change k nodes
selected by hl,,.

Ol;gqé]hg(ka k},hlw)

swap shifts: swap k shifts between
two nurses chosen by hlq,.

Ozchg(km,hly)

k-opt [31], interchange, Van Breedam
[32]: swap k and m nodes selected

Orr(k,hlw,hlb)

ruin and recreate: use hly to reassign
all k shifts of a set of nurses chosen
by hly.

Omo(k,m,th)

crossover: exchange sub-routes of k
and m nodes between two solutions
chosen by h2.
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Orr(k,hlw,hlb)

destroy and repair: remove k nodes
chosen by hl,,, and re-assign them
using hly.
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AutoDes - The Framework

» General Search Framework [Yi22]
= Automated Algorithm Composition

TABLE 1
COMPONENTS WITHIN THE GENERAL SEARCH FRAMEWORK

Initialization

Current Population l

A

Selection for Evolution

Parent Population l

Evolution

Offspring Population l Personal Archieve

Selection for
Replacement

Component Criteria
Initialization random, problem-specific heuristics
Selection for evolution probability-based operators, deterministic
operators
Evolution mutation, crossover
Selection for replacement  comma-selection, plus-selection
Termination time, convergence
. IEEE
Computational

Intelligence
2 Society

Termination?

. General search framework

[nput:
Heuristic set /
Operator set

Initialization heuristic set:

h h

r 1

Selection heuristic set H g,

hl h: 113 /74 hS h()

Evolution operator set O,
O('hg in O('hg bw Oins in onmupl’ y
Oins_bw Oruin_recreate  Otwoopt

Selection heuristic set H g,

/17 h 3

Termination criteria

hoh

Qutput:

Combination of heuristics
and operators




AutoDes — The Framework

» Learning on automated algorithm composition [Men22]
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AutoDes — Fuhdamental Issues

» Within unified algorithm design framework
= Learning on heuristic / components compositions
= Search space and landscape analysis of high level heuristic compositions ¢
= High level heuristic compositions c: one-dimensional string
= Easy to measure distances / differences: simpler solution encoding
= Distribution of costs for local optimal ¢
= Fitness distance correlation (fdc) of local to global optimum

heco2 I, FDC local optma




AutoDes - Future Research

» Theory
= Modelling and standardisation of algorithm design
= General framework / platforms
= Search space / landscape analysis
= Common problem representation / encoding

» Machine learning + optimisation
= Hidden patterns / new knowledge
= Reusability and interpretability
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