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ABSTRACT. Harmony Search Algorithm (HSA) is a relatively new nature-inspired 

algorithm. It evolves solutions in the problem search space by mimicking the musical 

improvisation process in seeking agreeable harmony measured by aesthetic standards. The 

Nurse Rostering Problem (NRP) is a well-known NP-hard scheduling problem that aims at 

allocating the required workload to the available staff nurses at healthcare organizations to 

meet the operational requirements and a range of preferences. This work investigates research 

issues of the parameter settings in HSA and application of HSA to effectively solve complex 

NRPs. Due to the well-known fact that most NRPs algorithms are highly problem (or even 

instance) dependent, the performance of our proposed HSA is evaluated on two sets of very 

different nurse rostering problems. The first set represents a real world dataset obtained from 

a large hospital in Malaysia. Experimental results show that our proposed HSA produces 

better quality rosters for all considered instances than a genetic algorithm (implemented 

herein). The second is a set of well-known benchmark NRPs which are widely used by 

researchers in the literature. The proposed HSA obtains good results (and new lower bound 

for a few instances) when compared to the current state of the art of meta-heuristic algorithms 

in recent literature.  

 

Keywords: Harmony search, Meta-heuristic, Timetabling and Personnel scheduling  

 

1. INTRODUCTION 

Nurse rostering problems (NRPs) are highly constrained combinatorial problems which are 

difficult to be solved to optimality [1]. Scheduling the nurses at healthcare organizations is a 

challenging task. Extra care needs to be taken as personnel of healthcare organizations 

consume about 40% of hospital budgets [2]. Bad or inflexible duty roster can affect the 

personal life of staff nurses, increase job dissatisfaction, and thus result in high staff turnover. 

These have a direct impact on the nursing services provided to patients [3, 2]. Based on the 

literature in NRPs, a lot of big healthcare organizations around the world still construct 

nurses’ duty roster manually [3-5]. This raises the challenge for researchers to propose and 

investigate automated solution methodologies to solve this problem.  

 

Various methods have been proposed to solve NRPs, including exact methods, meta-

heuristics and others [3]. Although exact methods (mathematical based models) can obtain 

optimal solutions, they showed to be highly inflexible in solving large scale optimization 

problems due to the computational time required. Meta-heuristic approaches which are able 

to produce solutions of good quality for difficult combinatorial optimization problems within 

a reasonable computational time are thus usually preferable as the solution methodology [3]. 

Meta-heuristics refer to the approaches that mimic some of the natural and artificial 
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phenomena that combine “rules of thumb” and randomness to solve difficult problems [6, 7]. 

Well-known examples of meta-heuristic algorithms include genetic algorithms (GAs), 

simulated annealing (SA), tabu search (TS), to name a few [7] . During the last few decades, 

meta-heuristic approaches and their hybrids have been successfully applied to solve NRPs 

[3].  

 

NRPs have gained the interest of many researchers for more than four decades [3]. Several 

comprehensive surveys [3, 8, 9] have reviewed a large number of published papers on NRPs. 

NRPs are well known over-constrained problems [9, 10]. They are very difficult to solve 

manually due to their nature of large number of often conflicting objectives that must be 

taken into consideration while constructing the duty roster, i.e. different types of nurses, 

different shift types, different coverage demand of shifts each day, popular/unpopular shifts 

and many more issues [3, 11]. Many optimization algorithms have been proposed to solve 

NRPs with different constraints. Some showed to be superior in solving some of the instances 

but not the others. Various population based and local search based meta-heuristic algorithms 

developed to solve NRPs include GAs [12, 13], TS [14, 15], SA [16, 17] and many others. In 

[18], the performance of scatter search algorithm and memetic algorithm (population-based) 

were better compared to variable neighborhood search and tabu search algorithms (local 

search-based) when tested against the presented benchmark datasets. This encouraged us to 

investigate the use of other population-based methods for NRPs.  

 

In this work, we adapt harmony search algorithm (HSA), which was developed by Geem et al 

[19] to solve combinatorial optimization problems, to solve NRPs. It mimics the analogy of 

the natural process of musical improvisation that searches for suitable musical notes. The idea 

is adapted in the search process for solving optimization problems [19]. HSA can be 

categorized as a recent evolutionary algorithm and showed to be efficient in solving difficult 

optimization problems such as university course timetabling [20], vehicle routing [21], 

Sudoku Puzzle [22], and many others [23-27].  

 

Compared to the traditional optimization methods, HSA has some features that motivate our 

investigation to solve NRPs. These include [28]: (i) HSA has few parameters that need to be 

tuned and thus could be easily adapted to different NPRs or instances. These parameters do 

not require too much tuning effort to obtain high quality solutions [29]. (ii) HSA is a 

stochastic random search method. (iii) HSA overcomes the drawback of building block 

theory of GAs by considering all existing solutions, whilst GAs consider only two solutions 

(parents) in reproduction [29]. To our knowledge, there is only limited published work on 

HSA to solve NRPs [30], where a basic HSA has been evaluated on only the small instances 

established by the International Nurse Rostering Competition 2010 (INRC2010). How HSA 

will perform on large or complex NPRs instances has not been investigated. In addition, the 

parameter values of HSA in [30] were arbitrary chosen. It is well known that the performance 

of many population based methods is highly dependent on its parameter values [31]. 

Therefore, the aim of this work is to address research issues in applying HSA to NRPs by 

intensive investigations on suitable parameter values and performance evaluation on a large 

number of instances of problems with different size and complexity. 

 

In order to reduce the gap between practical problems and academic theories, a real world 

dataset obtained from a large hospital in Malaysia (UKMMC) is used to assess the 

performance of the proposed HSA. The performance of HSA is also evaluated on the nurse 

rostering benchmark problems (www.cs.nott.ac.uk/~tec/NRP/) [32]. Computational results on 

both problems demonstrate the efficiency and effectiveness of the proposed HSA in 

http://www.cs.nott.ac.uk/~tec/NRP/
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producing high quality solutions in a shorter time compared to a basic genetic algorithm for 

the UKMMC problem, and obtaining good results compared to some existing meta-heuristic 

algorithms for the same benchmark NRPs. For more resources and application areas of HSA, 

please refer to [33, 34]. 

 

The rest of the paper is organized as follows. Section 2 presents the problem description. The 

proposed harmony search algorithm is presented in Section 3. Section 4 presents the 

computational results and analysis.  Finally, concluding remarks are presented in Section 5. 

 

 

2. PROBLEM DESCRIPTION 

NRPs can be defined as allocating the workload to the available staff nurses at healthcare 

organizations to meet the operational requirements [3]. More precisely, given a set of nurses 

of specific categories, a set of pre-defined periods (shifts) on a working day, and a set of 

working days; the aim is to assign each nurse to specific planning periods satisfying some 

constrains (known as hard and soft constraints). Hard constraints are mandatory whereas soft 

constraints can be violated if necessary [3, 9].  The quality of the generated roster can 

therefore be assessed based on how many soft constraints have been satisfied. Due to the 

variety in hard and soft constraints, which are different from one organization to another, the 

modeling and implementation process present to be challenging tasks, as a unique general 

mathematical model to accommodate all related constraints does not exist [35] [1,3,9]. As a 

result, different instances require different implementations and configurations in designing 

the algorithms. There are, however, a group of problems represented with a common XML 

structure but associated with different constraints and objectives [26]. Some effort has also 

been made in the literature to construct relatively general frameworks [31, 32]. Therefore, in 

this work we have attempted to solve real world and benchmark NRPs because we believe 

that HSA can be applied to solve a wide range of NRPs. The descriptions of the two problems 

concerned are provided as follows.  

 

2.1 The UKMMC Nurse Rostering Problem 

To bridge the gap between academic research and real world practice, this work considers 

eight different rostering problem scenarios faced by UKMMC, see Table 6 in Section 4.1. 

UKMMC is a Malaysian public hospital with more than 1400 nurses working around the 

clock [36]. In this section, the list of hard and soft constraints, the evaluation function and 

constraint weightings are discussed. For more details about the problem at UKMMC, we 

refer readers to our previous work in [16, 36]. 

 

(i) Hard Constraints  

For the UKMMC NRP, we have identified the following hard constraints: 

 

(HC1) The coverage demand for each shift type must be fulfilled. Under staffing is not 

allowed. 

(HC2) All nurses work at most one shift per day. 

(HC3) One senior nurse must be allocated for every shift type. 

(HC4) An isolated working day is prohibited. That is a working day with a day off before and 

after the day is not allowed. 
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(HC5) Within each 14 days, the maximum working days are 12 days whilst the minimum are 

10 days. 

(HC6) Each nurse works no more than 4 consecutive working days. 

(HC7) Night shift must be in the form of 4 consecutive night shifts followed by two days off.  

 

(ii) Soft Constraints 

Soft constraints reflect the general preferences of staff nurses and hospital’s requirements at 

UKMMC. The quality of the constructed duty roster is dependent on how far we can satisfy 

those soft constraints. The weights (importance) of soft constraints in the UKMMC NRP are 

described in Table 1.  

 

Table 1 The weights of soft constraints 
 Soft Constraints Penalty 

(SC1) Assigns equal number of working days and days off to all staff nurses during the 

rostering period, i.e. fairness 

100 

(SC2) Assigns each nurse at least one day off in the weekends during the rostering period 100 

(SC3) Assigns four consecutive morning shifts followed by one day off 10 

(SC4) Assigns four consecutive evening shifts followed by one day off 10 

(SC5) Assigns either a day off (O) or an evening (E) shift after two days off that follow the 

night (N) shift pattern, i.e. (NNNNOOE) or (NNNNOOO) 

1 

 

For the UKMMC dataset we have four desirable patterns (DPs). These patterns are the 

patterns that are not violating any of the hard constraints or soft constraints. The more the 

DPs are given to the nurses the more the nurses’ preferences will be satisfied. These desirable 

patterns are MMMMo, EEEEo, NNNNooo and NNNNooE.  

 

(iii) The Objective Function and Constraint Weightings 

Mostly, the main goal of solving NRPs is to efficiently utilize the available staff nurses by 

producing a well-balanced duty roster that also satisfies nurses’ preferences (in general) [37]. 

The objective function of this work is to minimize the total penalty of soft constraint 

violations while making sure all hard constraints are satisfied. Each soft constraint is 

associated with a weight that represents its importance. Constraints with higher weights are 

more important to be satisfied, thus cause higher penalty if violated. One of the issues 

regarding setting the weights of constraints in NRPs is that, there are no standard weights to 

be given for each soft constraint. This is due to the wide range of constraints that are different 

from one hospital to another. Therefore, like in [12, 38], we have assigned weights for our 

soft constraints based on the consultation with the head nurses in different wards at 

UKMMC. Table 1 presents the weight of each soft constraint. 

 

2.2 Benchmark NRP Problems 

The second set of NRPs are taken from the NRP benchmark web site [32] to validate our 

results against the existing literature. Since there are too many NRP datasets from different 

universities and different hospitals around the world, testing all these datasets become a 

tedious and difficult task. The reasons behind choosing the datasets in this paper are as 

follows: (i) in the literature these datasets have been widely studied using other meta-

heuristic algorithms, (ii) the best known results are publicly available, and (iii) the various 
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difficulties of these benchmark datasets with different number of nurses, days and shift types, 

etc., provide an excellent test bed for evaluating algorithm performance.  

 

Each problem of the selected dataset can be seen as a new and different optimization problem 

rather than different instances with different size, see Table 13 in Section 4.2. This is mainly 

because each problem is derived from a different organization, with different constraints, 

rules and requirements. The common feature between these problems is that some constraints 

appear in most of the problems. Due to the variety of problem constraints, standard 

mathematical model for all instances does not exist [3]. Therefore, the problem description, 

mathematical formation and the objective function of the considered problems are taken from 

[39] and the implementation was based on the framework introduced in [40]. Please note that 

in the literature, no work has tested all problems at [32]. Most of the algorithms are evaluated 

on a single or several problems at the web site. 

 

3.  THE HARMONY SEARCH ALGORITHM FOR NRPS 

HSA is one of the population-based meta-heuristic algorithms, inspired by musical 

improvisation [41]. In music performance, each musician plays one musical note at a time. 

Those musical notes are combined together to form a harmony, measured by aesthetic 

standards. In optimization, each variable during the optimization process is assigned a value 

at a time; those values all together form a solution for the considered problem, evaluated by 

the objective function [33].  

 

Similar to a group of musicians developing their harmonies iteratively, HSA improves 

solutions iteratively based on good candidate solutions from the initial population, i.e. the 

harmony memory  [19]. It carries out a stochastic random search on the solution, i.e. a vector 

of decision variables, via a number of improvisations.  The harmony memory is updated 

between improvisations. At each improvisation, stored values of decision variables in the 

harmony memory are adapted according to a considering rate. Variable values in the solution 

are adjusted according to a pitch adjusting rate. HSA does not require any starting values of 

the decision variables nor does it require complex derivatives to adjust the variable values for 

the new generated solutions [29]. Motivated by these features, this work adapts HSA for 

NRPs. The procedure of HSA has the following five main steps:  

 

Step 1: Initialize the parameters of HSA.  

Step 2: Build the harmony memory (HM).  

Step 3: Improvise new solutions.  

Step 4: Update the harmony memory (HM).  

Step 5: Repeat steps 3 and 4 until reaching the stopping criteria.  

Each of these mentioned steps in our proposed HSA will be discussed in details in the 

following subsections. 

 

3.1  Initialize the Parameters of HSA 

In step 1, HSA parameters are initialized as follows: 

 

1. Harmony memory size (HMS) is the number of solutions that are stored in the HM. HMS 

is similar to the population size in genetic algorithms. 
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2. Harmony Memory Considering Rate (HMCR) is used during the improvisation process to 

decide whether the variables of the solution should take the value of any one in HM. 

HMCR takes a value in the range [0, 1]. It is similar to the crossover rate in genetic 

algorithms. For example, if HMCR is 0.9 it means that the probability of choosing the 

value of the variable from HM is 90%; whilst the probability of choosing a value 

randomly from the domain of the variable is 10%, i.e. (1 – HMCR). In our case, the 

domain of the variable refers to all the possible shift patterns that HSA can choose from. 

Selecting a random value for the variable at probability of (1 – HMCR) is similar to the 

mutation operator in genetic algorithms. 

3. Pitch Adjusting Rate (PAR) is also used during the improvisation process to decide 

whether the variable of the solution should be changed to a neighbor value. PAR takes a 

value in the range [0, 1]. The amount of change is determined by the bandwidth to move 

the solution from one neighbor to another. The value of the bandwidth is randomly 

chosen from its domain, and used to change one shift pattern for a nurse.  For example, if 

PAR is 0.3 it means that the probability of changing the variable value is 30%; whilst 

70%, i.e. (1 – PAR), is the probability of keeping the variable without any change. PAR is 

similar to a local search algorithm which accepts only improving solutions.  

4. The maximum number of improvisations (NI) in the search represents the number of 

iterations in HSA.  

 

In this work, we investigate the suitable values for HSA parameters including HMS, HMCR, 

PAR and NI. 

 

3.2  Build the Harmony Memory (HM) 

In Step 2, a set of initial solutions of size HMS are generated to construct the HM. HM is 

represented by a matrix of two dimensions. Rows compromise a set of solutions x
i
 (duty 

rosters), whilst columns compromise the variables of each solution (nurses). Each solution x
i
 

can be seen as a one dimensional array. The size of the array is the maximum number of 

nurses in the considered problem instance. For highly constrained NP-hard problems the 

solution space is very huge and the possible solutions vary significantly [42]. One way to deal 

with this huge solution search space is to divide and conquer, i.e. decompose the problem into 

sub-problems and treat each part separately and then combine these parts in the final stage 

[37, 43, 44]. In this work, the initial solutions for the UKMMC instances are generated by 

decomposing the problem into sub-problems [29][34]. These sub-problems are generated and 

solved by the following steps:  

 

I. Generate all valid 2-day and 3-day shift patterns for all shift types (morning (M), 

evening (E), night (N) and day off (o)). See Tables 2 and 3 for all valid 2-day and 3-day 

shift patterns, respectively.  

 

Table 2 All of 2-day valid shift patterns 

No. Pattern No. Pattern No. Pattern No. Pattern 

1. oo 4. oN 7. ME 10. No 

2. oM 5. Mo 8. Eo 11 NN 

3. oE 6. MM 9. EE   

 

Table 3 All of 3-day valid shift patterns 
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No. Pattern No. Pattern No. Pattern No Pattern No. Pattern 

1. ooo 7. MMM 13. Eoo 19. EoN 25. EoE 

2. ooM 8. oEE 14. EoM 20. Noo 26. NNN 

3. oMM 9. MoE 15. EEE 21. NNo    

4. Moo 10. MME 16. ooN 22. oME   

5. MoM 11. MEo 17. oNN 23. EEo   

6. MMo 12. MEE 18. MoN 24. ooE   

 

II. Combine the generated 2-day and 3-day shift patterns to form one-week valid patterns. 

This combination is based on the restriction list of one-week time or fewer numbers of 

days that affect one nurse only (see Figure 1).  

 

 

Figure 1. Combine three shift patterns to form a one-week shift pattern 

Table 4 shows some examples of one-week valid shift patterns after we combined two 2-day 

and 3-day shift patterns. Table 5 shows the possible one-week patterns. In the literature, shift 

patterns have been used to effectively construct rosters in highly constrained nurse scheduling 

problems [32, 38, 43]. 

 

Table 4 Example of one-week valid shift patterns 

No. Pattern No. Pattern No. Pattern No. Pattern 

1. MMMMooo 3. NNNNooo 5. ooEEEEo 7. oNNNNoo 

2. EEEEooo 4. oMMMMo 6. ooMEEMo   

 

Table 5 The possible one-week valid patterns 
 First week Second week 

P1 N N N N o o A A A A A A A A 

P2 o N N N N o o A A A A A A A 

P3 A o N N N N o A A A A A A A 

P4 A A o N N N N o o A A A A A 

P5 A A A o N N N N o o A A A A 

P6 A A A A o N N N N o o A A A 

P7 A A A A A o N N N N o o A A 

P8 A A A A A A o N N N N o o A 

P9 A A A A A A A o N N N N o o 

P10 A A A A A A A A o N N N N o 

P11 A A A A A A A A A o N N N N 

P12 A A A A A A A A A A o N N N 

P13 A A A A A A A A A A A o N N 

P14 A A A A A A A A A A A A o N 

P15 N o o A A A A A A A A A A A 

P16 N N o O A A A A A A A A A A 

P17 N N N O o A A A A A A A A A 

P18 A A A A A A A A A A A A A A 

A: any (Morning, Evening or day off), N: night, o: day off 

NNN No oo 

NNNNooo 
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In this work, a list of valid shift patterns that satisfy the imposed hard constraints are created.  

Each shift pattern represents a schedule of a working week. For the required two-week 

working period in UKMMC, in a solution vector x
i
, two one-week valid shift patterns are 

allocated for each nurse. Based on the objective function values the candidate solutions in the 

HM are sorted in an ascending order. Figure 2 presents the pseudo code of building the HM. 

 
Building the Harmony Memory (HM) for the UKMMC problem 

begin  

      for i = (1 to HMS) do 

         x
i
 = ø; 

           for j = (1 to n) do /* n is the number of nurses */ 

       choose two shift patterns randomly from the shift patterns pool for nurse j 

        endfor 

        calculate the objective function value f(x
i
) 

           add x
i 
 to HM 

        endfor 

      sort the solutions based on its objective function value in HM in an ascending order 

end 

Figure 2 Building the harmony memory 

 

Figures 3 and 4 present illustration examples of the construction of solution vectors and HM, 

respectively. Assume that there are 503 shift patterns. M, E, N and O represent morning shift, 

evening shift, night shift and day off, respectively. In Figure 3, two shift patterns 2 and 415 

are randomly selected from the shift patterns pool and the schedule (2,415) is used for the 

first and second week time slots, respectively, of Nurse 1 in the new solution. This process is 

repeated for all nurses, as shown in Figure 4. HSA then calculates the penalty value for each 

solution vector and add them to the HM. 

 

 
 

 

Figure 3 Example of constructing the solution vectors 

 

Pattern 

index 

Index Pattern 

1 MMMMOOO 

2 MMMMOOM 

3 MMMMOOE 

… ……………

… … ……………

… 415 EEEEOOO 

416 EEEEOOM 

… ………….. 

503 NNNNOOE 

Day 

2 

1 2 3 4 5 6 7 

M M M

e 

M O O M 

Day 

415 

8 9 10 11 12 13 

E

  

E E E O O 

14 

O 

x
new

 

SOLUTI

ONS 

Nurse 1 Nurse 2 … Nurse n f(x) 

(2,415) (112,43) … (501,12) 359 

Second week First week 

Shifts Shifts 

Shift patterns pool 

New harmony (solution vector) 
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Figure 4 The HM representation 

 

As for the benchmark instances, the set of initial solutions in HM is created by using a 

neighborhood operator which incrementally adds new shifts to the roster until all nurses have 

been scheduled [31] [32]. 

 

3.3  Improvise New Solutions 

The diversification and intensification of the search in HSA are maintained in this step. 

Parameters HMCR and PAR are the main factors in intensifying or diversifying the search for 

globally and locally improved solutions [45]. In this step, new solutions (complete rosters) 

are constructed stochastically using one of the following three operators: (i) memory 

consideration (based on the HMCR) (ii) random consideration (based on 1-HMCR) and (iii) 

pitch adjustment (based on the PAR).  

 

 

HMCR is the probability which decides whether to choose the shift pattern pi of the solution 

vector x
i

 
randomly from the HM, or from the shift patterns pool. The search with higher 

HMCR is guided more by HM, where the history and experience of the search process are 

stored. It thus helps to speed up the convergence by reducing the level of diversification and 

randomness in the search. Whereas, lower value of HMCR increases the diversification 

which, in turn, may cause a slow convergence due to the search jumps around potential 

candidate solutions.  

 

If the new shift pattern of the solution xi
new

 
is selected from the HM, then the solution may be 

adjusted based on the PAR. The diversification is mainly controlled by the two parameters 

PAR and bandwidth. Higher values of these parameters lead the search to explore different 

areas in the solution space. Therefore, this will slow down the convergence of the algorithm. 

In contrast, lower values of the PAR and the bandwidth help in decreasing the degree of 

diversification. However, this may limit the exploration and lead to premature convergence 

where HSA is easily trapped into the local optima [23] [36].  

 

The improvisation step in HSA is similar to reproduction in GAs that uses crossover and 

mutation operators [46]. In HSA, however, the improvisation utilizes the full HM to construct 

the solution, while in GA new chromosomes are generated by crossover of two parents or 

x
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mutation. Operators in GA need to be carefully designed especially in highly constrained 

problems to avoid destroying building blocks of optimal solutions [34]. Figure 5 presents the 

pseudo code of the improvisation process. Figure 6 shows an illustrative example of 

improvising the new solution. 

 

 

Step 3 Improvise a new harmony (generate new solution) 
begin       

    for i = (1 to NI) do /* NI is the maximum number of improvisations*/ 

          xi
new

 = ø  

       for j = (1 to n) do /* n is the number of nurses */ 

                    if (rand(0,1) ≤ HMCR) then 

                     choose shift pattern pj randomly from the HM: 

            if (rand(0,1) ≤ PAR) then 

                          adjust the chosen shift pattern pj according to bandwidth 

  /* bandwidth = (rand(5,-5)) is used to change the index of pj*/    

           else                                

                            add the chosen pj to solution xi
new

 without changing 

                       endif 

                else choose pj randomly from the shift patterns pool 

                     add the chosen pj to solution xi
new

 

               endif 

             

        endfor 

        update HM 

    endfor 

 end 
Figure 5 The pseudo code of improvising new solutions 

 

 

 Figure 6 Example of improvisation process in HSA 

 

In the example in Figure 6, two shift patterns 2 and 415 are firstly allocated to Nurse 1 in x
new

 

from the HM based on HMCR (see Figure 4). The bandwidth {5,-5} is applied which 

changes the index of the shift pattern in the first week from shift pattern 2 to 7. The resulting 
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shift pattern (7,415) means the first week is assigned shift pattern 7 and the second week 

assigned shift pattern 415. For Nurse 2, two shift patterns (312,115) are selected from the HM 

without adjusting. Next Nurse 3 is randomly assigned two shift patterns from the shift 

patterns pool based on (1 – HMCR). This process is repeated until a complete solution is 

constructed.  

 

3.4  Update the Harmony Memory 

The solutions in HM are sorted in an ascending order based on their objective function 

values. If the new solution xi
new

 
is better than the worst one in HM, it will replace the worst 

solution in HM. Otherwise, xi
new

 
is discarded. 

 

3.5  Check the Stopping Criteria 

The evolution of solution improvisation and HM update (i.e. steps 3 and 4) is carried out until 

reaching the stopping condition. Normally the stopping criterion is a certain number of 

improvisations [19]. In this work we have employed three stopping criteria. These are: (1) 

reaching the maximum number of improvisations, (2) no improvement happened after a 

certain number of improvisations, and (3) a solution with objective function value 0 (no soft 

constraint violations) is obtained. 

 

4. COMPUTATIONAL EXPERIMENTS AND RESULTS 

In this work, we have tested HSA over a real world problem and a set of benchmark problems 

in NRPs. The UKMMC dataset is collected from a large hospital in Malaysia. The benchmark 

dataset [32] is widely used by the scientific literature [31][32]. Because there is no method 

tested on the UKMMC dataset, we conducted an empirical study of the impact of HSA 

parameters when solving the eight real world instances in UKMMC. We have also 

implemented a standard genetic algorithm to compare it with the HSA on the UKMMC 

dataset. The experiments were carried out on a Windows Vista 32-bit laptop with Intel 1.73 

GHz and 2-GB RAM.  

 

4.1 HSA for solving the UKMMC dataset 

Finding proper balance between diversification and intensification is one of the important 

issues in devising meta-heuristic algorithms [29]. A series of experiments were conducted to 

study the behavior of HSA with different parameter values for HMS, HMCR, PAR and NI to 

strike a balance between diversification and intensification of the HSA search. We have used 

the eight instances in the UKMMC dataset shown in Table 6 to test the proposed HSA and 

GA.  

 
Table 6 The instances of the UKMMC dataset 

Instance Total 

nurses 

Seniors Weekday demand (Mon-Fri) Weekend demand (Sat-Sun) 

Morning Evening Night Morning Evening Night 

CICU 11 8 3 3 2 2 2 2 

SGY5 18 11 4 4 3 4 4 2 

MD1 19 12 4 4 3 4 4 2 

NICU 49 29 10 10 10 8 8 7 

N50 50 31 10 10 10 10 10 10 

ED 57 32 13 13 10 11 11 8 
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GICU 73 38 16 16 15 15 15 14 

ICU 79 41 17 17 16 16 16 15 

 

4.1.1  Harmony Memory Size (HMS)  

We first examine the impact of HMS by a set of experiments. Four instances from the 

UKMMC dataset with different problem size have been chosen for these experiments. The 

two small instances (CICU and MD1) include 11 and 19 nurses, respectively. The medium 

instance (NICU) has 49 nurses and the large instance (ICU) includes 79 nurses. In this 

experiment test, we use the following parameter values: HMCR = 0.89, PAR = 0.2, 

bandwidth = (-5 or 5) and the number of improvisations NI=100. Table 7 presents the 

experimental results (average out of 30 runs) of HSA using different HMS parameter values. 

Figure 7 presents the plots of these results. 

 

Table 7 Results of HSA with different parameter values of HMS 
HMS CICU MD1 NICU ICU 

HMS=1 53754.4 35130.4 90302.6 150920.8 

HMS= 10 40664.4 30180.2 75933.4 143153.8 

HMS= 20 43511.6 26400.6 74238.6 141439.4 

HMS= 30 41468.0 26808.2 72808.6 131151.6 

HMS= 40 39934.4 21964.6 70976.6 130464.0 

HMS= 50 40660.8 21689.4 71118.8 129177.6 

HMS= 60 39799.6 24302.0 70810.4 123352.4 

HMS= 70 35663.0 22576.0 69700.4 121558.4 

HMS= 80 36996.6 20660.8 61936.4 119825.8 

HMS= 90 35048.2 20923.6 62543.2 120815.0 

HMS= 100 35874.4 21140.6 62371.4 120828.4 

 

Based on the experimental results in Table 7 and Figure 7, HMS = 80 shows to be the most 

suitable parameter value compared to other HMS values. Results also indicate that the bigger 

the HMS, the better is the chance to start the improving process of the candidate solutions 

with lower objective function values. This might be due to a larger number of solutions in 

HM provide more good shift patterns, which are more likely to be combined into good new 

solutions. However, larger values of HMS do not contribute to better results. This may be due 

to that during the evolution, information of high quality shift patterns have been stored and 

updated in HM. More patterns may contain redundant information, thus do not necessarily 

contribute to a better performance. Therefore, HMS = 80 is chosen for all tested instances. 

Note that when HMS = 1, HSA behaves as a local search based method, where HMCR does 

not play a role and PAR assists a local search with the bandwidth.  
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Figure 7 Comparison of different HMS parameter values on the UKMMC dataset 

 

4.1.2  HMCR and PAR  

In the literature, the recommended values range from 0.79 to 0.99 for HMCR and 0.1 to 0.3 

for PAR [41, 47]. In this work, we examine several HMCR and PAR values as shown in 

Table 8 and Figure 8.  We fix the number of improvisations NI to100 iterations.  
 

Table 8 Results of using HSA with different parameter values of HMCR and PAR 
HMCR PAR CICU MD1 NICU ICU 

0
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9
 

0.1 31715.47 19635.33 59420.83 97991.47 
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0
.8

9
 

0.1 25695.53 18510.57 53556.6 95623.93 

0.2 23358.6 17768.4 53346.33 91488.17 

0.3 23349.9 17713.6 51605.73 88517.67 
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 Figure 8 Results of using HSA with different parameter values of HMCR and PAR on UKMMC dataset 

 

From Table 8, we found that best results were obtained when HMCR = 0.95 and PAR = 0.2. 

These are also the recommended parameter values in the literature [33][35][37]. For the 

bandwidth, we set the range (5, -5) as it changes the indexes of the shift patterns only. Based 

on the results, we set the HMCR as 0.95 and PAR as 0.2 for all tested instances (with regard 

to this dataset). 

 

4.1.3  Number of Improvisations NI 

In order to determine the suitable parameter value for the number of improvisations NI (i.e. 

number of iterations), we have studied the status of the candidate solutions in the HM during 

the run (see Table 9). These experiments help us to observe the behavior of the HM and to 

decide the suitable maximum number of NI. Figure 9 plots the results presented in Table 9.  

 

It is noticed that a significant decrease takes place to the objective function values during the 

first 25000 iterations. Within 25000 and 50000 iterations, the amount of change becomes 

very small. After 45000 iterations there is no improvement at all in all instances. All that 

leads us to choose the number of iterations to be NI = 50000. 

 

Table 9 Objective function values of candidate solutions in HM using HSA during the run  
No. of Iterations CICU MD1 NICU ICU 

Initial values 36130.0 23710.1 53517.3 111620.4 

After 1000 23419.5 16178 39841.2 81986.1 

After 5000 16721.7 12734.1 28741.6 62167.9 

After 10000 9819.1 6718.8 28741.6 47452.1 

After 15000 5180.2 2180.1 19651.4 31954.6 

After 20000 1211.0 1091.0 11894 23278.1 

After 25000 617.1 1091.0 7861.1 11674.9 

After 30000 411.3 719.6 4367.1 7681.5 

After 35000 401.8 518.8 2311.0 3211.2 

After 40000 397.0 410.0 1218.9 2017.0 

After 45000 397.0 410.0 927.0 1711.0 

After 50000 397.0 410.0 927.0 1711.0 

After 55000 397.0 410.0 927.0 1711.0 

After 60000  397.0 410.0 927.0 1711.0 
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Figure 9 Status of candidate solutions in HM during the run using HSA 

 

4.1.4 Results of HSA on the UKMMC Dataset 

We present the performance of HSA on the UKMMC dataset. In HSA, the search stops if one 

of the following stopping criteria is met: (1) If the maximum number of improvisations NI 

reaches 50000, (2) If the value of objective function reaches 0 or (3) If no improvement 

occurs during 10000 improvisations. Based on the preliminary experiments in the previous 

sections, we use the following parameter values: HMCR = 0.95, PAR = 0.2 and bandwidth   

{-5, 5}. For each instance, we ran the HSA for 20 times.  

 

 

4.1.5 Comparison between GA and HSA  

GA is a population based meta-heuristic algorithm [48] that mimics the process of natural 

evolution. Due to its many similar characteristics to HSA, GAs quite often has been 

compared with HSA [33]. It works by managing a population of individuals which evolves 

by using three genetic operators: (i) selection, (ii) crossover, and (iii) mutation.  

In this work, we have implemented the stochastic ranking based GA for NRPs proposed in 

[49] using the same parameter settings  as follows: the number of individuals = 1000, 

crossover rate = 0.75 and mutation rate = 0.02. For the selection, we used tournament 

selection with stochastic ranking (tournament size = 7) and elitism. For the crossover 

operator, we used a single point crossover as in [49] and [50]. The mutation operator is 

carried out by randomly changing one shift pattern for one nurse selected randomly. For each 

instance, we ran the basic GA for 20 times. To assure a fair comparison between GA and 

HSA, the stopping criteria for GA is similar to HSA as follows: 1) If the maximum number of 

function evaluations reach 50000 (80 individual * 625 generations, which is equal to NI in 

HSA, 2) If the value of objective function reaches 0, or 3) If no improvement occurs within 

10000 generations (improvisations in HSA). Table 10 shows the best, the average, the worst, 

the median, the standard deviation of the objective function values in addition to the number 

of generated desirable patterns and the execution time.  

 

Table 10 Comparison results: HSA and GA on UKMMC dataset 

In
st

a

n
ce

 

HSA GA 

0

20

40

60

80

100

120

0 1 5 10 15 20 25 30 35 40 45 50 55 60

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

s 
(1

0
3 )

 
 

Number of iterations (103) 

CICU MD1 NICU ICU



16 

 

Best 

PV 

Average   Worst 

PV 

Median Stddv. DPs Time  Best 

PV 

Average Worst 

PV 

Median Stddv. DPs Ti

me  

CICU 310 341.05 481 316.5 47.865 5 185.1 2791 3786.6 5510 3589 904.7 2 81.2 

SGY5 221 301.3 410 285 66.778 8 115.3 3680 5015.9 6930 4904.5 1053.4 3 96 

MD1 339 406.4 534 385.5 66.239 9 127 4219 5661.9 7450 5803.5 1054.3 5 99.6 

NICU 786 981.2 1255 955.5 151.897 18 168.8 786 981.2 1255 955.5 151.89 18 168.8 

N50 821 1075.45 1398 1044.5 187.083 21 175 1021 1258.06 1345 1198.4 250.01 18 847 

ED 998 1194.25 1517 1134 181.194 24 265.9 1430 1287.43 1670 1208.5 196.07 20 310.4 

GICU 1481 1606.95 1812 1582.5 120.036 27 295.2 1850 1675.5 1983 1582.5 160.42 24 274 

ICU 1518 1770.45 2097 1777 175.923 29 345.7 1621 1854.13 2186 1846 212.31 21 310.2 

Stddv: standard deviation. DPs: desirable patterns. Time: time in seconds 

 

The comparison between the HSA and the basic GA in Table 10 shows that HSA 

outperformed GA on all tested instances of UKMMC. Due to the fact that NRPs are highly 

constrained problems, basic GA might struggle in getting good quality solution without using 

specialized operators (i.e. specialized repair mechanism and crossover operators). This is 

noticed by many researchers [51, 52]. This fact is experimentally supported in Table 10 

where the basic GA fails to obtain good quality results for most of the tested instances. This 

is partially due to the drawbacks of the basic GA which relies on two parents only to produce 

the new offspring [34].  
 

To investigate the performance differences between HSA and GA, a Wilcoxon test is carried 

out with 95% confidence level. A p-value less than 0.05 means there is a significant 

difference between these methods. The p-value of HSA versus GA is reported in Table 11, 

where HSA is statistically significant to GA on 6 out of 8 instances (i.e. p-value less than 

0.05). The results also support the fact that the HSA outperformed GA on the majority of 

problem instances.  

 

 

Table 11 The P-value of HSA versus GA 
HSA vs. GA 

Instances P-value 

CICU 0.732 

SGY5 0.541 

MD1 0.000 

NICU 0.026 

N50 0.041 

ED 0.024 

GICU 0.000 

ICU 0.000 

 

 

4.2  HSA for the benchmark NRPs dataset 

In this section, the HSA is tested on the widely used benchmark instances in NRPs. These 

instances, together with their problem description and formulation are taken from 

(www.cs.nott.ac.uk/~tec/NRP/) [32]. Table 12 shows the characteristics of the tested 

instances. 

 

Table 12 The characteristics of the tested instances 
Instance No. of 

nurses 

No. of shift 

types 

Planning period 

(days) 

Best known 

solution 
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ORTEC01 16 4 31 270 

ORTEC02 16 4 31 270 

BCV-1.8.1 8 4 28 252 

BCV-2.46.1 46 4 28 1572 

BCV-3.46.1 46 3 26 3280 

BCV-3.46.2 46 3 26 894 

BCV-4.13.1 13 4 29 10 

BCV-5.4.1 4 4 28 48 

BCV-6.13.1 13 4 30 768 

BCV-7.10.1 10 6 28 381 

BCV-8.13.1 13 4 28 148 

BCV-A.12.1 12 4 31 1294 

BCV-A.12.2 12 4 31 1953 

CHILD-A2 41 5 42 1111 

ERRVH-A 41 4 48 795 

 

The HSA parameter values are also fixed the same as follows: HMCR = 0.95, PAR = 0.2, 

bandwidth   {-5, 5} and NI = 50,000. Table 13 shows the obtained results of the HSA. 

Please note that we used the same parameter setting for both datasets. We believe that this is 

an important element of this paper. 

 

Table 13, on the other hand, shows a comparison between the HSA with other existing meta-

heuristic algorithms from the literature on these benchmark instances. In the literature, some 

mathematical approaches and other exact methods have also been investigated for these 

instances [53, 44]. We compare our proposed HSA with only meta-heuristics from the 

literature. 
 

Table 13 HSA for the benchmark datasets  
Instance Our Method HSA  

Best Average Worst Stddv. Time 

ORTEC01 310 334 360 19.493 412 

ORTEC02 330 356 372 16.792 446 

BCV-1.8.1 270 272.6 279 3.649 187 

BCV-2.46.1 1612 1630.2 1644 12.194 281 

BCV-3.46.1 3380 3391.6 3400 8.763 463 

BCV-3.46.2 905 909.8 913 3.114 181 

BCV-4.13.1 11 12 14 1.224 212 

BCV-5.4.1 48 48 48 0 31 

BCV-6.13.1 796 869 960 65.144 149 

BCV-7.10.1 386 411.4 463 33.178 234 

BCV-8.13.1 158 164.4 188 13.221 267 

BCV-A.12.1 2210 2491.8 2614 173.950 243 

BCV-A.12.2 1998 2223.6 2550 259.528 298 

CHILD-A2 1222 1278 1340 53.028 518 

ERRVH-A 2820 3011.6 3120 122.526 409 

 

Table 14 Comparison of HSA results and other meta-heuristic methods 
Instance HSA M1     M2       M3      M4      M5 

Best 

OV 

Time 

(S) 

Best 

OV 

Time 

(S) 

Best 

OV 

Time 

(S) 

Best 

OV 

Time 

(S) 

Best 

OV 

Time 

(S) 

Best 

OV 

Time 

(H) 

ORTEC01 310 412 1580 3351 601 713 405 1381 - - 541 12 

ORTEC02 330 446 - - - - - - - - - - 
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BCV-1.8.1 270 187 275 99 263 66 253 815 352 6 - - 

BCV-2.46.1 1612 281 1574 2560 1573 1665 1575 1076 1594 191 - - 

BCV-3.46.1 3380 463 3439 10714 3379 5226 3344 3814 3724 137 - - 

BCV-3.46.2 905 181 - - - - - - - - - - 

BCV-4.13.1 11 212 12 93 11 114 10 374 18 10 - - 

BCV-5.4.1 48 31 48 27 48 9 48 126 200 1 - - 

BCV-6.13.1 796 149 815 385 806 207 768 592 986 15 - - 

BCV-7.10.1 386 234 381 66 381 76 381 361 472 10 - - 

BCV-8.13.1 158 267 148 219 148 123 148 226 148 11 - - 

BCV-A.12.1 2210 243 1990 929 1685 518 1434 1786 3335 44 - - 

BCV-A.12.2 1998 298 - - - - - - - - - - 

CHILD-A2 1222 518 - - - - - - - - - - 

ERRVH-A 2820 409 - - - - - - - - - - 

OV: objective function value. S: second. H: hour. 

 

Where:  

HSA Our proposed Harmony Search Algorithm 

M1    A Memetic Approach in [54]. 

M2 A Scatter Search Approach (SS1) in [18]. 

M3 A Scatter Search Approach (SS2) in [18]. 

M4 A Shift Sequence Based Approach in [37]. 

M5 A Hybrid Heuristic Ordering and Variable Neighbourhood Search in [38]. 

 

Results in Table 14 demonstrate that HSA is able to obtain competitive results for some 

instances. For the ORTEC01 and BCV-A.12.2 instances, we have obtained new lower bound 

results compared with other methods in the literature. For the BCV-5.4.1 instance, HSA also 

obtains the same best known result by other approaches. In fact, the results of most instances 

(except only two instances BCV-2.46.1 and BCV-A.12.1) are only slightly worse than the best 

known results. For the five instances ORTEC02, BCV-3.46.2, BCV-A.12.2, CHILD-A2 and 

ERRVH-A, we report the first results, i.e. no results have been reported in the literature.  

 

Table 15 shows the average results of HSA compared to existing meta-heuristic algorithms. 

As can be seen, HSA matched the best average results on one instance and achieved better 

average results for one out of 10 instances.  

 

Table 15 Comparison of HSA average results and other meta-heuristic methods 

Instance 
HSA M1     M2       M3 M4 

Average Average Average Average Average 

ORTEC01 334 2904 1707 445 - 

ORTEC02 356 - - - - 

BCV-1.8.1 272.6 285 268 253 365 

BCV-2.46.1 1630.2 1589 1588 1594 1629 

BCV-3.46.1 3391.6 3471 3396 3380 3789 

BCV-3.46.2 909.8 - - - - 

BCV-4.13.1 12 19 12 10 84 

BCV-5.4.1 48 48 135 48 200 

BCV-6.13.1 869 959 904 768 1209 

BCV-7.10.1 411.4 390 385 381 507 

BCV-8.13.1 164.4 166 148 148 151 

BCV-A.12.1 2491.8 2349 1813 1522 3972 
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BCV-A.12.2 2223.6 - - - - 

CHILD-A2 1278 - - - - 

ERRVH-A 3011.6 - - - - 

 

To find out whether the performance of HSA is statistically different from existing meta-

heuristic algorithms (M1, M2, M3 and M4), we have performed a multiple comparison 

statistical test as follows: the Friedman and Iman-Davemport tests with a critical level of 0.05 

are conducted to detect whether there are statistical differences between the results of these 

methods [55]. The p-value of Friedman (p-value =0.000) and Iman-Davemport (p-value 

=0.000) are less than the critical level 0.05, indicating that a significant difference between 

the compared methods. Therefore, a post-hoc statistical test is used to detect the correct 

difference between the methods. Table 16 shows the average ranking (the smaller the better) 

produced by the Friedman test for each method. As can be seen, M3 ranked the first, 

followed by M2, HSA, M1 and M4. Table 17 summarizes the p-value of  the Holm and 

Hochberg statistical tests [55] where M3 is the controlling algorithm. As can be seen, M3 is 

statistically better than M1, M4 and HSA (i.e., p-value less than 0.05) but does not 

outperform M2. The results also demonstrate that HSA results are different from M1 and M4.  

 

Table 16 The average ranks of Friedman test 
Algorithm  Ranking  

HSA 3.166 

M1 3.444 

M2 2.333 

M3 1.388 

M4 4.666 

 

 

Table 17 The p-value of Holm and Hochberg tests for the compared methods 
Algorithm unadjusted P PHolm PHochberg 

M4 0.000011 0.000044 0.000044 

M1 0.005819 0.017457 0.017457 

HSA 0.017073 0.034145 0.034145 

M2 0.205118 0.205118 0.205118 

 

Overall, our results demonstrate that HSA produced good results compared to some existing 

methods. This may be due to the characteristic of HSA in striking a well-balanced 

diversification and intensification for highly complex problems.  

 

5. CONCLUSIONS  

This paper has investigated the harmony search algorithm for solving the nurse rostering 

problem. The proposed harmony search algorithm evolves upon the harmony memory which 

stores adaptively updated solutions during the evolution. The proposed algorithm has been 

evaluated on eight instances collected form a real world hospital UKMMC and 15 problem 

instances from a widely used nurse rostering problem benchmark in the literature. For the 
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UKMMC instances, we have conducted a series of experiments to test the efficiency of 

harmony search algorithm with different parameter settings. The results demonstrate that 

higher values of harmony memory size contribute to a better starting point of the improving 

process to obtain good feasible solutions. In addition, HSA shows to outperform the basic 

GA. As for the benchmark instances, results showed that HSA obtained competitive results 

when compared to other state-of-the-art meta-heuristic methods in the literature (indeed 

obtained better results for few instances). 
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