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Abstract

Automated algorithm design has attracted increasing interest recently from

the evolutionary computation community. The main design decisions include

how to design selection heuristics on the population and evolution operators

in the search algorithms. Most existing studies, however, have focused on

the automated design of evolution operators, neglecting the automated de-

sign of selection heuristics for evolution and for replacement, not to mention

considering all of the design decisions. This limited the scope of the algo-

rithms under consideration. This study aims to systematically investigate

the automated design of search algorithms by exploring the impact of indi-

vidual algorithmic components within a general search framework and the

synergy among these multiple algorithmic components and specifically, au-

tomatically design search algorithms by utilising a reinforcement learning

technique. Comprehensive computational experiments are conducted on dif-

ferent benchmark instances of the capacitated vehicle routing problem with

time windows to evaluate the effectiveness and generality of the proposed
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method. This study contributes to knowledge discovery in automated algo-

rithm design using machine learning by exploring the impact of individual

algorithmic component towards significantly enhanced generality of automat-

ically designed search algorithms.

Keywords: Automated algorithm design, Reinforcement learning, Vehicle

routing problem with time windows

1. Introduction

Many complex combinatorial optimisation problems (COPs) are NP-hard

optimisation problems, to which search algorithms show great potential find-

ing high-quality solutions within a reasonable computational time. However,

when designing a highly specialised search algorithm, human experts are re-

quired to make a large number of design decisions, such as how to select

individuals to produce new solutions and how to apply suitable evolution

operators during different stages of the evolutionary process. In addressing

this issue, automated algorithm design has attracted considerable attention

recently in the evolutionary computation community [1], [2].

A general combinatorial optimisation problem (GCOP) model has re-

cently been built to define the design of search algorithms itself as a COP,

to which the solutions are new general-purpose algorithms composed of ba-

sic algorithmic components [3]. With the basic algorithmic components in

the GCOP model, the AutoGCOP framework has been built for automated

design of local search algorithms [4] and another framework, GSF, has been

further developed to support the automated design of both local search al-

gorithms and population-based algorithms [5]. The GSF is composed of five
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modules, where basic evolution operators or heuristics can be selected and

composed into new search algorithms. The Selection for Evolution, Evolution

and Selection for Replacement modules contribute the most to the algorithm

performance. Based on the design space on algorithmic components, the au-

tomated algorithm design problem can be defined into the following three

key research issues:

• Learning on evolution operators: to automatically select and apply

suitable evolution operators in the Evolution module during the optimi-

sation process while fixing components in other modules. The decision

variables in the search space of algorithms are evolution operators.

• Learning on selection heuristics: to automatically select and apply suit-

able selection heuristics (decision variables in the search space) in the

Selection for Evolution/Replacement modules during the optimisation

process while fixing components in the Evolution module.

• Learning on evolution operators and selection heuristics simultane-

ously: the decision variables are defined as pair of evolution operators

and selection heuristics, automatically selected and applied during the

optimisation process.

The first issue, i.e. learning on evolution operators, has been exten-

sively investigated in the literature, as evolution operators are considered

as the most important algorithmic component in designing evolutionary al-

gorithms. Examples include genetic algorithm for the travelling salesman

problem (TSP) [6], hyper-heuristics for unmanned aerial vehicles [7], the

set covering problem [8], the set packing problem [9], the exam timetabling
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problem and the capacitated vehicle routing problem [10], and several COPs

within the HyFlex framework [11].

Learning on selection heuristics, including “selection for evolution” heuris-

tics (e.g., tournament selection and roulette wheel selection) and “selection

for replacement” heuristics (e.g., comma-selection and plus-selection), has

attracted less attention compared to that of evolution operators. However,

they are also important components for designing successful search algo-

rithms, i.e. determining how individuals should be combined to produce new

candidate solutions. Example algorithms include the genetic programming

based hyper-heuristics for the NK-landscape benchmark problem [12] and the

grammatical evolution based hyper-heuristics for the 0-1 Knapsack problem

[13].

Furthermore, there is a lack of literature regarding learning on evolution

operators and selection heuristics simultaneously within a general framework

of algorithms. This expands the design space into a high-dimensional one,

thus posing new challenges to machine learning.

This study aims to systematically investigate the automated design of

search algorithms within the unified GSF with basic algorithmic components,

aiming to acquire transferable or reusable knowledge in automated algorithm

design. To effectively cope with the high-dimensional algorithm design space,

we propose an advanced reinforcement learning technique with maximum

entropy mechanisms, tested on the capacitated vehicle routing problem with

time windows (CVRPTW), one of the most extensively investigated COPs.

The contributions of this study can be summarised as follows:

• This study systematically explores the design space of algorithms within
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different modules of the GSF with controlled experiments against that

of ad hoc design space without a framework usually considered in the

literature.

• This study proposes an advanced reinforcement learning technique with

a maximum entropy mechanism to tackle the above-mentioned problem

of automated algorithm design which is defined into a new learning

problem with a continuous state space and a high-dimensional discrete

action space.

• The analysis on comprehensive experiments on the CVRPTW bench-

mark instances demonstrate the effectiveness and generality of the pro-

posed method transferring knowledge discovered into solving new in-

stances.

The remainder of this study is organised as follows. Section 2 briefly

presents the related work on automated design of search algorithms with

the corresponding reinforcement learning techniques. Section 3 details the

proposed method based on an advanced reinforcement learning technique.

Experimental analysis concerning different design spaces is presented in Sec-

tion 4. Finally, Section 5 concludes with a summary and discussions of future

work.

2. Related Work

This section reviews the related work on automated design of search algo-

rithms to solve COPs with the support of reinforcement learning techniques.
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2.1. Automated Design of Search Algorithms

Within the unified general search framework (GSF) [5], automated de-

sign of search algorithms is systematically investigated as three key research

issues: learning on evolution operators, on selection heuristics, and on evo-

lution operators and selection heuristics simultaneously.

Most studies on learning to automatically select suitable evolution op-

erators to be applied during different stages of the optimisation process are

conducted within a template of a specific search algorithm such as genetic al-

gorithm (GA) [6], [13], [14], [15] , memetic algorithm [16], [17], iterated local

search [18], [19], [20], iterated greedy algorithm [21], variable neighbourhood

search (VNS) [22], [23]. For example, GA with an adaptive operator selection

mechanism showed to be effective on the TSP [6], [14], the job sequencing and

tool switching problem [13], the hub location problem [15], etc. VNS with

an adaptive operator selection mechanism also obtained promising results on

the TSP [23] and the vehicle routing problem (VRP) [22], etc.

Learning on automatically determining the most suitable selection heuris-

tic at different stages of the optimisation process has received much less

attention when solving COPs, albeit some successful preliminary attempts

across different problems [12], [13]. There is limited work on investigating

learning on evolution operators and selection heuristics simultaneously. One

possible reason is due to the significantly increased algorithm design space,

which presents new challenges to machine learning.

Overall, the majority of the existing studies have focused more on learn-

ing on evolution operators but often neglected other design decisions, not to

mention considering them simultaneously. Existing studies also aim to de-
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termine different configurations within templates of specific existing search

algorithms. Therefore, the outputs are variants of these existing search al-

gorithms, rather than newly designed algorithms. In addition, the operators

involved in these templates are designed based on different experience of

human experts, being either problem-specific ones or the manually selected

basic operators for different COPs. Unlike existing studies, we proposed

GSF [5] which supports the compositions of the most basic algorithmic com-

ponents, i.e. evolution operators and selection heuristics within five modules

in evolutionary algorithms. Therefore, the outputs are different types of new

search algorithms. In other words, many of the existing search algorithms

represent a subset of the possible output of the GSF.

In this study, with the support of GSF, we aim to systematically explore

different design spaces (i.e. evolution operator, selection heuristic, and both)

to automatically design search algorithms.

2.2. Reinforcement Learning for Automated Algorithm Design

Within the context of automated algorithm design, reinforcement learning

(RL) [24], including simple tabular RL methods, such as Q-learning [25],

and deep RL methods such as Deep Q-network (DQN) [26] and Proximal

Policy Optimisation (PPO) [27], have obtained promising results for solving

different COPs.

The most common tabular RL used in assisting algorithm design is Q-

learning. It has been successfully applied to design a GA variant for TSP [6]

and the job sequencing and tool switching problem [13], a Memetic Algorithm

variant for the quadratic assignment problem [28], a VNS variant for VRP

[29], and a Simulated Annealing variant for the mixed-model assembly line
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sequencing problem [30].

Regarding deep RL methods, value-based methods (e.g., DQN) showed to

effectively learn to design algorithms automatically for solving VRP and TSP

[31], and the container terminal truck routing problem and online 2D strip

packing problem [32]. Policy-based RL methods (e.g., PPO) have demon-

strated the superiority of designing search algorithms for solving VRP [5].

In the existing studies on Q-learning, the number of features used to rep-

resent the state is limited and insufficient for learning. More advanced RL

techniques are required to handle the continuous state space represented by

key features involving sufficient and useful information. To tackle this issue,

researchers have attempted to utilise deep RL techniques such as DQN (a

typical value-based technique) and PPO (a typical policy-based technique).

However, the dimension of action space in their learning environment is rela-

tively small. Therefore, it is worth investigating the advantages of both value-

based and policy-based RL methods, as value-based RL methods present bet-

ter sample efficiency (i.e. make good use of every single piece of experience

to generate and rapidly improve the policy) but are unstable, while policy-

based RL methods are more stable but are of low sample efficiency (i.e. fail

to learn anything useful from many samples of experience).

The automated algorithm design problem investigated in this study con-

sists of a continuous state space and a high-dimensional discrete action space.

This motivates advanced RL which inherits the advantages of both of value-

based and policy-based RL techniques. In this research, a maximum en-

tropy mechanism is employed to encourage exploration in the early stage of

the learning process and exploitation in the later stage. It achieves this by
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adding an entropy term to the RL objective function, which maximises the

accumulated reward and entropy of the policy.

3. Proposed Method

3.1. Algorithmic Components within General Search Framework (GSF)

The basic evolution operators considered in this study are listed in Ta-

ble 1. Figure 1 represents the solution encoding of a CVRPTW with nine

customers and three vehicles, and Figure 2 further provides the illustration

of the evolution operators listed in Table 1. Note that these basic evolu-

tion operators, such as exchange, insert and remove, can be adopted and

adjusted to automate the design of algorithms for different COPs. In this

study, CVRPTW is used as a case study. The selection for evolution and for

replacement heuristics are listed in Table 2 and Table 3, respectively. These

all represent the most basic operators and heuristics in the literature.

Figure 1: Solution encoding of a CVRPTW with nine customers and three vehicles

3.2. Proposed Method for Automated Algorithm Design within GSF

Before introducing the proposed Actor-Critic with Entropy (ACE) method,

a modified soft actor critic (SAC) method [33] for discrete action space, the

problem of algorithm design is firstly defined as a new reinforcement learning

task in this section. Reinforcement learning is often modelled as a Markov

Decision Process (MDP), M = (S,A, p, r). In each timestep, the RL agent
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Table 1: OE : Evolution operators for CVRPTW [5]

Operator Description

ochg in Exchange m and n nodes in the same route in a solution

ochg bw Exchange m and n nodes from different routes in a solution

oins in Insert m nodes to other positions of the same route in a so-

lution

oins bw Insert m nodes to different routes in a solution

oruin recreat The m nodes within a pre-determined distance d to the base

customer x are removed from the solution, where d is set

based on the distance between x and the furthest node from

x. If there exist feasible routes which can accommodate the

removed nodes, the insertion position with the minimum wait-

ing time is selected. Otherwise, a new route is created.

otwo opt Exchange two nodes in the same route in a solution

otwo opt∗ Swap the end sections (with m nodes) of two routes in a

solution to create two new routes
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Table 2: HSE : heuristics in selection for evolution module [5]

Heuristic Description

h1 h1
t
b/h1

t
w : tournament selection of the best/worst of v ∈

{1, · · · , nPop} individuals as parent candidates. nPop refers

to the population size. The probability of selecting each in-

dividual i as parent candidate p′i = 1/nPop. When v = 1:

random selection. When v = nPop: greedy selection of the

best/worst individual.

h2 Random selection (When v = 1)

h3 Rank selection of the best previous position as parent based on

individual’s personal archive (When v = nPop)

h4 Proportionate roulette wheel selection of an individual i as par-

ent with a probability proportional to its fitness.

h5 Ranking selection of an individual i as parent according to the

probability proportional to the its rank (ascending order based

on the fitness function).

h6 Select the current individual itself as parent.

11



(a) ochg in(m = n = 1), otwo opt (b) ochg bw(m = n = 1)

(c) oins in(m = 2) (d) oins bw(m = 2)

(e) oruin recreat(m = 2) (f) otwo opt∗(m = 2)

Figure 2: Illustration of evolution operators in Table 1

interacts with the environment to obtain information of the current state

st ∈ S, where S is the state space, and then chooses an action at ∈ A, ac-

cording to the policy π (at |st ), where A is the set of available actions. After

that, the agent receives a reward rt (st, at) and the environment moves to

the next state based on the policy π, i.e st+1 ∼ π (st+1 |st , at). The goal of

the RL agent is to learn a policy that maximises the expected accumulated

reward.
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Table 3: HSR: heuristics in Selection for replacement module [5]

Heuristic Description

h7 Comma-selection (nPop, λ). Select nPop individuals only from

the offspring population AO. nPop and λ refer to the current

population size and the offspring population size, respectively.

h8 Plus-selection (nPop, µ+ λ). Select individuals from both the

parent population AP and the offspring population AO. nPop,

µ and λ refer to the current population size, parent population

size and the offspring population size, respectively.

Within GSF, the new reinforcement learning task is defined in this study

for automated algorithm design as shown in Figure 3. The states are defined

by search-dependent and instance-dependent features. The actions are de-

fined by evolution operators and/or selection heuristics. Different from other

RLs, the reward scheme is designed to maximise the expected accumulated

reward r and the expected entropy of the policy H as shown in Equation

(1). The entropy term can help the agent to learn a more robust and flexible

policy by exploring more actions to prevent the agent from being stuck in

local optima.

rπ (st, at) = r (st, at) + α · H [π (· | st)] (1)

The entropy H [π (· | st)] essentially introduces a noise to reinforcement

learning weighted by a coefficient α. Higher values of α give more chances to

actions which are rarely or never selected; while lower values of α emphasise

on utilising the actions with good historical performance. As α decreases,

more emphasis is given on the accumulated reward r compared to the entropy
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Figure 3: Proposed reinforcement learning method (ACE) for automated algorithm design

within GSF

of the policy H. In other words, as α decreases, the learning process focuses

more on exploitation than exploration.

Three entropy coefficient adjustment schemes are proposed as follows,

and evaluated in Section 4 to strike a balance between exploration and ex-

ploitation in the learning.

• fixed scheme (FS): the entropy coefficient α is set to a fixed value, i.e.

α = 0.5

• linear adaptive scheme (LAS): decrease α linearly, i.e. αt+1 = αt ·0.9998

• non-linear adaptive scheme (NLAS): decrease α nonlinearly, i.e. with

a neural network

Apart from the maximum entropy mechanism to balance exploration and

exploitation, the proposed ACE method is enhanced with two mechanisms as

14



shown in Figure 3. Firstly, an actor-critic architecture, π is devised with one

policy network (Actor), and two separate critic networks Qω1 and Qω2 (with

the same structure) are used simultaneously to eliminate overestimation. The

minimum of Qω1 and Qω2 is chosen exporting the Q value. Secondly, the ex-

perience replay buffer is utilised to break the correlations between the stored

experience (st, at, rt, st+1) and reuse collected experience multiple times.

The pseudocode of ACE-GSF is shown in Algorithm 1. Specifically, an

action is selected based on the current policy network (i.e. Actor network

πθ)(Line 6, Algorithm 1) from the set of three key components of search al-

gorithms, namely: selection for evolution heuristic, evolution operator, and

selection for replacement heuristic. By performing the selected action, a se-

lection heuristic hi (i = 1, 2, ..., 6) from HSE (shown in Table 2) is used to

select parent population; an evolution operator from OE (shown in Table

1) is used to generate offspring population; and then a selection heuristic

hi (i = 7, 8) from HSR (shown in Table 3) is used to update the population

(Line 7, Algorithm 1). The reward are observed based on Equation (5) and

Equation (6) and the corresponding experience (st, at, rt, st+1) is stored in

the replay buffer (Line 8, Algorithm 1). A random minibatch of experiences

[sj, aj, rj, sj+1]J (J denotes the size of the sampled minibatch) is sampled to

train the critic networks by minimising the loss function shown in Equation

(2)(Line 9-10, Algorithm 1). After that, the actor network is updated by min-

imising the loss function shown in Equation (4) (Line 10, Algorithm 1). The

entropy coefficient α is then updated based on the pre-defined adjustment

scheme (i.e FS/LAS/NLAS) (Line 11, Algorithm 1). The process is iterated

at each timestep until the end of the episode. In the process, the target
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networks are updated using a soft update strategy : ω−1 ← τω1 + (1− τ)ω−1 ,

ω−2 ← τω2 + (1− τ)ω−2 , where τ is a parameter that is typically chosen to

be close to 1 (Line 12, Algorithm 1).

Algorithm 1 Pseudocode of ACE-GSF

1: Initialise critic networks Qω1 , Qω2 , target critic networks Qω1
− , Qω2

− , ac-

tor network πθ, replay buffer D, the number of episode NoE, the number

of timesteps NoT , population P , initial state s0

2: for episode k = 1 to NoE do

3: initialise s0

4: for timestep t = 1 to NoT do

5: observe the current state st based on state features

6: select an action based on the current policy at = πθ(st)

7: execute the selected action at (i.e. a combination of algorithmic

components from three main modules in GSF) on the current pop-

ulation

8: observe reward rt and next state st+1, store experience (st, at, rt, st+1)

in D

9: sample random minibatch of experiences [sj, aj, rj, sj+1]J from D

10: update two critic networks Qωi
, i = 1, 2 , the actor network πθ

11: update entropy coefficient α based on the selected adjustment scheme

12: every N timesteps, update the target critic networks

13: end for

14: end for

The critic networks Qω1 , Qω2 are updated using temporal difference algo-

rithm. The loss function is shown in Equation (2) and the temporal difference

target yj is shown in Equation (3). The actor network πθ is updated by min-
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imising the loss function shown in Equation (4).

L =
1

J

J∑
j=1

(yj −Qωi
(sj, aj))

2 (2)

yj = rj + γ(min
i=1,2

Qω−
i

(sj+1,aj+1)− α log πθ (aj+1 |sj+1 )),

aj+1 ∼ πθ (· |sj+1 )

(3)

Lπ (θ) =
1

J

J∑
j=1

(α log πθ (aj |sj )− min
i=1,2

Qωi
(sj, aj)) (4)

3.2.1. State Representation

The state should provide sufficient information on the environmental sta-

tus to support accurate selection of the action. In this study, two groups

of features [34], including ten search-dependent features, which identify the

key attributes of the search process, and seven instance-dependent features,

which describe the properties of the problem instance, are employed to rep-

resent the state since the problem domain of this study is identical as the

reference [34] and these features have been systematically investigated. Al-

though feature identification and selection showed to be one of the current

key research issues in developing successful machine learning, they are not

the focus of this study. Therefore, only a brief description of the employed

features is provided. Please refer to [34] for the detailed identification process

and calculation process.

The search-dependent features include the search stage, fitness improve-

ment, the standard deviation/mean/skewness/kurtosis/amplitude of fitness,

and the lower (Q1)/median (Q2)/upper (Q3) quartile of fitness.
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The instance-dependent features include the number of available vehicles,

vehicle capacity, average customer demand, average service time, average

time-window size, average time-window overlaps between customers, and the

percentage of time-constrained customers.

3.2.2. Action Representation

With regards to learning on evolution operators and selection heuristics,

the set of possible actions in each state is defined in Table 1, Tables 2 and

3, respectively. Regarding learning on both, pair of evolution operators in

Table 1 and selection heuristics in Tables 2-3 is defined as the action.

3.2.3. Reward Scheme

ACE is designed to learn a policy of a high reward while acting as ran-

domly as possible. In other words, ACE maximises the accumulated reward

and entropy of the policy simultaneously.

The first objective, as shown in Equations (5) and (6), is calculated based

on the fitness improvement of the current population (i.e fcurrent) over the

initial population (i.e finitial). When population fitness is above a certain

threshold (i.e C), which indicates that the search process enters the later

stages of evolution, a larger reward is assigned for the same fitness improve-

ment with a log function. The second objective of maximising the entropy of

the policy is calculated based on the term H [π (· | st)]. These two objectives

are aggregated into a single objective function, i.e. minimising the sum of

them.

f1 =
fcurrent
finitial

(5)
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rπ (st, at) =

 −f1 + α · H [π (· | st)], if f1 > C

−f1 − log10 (f1) + α · H [π (· | st)] ,if f1 6 C
(6)

4. Experiments and Discussions

The proposed ACE methods are applied on the basic algorithmic compo-

nents in three main modules within GSF: Selection for Evolution, Evolution,

and Selection for Replacement. One of the extensively investigated COPs,

CVRPTW, is selected as the benchmark problem to evaluate the perfor-

mance of the proposed method. All experiments have been conducted using

a computer with Intel(R) Xeon(R) W-2123 CPU@ 3.60 GHz processors, and

with 32.0 GB of memory. The proposed methods are implemented in Java

environment with IntelliJ IDEA 2020.3.3 as the development tool. Java is

chosen since it is also used in other widely adopted frameworks in relevant

literature, e.g. HyFlex for hyper heuristics, thus supports flexible further

extensions in future work.

The experimental investigations aim to address two research issues: (1)

the effectiveness of the learning models when tackling the design space of

selection heuristics; (2) the effectiveness and generality of the learning mod-

els on the whole algorithm design space, i.e considering the design of both

evolution operators and selection heuristics. To address the first issue, three

ACE variants with different entropy coefficient adjustment schemes are val-

idated in section 4.2. On both selection heuristics and evolution operators,

three ACE variants are assessed in section 4.3.1. The experiments consid-

ering only evolution operators are conducted in the comparison to serve as

the baseline. To analyse the generality of the learning models, the trained
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policies are applied to the same and different types of problem instances in

section 4.3.2.

4.1. Problem Definition and Dataset

The CVRPTW considered in this study has two objectives as shown in

Equation (7), where NV is number of vehicles used and TD is the total trav-

elled distance. These two objectives are transformed into a single objective

with a penalty weight factor, where c = 1000 assigns a higher priority to the

first objective [19]. In CVRPTW, vehicles must serve every customer within

their specified time windows, while satisfying the capacity constraints.

Minf (s) = c×NV + TD (7)

Figure 4: Solution decoding of a CVRPTW with nine customers and three vehicles

Figure 4 presents the solution decoding of a CVRPTW with nine cus-

tomers and three vehicles. Based on Equation (7), the fitness of this example

CVRPTW solution can be calculated as follow:

Minf (s) = c× 3 + (d02 + d21 + · · ·+ d40) (8)

The investigation is conducted on the Solomon benchmark dataset [35]

which consists of six groups, namely R1, R2, C1, C2, RC1, RC2. Customers
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in R1 and R2 instances are distributed randomly while customers in C1 and

C2 instances are clustered. RC1 and RC2 instances contain a combination

of randomly distributed and clustered customers. Sets of type 1/type 2 have

narrow/wide time windows and small/large vehicle capacity, respectively.

CVRPTW remains a challenge to current state-of-the-art research.

The selected instances in this study are representatives of different types

of CVRPTW instances, including type-R1, type-R2, type-RC1 and type-

RC2. Type-C1 and type-C2 instances are not included in this study since

they are relatively easily tackled by existing heuristic approaches, even the

random search approach. In our preliminary experiments, our proposed

method always achieved the best-known solutions in the literature on type-

C1 and type-C2 instances.

4.2. Learning on Selection Heuristics

The proposed method, namely ACE, is applied to automate algorithm de-

sign by learning to adapt appropriate selection heuristics (including selection

for evolution heuristics and selection for replacement heuristics).

4.2.1. Learning on Selection for Evolution Heuristics

With learning on the design space of only selection for evolution heuris-

tics, three ACE variants with different entropy coefficient settings, namely

ACE FS, ACE NLAS and ACE LAS with a fixed/non-linear/linear entropy

coefficient adjustment scheme respectively, are investigated. We fixed the

components in the other two modules as: oins bw for the Evolution module

and h8 for Selection for Replacement module. These two components are the

most frequently called evolution operator [34] and the most adopted selection

21



for replacement heuristic in the literature.

(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 5: Performance comparison during the training process (learning on selection for

evolution heuristics, i.e. se)

As shown in Figure 5, results on different type of CVRPTW instances

show that learning on selection for evolution heuristics alone has no signifi-
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cant impact on the performance of search algorithms throughout the training

process. One possible reason is that although selection for evolution heuris-

tics determine which individual should be combined to produce new solutions,

it would not have so much impact if the algorithmic component in the Evo-

lution module is fixed. In other words, there is limited scope for evolution.

This supports human experience in designing search algorithms and results

reported in the literature, i.e. the selection heuristics have less impact on the

performance of search algorithms and therefore there is no need to focus on

the design of these.

As shown in Tables 4-7, the performance of RL-based methods (i.e. three

ACE variants) is slightly but not significantly better than that of the non-

learning method during the testing process. Note that “non-learning” method

in Tables 4-7 refers to the search algorithm with all fixed components in all

modules (h1, oins bw, h8), and column “GAP” is the gap between the attained

best fitness (BEST) and the best-known solutions in the literature to demon-

strate the overall performance. This indicates that learning on selection for

evolution heuristic has little impact on the algorithm performance, which is

consistent with the findings during the training process shown in Figure 5.

4.2.2. Learning on Selection for Replacement Heuristics

Similarly, the effectiveness of the ACE method on the design space of only

selection for replacement heuristics is validated with the ACE FS, ACE -

NLAS, ACE LAS and non-learning method. The components in other two

modules are fixed as: oins bw for Evolution module and h1 for Selection for

Evolution module, which are the most frequently called evolution operator

[34] and the most adopted selection for evolution heuristic in the literature.
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Table 4: Performance comparison during the testing process (learning on selection for

evolution heuristics, i.e. se), type-R1

R101 R102 R103 R104

Best-known Solutions 20645.79 [36] 18486.12 [37] 14292.68 [38] 10007.24 [39]

ACE FS se

AVG 21019.62 18783.83 15336.91 11419.82

SD 226.28 215.70 208.64 461.40

BEST 20918.92 18706 14437.66 11083.57

GAP 1.32% 1.19% 1.01% 10.76%

ACE NLAS se

AVG 21006.91 18761.66 15344.38 11333.54

SD 230.78 213.22 205.63 405.13

BEST 20887.4 18660.31 14459.78 11082.82

GAP 1.17% 0.94% 1.17% 10.75%

ACE LAS se

AVG 21030.97 18973.67 15386.93 11594.02

SD 233.23 427.03 23.66 495.97

BEST 20914.45 18669.80 15345.42 11098.03

GAP 1.30% 0.99% 7.37% 10.90%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85

SD 30.37 215.69 207.39 443.38

BEST 20901.02 18675.05 14448.89 11085.36

GAP 1.24% 1.02% 1.09% 10.77%
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Table 5: Performance comparison during the testing process (learning on selection for

evolution heuristics, i.e. se), type-R2

R201 R202 R203 R204

Best-known Solutions 5252.37 [40] 4191.7 [41] 3939.54 [42] 2825.52 [43]

ACE FS se

AVG 5479.97 5214.98 4168.84 3936.29

SD 41.04 290.99 30.00 25.70

BEST 5398.13 4317.59 4111.00 3891.49

GAP 2.78% 3% 4.35% 37.73%

ACE NLAS se

AVG 5469.77 5171.22 4166.85 3932.16

SD 25.33 335.45 32.48 22.07

BEST 5392.77 4316.40 4087.81 3878.91

GAP 2.67% 2.97% 3.76% 37.28%

ACE LAS se

AVG 5444.77 5096.12 4159.70 3923.55

SD 11.32 376.51 23.47 18.34

BEST 5413.81 4307.61 4111.65 3891.72

GAP 3.07% 2.77% 4.37% 37.73%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82

SD 24.47 49.37 23.49 19.65

BEST 5481.47 5287.09 4184.90 3989.41

GAP 4.36% 26.13% 6.23% 41.19%
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Table 6: Performance comparison during the testing process (learning on selection for

evolution heuristics, i.e. se), type-RC1

RC101 RC102 RC103 RC104

Best-known Solutions 15696.94 [44] 13554.75 [44] 12261.67 [45] 12135.487 [46]

ACE FS se

AVG 17074.88 15223.6 13126.46 11926.51

SD 432.50 481.39 469.69 486.41

BEST 16734.77 14627.56 12342.64 11223.87

GAP 6.61% 7.91% 0.66% 0.79%

ACE NLAS se

AVG 17030.73 15258.4 12930.19 11968.47

SD 420.36 471.00 511.73 477.55

BEST 16758.36 14619.93 12364.56 11190.65

GAP 6.76% 7.86% 0.84% 0.50%

ACE LAS se

AVG 16802.26 14617.32 12742.95 11433.27

SD 15.93 27.55 458.11 400.82

BEST 16766.4 14557.79 12347.93 11197.41

GAP 6.81% 7.4% 0.70% 0.56%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4

SD 478.03 481.82 401.69 419.97

BEST 16745.33 14597.72 12341.12 11171.26

GAP 6.68% 7.69% 0.65% 0.32%
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Table 7: Performance comparison during the testing process (learning on selection for

evolution heuristics, i.e. se), type-RC2

RC201 RC202 RC203 RC204

Best-known Solutions 5406.91 [39] 4367.09 [47] 4049.62 [47] 3798.41 [39]

ACE FS se

AVG 5682.11 5462.07 4345.10 3977.98

SD 46.89 34.51 284.60 25.68

BEST 5538.27 5400.92 4172.10 3934.86

GAP 2.43% 23.71% 3.02% 3.59%

ACE NLAS se

AVG 5689.10 5458.57 4247.98 3979.04

SD 70.65 32.83 38.42 25.79

BEST 5550.42 5382.51 4173.24 3928.85

GAP 2.65% 23.29% 3.05% 3.43%

ACE LAS se

AVG 5617.92 5394.25 4211.85 3946.07

SD 17.79 22.38 25.11 11.12

BEST 5580.24 5332.49 4159.75 3924.74

GAP 3.21% 22.15% 2.72% 3.32%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20

SD 55.43 42.20 38.76 28.32

BEST 5594.09 5347.23 4163.38 3905.85

GAP 3.46% 22.48% 2.81% 2.83%
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(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 6: Performance comparison during the training process (learning on selection for

replacement heuristics, i.e. sr)

As shown in Figure 6, the proposed ACE methods are able to learn on

selection for replacement heuristics throughout the training process. How-

ever, as Tables 8-11 show, the RL-based methods (i.e. three ACE variants)
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have slightly but not significantly better performance than the non-learning

method on all instances during the testing process. This indicates that selec-

tion for replacement heuristic has little impact on the algorithm performance

although ACE methods have a relatively good learning performance. One

possible explanation is that the action space is relatively small thus presents

limited scope for learning.

Table 8: Performance comparison during the testing process (learning on selection for

replacement heuristics, i.e. sr), type-R1

R101 R102 R103 R104

Best-known Solutions 20645.79 [36] 18486.12 [37] 14292.68 [38] 10007.24 [39]

ACE FS sr

AVG 20953.99 18705.20 15253.01 11337.15

SD 30.14 29.10 343.92 406.37

BEST 20905.51 18659.77 14521.65 11097.61

GAP 1.26% 0.94% 1.60% 10.90%

ACE NLAS sr

AVG 21039.63 18757.65 15296.03 11202.98

SD 311.39 222.57 279.64 302.91

BEST 20885.40 18669.78 14458.03 11070.86

GAP 1.16% 0.99% 1.16% 10.63%

ACE LAS sr

AVG 20941.11 18686.76 15287.74 11158.34

SD 29.51 17.75 234.07 219.93

BEST 20893.87 18628.8 14440.08 11057.46

GAP 1.20% 0.77% 1.03% 10.49%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85

SD 30.37 215.69 207.39 443.38

BEST 20901.02 18675.05 14448.89 11085.36

GAP 1.24% 1.02% 1.09% 10.77%
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Table 9: Performance comparison during the testing process (learning on selection for

replacement heuristics, i.e. sr), type-R2

R201 R202 R203 R204

Best-known Solutions 5252.37 [40] 4191.7 [41] 3939.54 [42] 2825.52 [43]

ACE FS sr

AVG 5485.78 5307.81 4184.56 3972.95

SD 17.39 40.18 29.26 27.01

BEST 5442.47 5220.64 4130.73 3928.06

GAP 3.62% 24.55% 4.85% 39.02%

ACE NLAS sr

AVG 5532.74 5193.71 4155.69 3927.74

SD 28.14 292.15 26.95 23.88

BEST 5484.73 4290.74 4112.68 3884.60

GAP 4.42% 2.36% 4.4% 37.48%

ACE LAS sr

AVG 5462.73 4860.06 4141.74 3912.04

SD 41.66 432.75 29.79 16.42

BEST 5391.18 4313.70 4079.64 3886.11

GAP 2.64% 2.91% 3.56% 37.54%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82

SD 24.47 49.37 23.49 19.65

BEST 5481.47 5287.09 4184.90 3989.41

GAP 4.36% 26.13% 6.23% 41.19%
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Table 10: Performance comparison during the testing process (learning on selection for

replacement heuristics, i.e. sr), type-RC1

RC101 RC102 RC103 RC104

Best-known Solutions 15696.94 [44] 13554.75 [44] 12261.67 [45] 12135.487 [46]

ACE FS sr

AVG 17138.92 15075.5 13010.12 11932.74

SD 495.57 489.15 480.12 487.54

BEST 16729.1 14581.41 12380 11191.67

GAP 6.58% 7.57% 0.97% 0.50%

ACE NLAS sr

AVG 17131.87 15335.74 13220.6 12009.46

SD 504.41 434.11 382.15 453.92

BEST 16695.41 14574.36 12381.99 11176.33

GAP 6.36% 7.52% 0.98% 0.37%

ACE LAS sr

AVG 16789.31 14632.69 12408.88 11264.29

SD 36.77 28.55 33.79 226.67

BEST 16720.35 14577.61 12360.48 11188.16

GAP 6.52% 7.55% 0.81% 0.47%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4

SD 478.03 481.82 401.69 419.97

BEST 16745.33 14597.72 12341.12 11171.26

GAP 6.68% 7.69% 0.65% 0.32%

31



Table 11: Performance comparison during the testing process (learning on selection for

replacement heuristics, i.e. sr), type-RC2

RC201 RC202 RC203 RC204

Best-known Solutions 5406.91 [39] 4367.09 [47] 4049.62 [47] 3798.41 [39]

ACE FS sr

AVG 5664.16 5476.56 4252.20 4010.41

SD 33.7 31.81 36.96 28.62

BEST 5609.33 5422.93 4167.97 3962.13

GAP 3.74% 24.22% 2.92% 4.31%

ACE NLAS sr

AVG 5663.75 5432.35 4308.48 3970.37

SD 54.65 50.32 216.30 20.95

BEST 5584.09 5341.78 4138.31 3929.21

GAP 3.28% 22.36% 2.19% 3.44%

ACE LAS sr

AVG 5624.67 5438.88 4217.56 3967.57

SD 33.25 42.35 31.91 18.10

BEST 5536.72 5331.38 4141.87 3925.76

GAP 2.40% 22.12% 2.28% 3.35%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20

SD 55.43 42.20 38.76 28.32

BEST 5594.09 5347.23 4163.38 3905.85

GAP 3.46% 22.48% 2.81% 2.83%
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4.3. Learning on Selection Heuristics and Evolution Operators

4.3.1. Effectiveness of the Learning Models

Experimental results on the training process are shown in Figure 7 to

investigate the effectiveness of extending the search space from evolution

operators alone to both selection heuristics and evolution operators.

As shown in Figure 7, despite having a worse starting point, all the ACE

methods on the search space of both selection heuristics and evolution op-

erators (both) outperform those on the search space of evolution operators

alone (operator). This demonstrates the positive synergy between selection

heuristics and evolution operators. In other words, proper collaboration be-

tween selection heuristics and evolution operators significantly improves the

performance of search algorithms. More importantly, this indicates that hu-

man experience can help with algorithm design within a limited design space,

i.e. using human expertise to fix the other components besides evolution op-

erators leads to a better starting point, but machine learning outperforms

within a larger algorithm design space and therefore has more potential to

design better algorithms and attain better solutions.

Concerning learning on the search space of both selection heuristics and

evolution operators, ACE LAS both performs better than the others, and

ACE FS both and ACE NLAS both demonstrate competitive performance

during the training process. This shows that the adaptive coefficient adjust-

ment scheme can guide the agent to explore new actions at the early stage of

the search process while also exploit the best actions at the later stage. The

advantage of ACE LAS both over ACE NLAS both is that the simple lin-

ear coefficient adjustment is much less time-consuming, and therefore more
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(a) R101 (b) R102 (c) R103 (d) R104

(e) R201 (f) R202 (g) R203 (h) R204

(i) RC101 (j) RC102 (k) RC103 (l) RC104

(m) RC201 (n) RC202 (o) RC203 (p) RC204

Figure 7: Performance comparison during the training process (learning on evolution

operators vs. learning on both selection heuristics and evolution operators)

computational time can be used to evolve the population and enhance the

search performance.

Regarding the performance of ACE variants during the testing process,

34



Table 12: Performance comparison during the testing process (learning on evolution op-

erators vs. learning on both selection heuristics and evolution operators), type-R1

R101 R102 R103 R104

Best-known Solutions 20645.79 [36] 18486.12 [37] 14292.68 [38] 10007.24 [39]

ACE FS both

AVG 20864.64 19267.41 15252.24 11630.38

SD 395.65 516.22 150.05 483.08

BEST 20653.99 18522.27 14613.02 11049.23

GAP 0.04% 0.20% 2.24% 10.41%

ACE NLAS both

AVG 21119.96 19148.23 15222.18 11471.89

SD 506.19 466.2739 200.952 482.93

BEST 20653.76 18500.85 14350.38 11044.7

GAP 0.04% 0.08% 0.40% 10.37%

ACE LAS both

AVG 20663.25 19193.66 15161.89 11069.15

SD 7.22 446.35 269.76 19.38

BEST 20652.27 18491.29 14348.23 11022.37

GAP 0.03% 0.03% 0.39% 10.14%

ACE FS operator

AVG 20664.24 18653.01 15255.71 11092.17

SD 13.08 339.90 7.28 20.39

BEST 20653.76 18498.31 15243.27 11059.56

GAP 0.04% 0.07% 6.65% 10.52%

ACE NLAS operator

AVG 20663.64 18512.82 15131.34 11126.13

SD 9.26 12.75 293.55 205.91

BEST 20653.99 18491.88 14400.16 11033.77

GAP 0.04% 0.03% 0.75% 10.26%

ACE LAS operator

AVG 20788.71 18522.37 15129.87 11090.62

SD 288.5524 14.02 305.60 35.27

BEST 20653.76 18504.07 14353.07 11061.15

GAP 0.04% 0.097% 0.42% 10.53%

Non-learning

AVG 20957.89 18769.97 15342.55 11373.85

SD 30.37 215.69 207.39 443.38

BEST 20901.02 18675.05 14448.89 11085.36

GAP 1.24% 1.02% 1.09% 10.77%
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Table 13: Performance comparison during the testing process (learning on evolution op-

erators vs. learning on both selection heuristics and evolution operators), type-R2

R201 R202 R203 R204

Best-known Solutions 5252.37 [40] 4191.7 [41] 3939.54 [42] 2825.52 [43]

ACE FS both

AVG 5351.79 5177.05 4065.49 3844.57

SD 35.72 22.12 28.78 21.66

BEST 5278.02 5146.30 4010.91 3796.73

GAP 0.49% 22.77% 1.81% 34.37%

ACE NLAS both

AVG 5353.24 5169.60 4051.64 3836.50

SD 36.00 22.24 30.32 25.38

BEST 5284.13 5129.79 4006.80 3807.09

GAP 0.60% 22.38% 1.71% 34.74%

ACE LAS both

AVG 5320.87 5050.10 4026.06 3825.20

SD 15.84 266.36 14.00 8.44

BEST 5277.71 4255.46 3999.29 3806.12

GAP 0.48% 1.52% 1.52% 34.71%

ACE FS operator

AVG 5318.49 5115.03 4033.03 3825.06

SD 10.21 168.85 11.77 8.62

BEST 5298.13 4361.74 3997.63 3782.99

GAP 0.87% 4.06% 1.48% 33.89%

ACE NLAS operator

AVG 5316.34 5065.46 4029.42 3816.46

SD 10.57 258.14 16.08 8.64

BEST 5298.88 4331.64 3998.09 3796.79

GAP 0.89% 3.34% 1.49% 34.38%

ACE LAS operator

AVG 5314.33 5113.26 4077.97 3818.40

SD 14.89 192.43 58.36 11.47

BEST 5287.98 4265.06 4017.52 3795.08

GAP 0.68% 1.75% 1.98% 34.31%

Non-learning

AVG 5533.63 5384.61 4252.69 4020.82

SD 24.47 49.37 23.49 19.65

BEST 5481.47 5287.09 4184.90 3989.41

GAP 4.36% 26.13% 6.23% 41.19%
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Table 14: Performance comparison during the testing process (learning on evolution op-

erators vs. learning on both selection heuristics and evolution operators), type-RC1

RC101 RC102 RC103 RC104

Best-known Solutions 15696.94 [44] 13554.75 [44] 12261.67 [45] 12135.487 [46]

ACE FS both

AVG 17550.06 15508.28 13474.65 12232.91

SD 467.96 464.78 430.80 23.29

BEST 16677.82 14521.81 12443.92 12176.53

GAP 6.25% 7.13% 1.49% 9.35%

ACE NLAS both

AVG 17708.71 15444.12 13315.13 12235.36

SD 312.92 511.43 223.25 24.31

BEST 16705.59 14552.96 12321.2 12171.33

GAP 6.43% 7.36% 0.49% 9.30%

ACE LAS both

AVG 17555.36 15332.23 13273.83 12032.23

SD 473.81 383.64 287.95 407.30

BEST 16648.09 14516.89 12365.86 11168.88

GAP 6.06% 7.10% 0.85% 0.3%

ACE FS operator

AVG 17271.06 15480.25 13348.91 12072.58

SD 478.25 205.12 17.19 333.02

BEST 16681.82 14566.36 13302.72 11247.47

GAP 6.27% 7.46% 8.49% 1.01%

ACE NLAS operator

AVG 17027.84 15479.54 13296.05 12065.08

SD 462.77 201.48 211.14 344.85

BEST 16674.02 14579.25 12354.11 11209.12

GAP 6.22% 7.56% 0.75% 0.66%

ACE LAS operator

AVG 16951.76 15310.34 13302.72 12214.11

SD 417.82 396.81 213.35 222.48

BEST 16667.91 14561.73 12351.55 11225.98

GAP 6.19% 7.43% 0.73% 0.81%

Non-learning

AVG 17105.48 15194.24 13210.88 12059.4

SD 478.03 481.82 401.69 419.97

BEST 16745.33 14597.72 12341.12 11171.26

GAP 6.68% 7.69% 0.65% 0.32%
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Table 15: Performance comparison during the testing process (learning on evolution op-

erators vs. learning on both selection heuristics and evolution operators), type-RC2

RC201 RC202 RC203 RC204

Best-known Solutions 5406.91 [39] 4367.09 [47] 4049.62 [47] 3798.41 [39]

ACE FS both

AVG 5534.21 5310.02 4306.63 3903.02

SD 38.91 49.67 309.84 24.17

BEST 5478.78 5204.87 4118.84 3842.72

GAP 1.33% 19.22% 1.71% 1.17%

ACE NLAS both

AVG 5550.32 5288.01 4273.22 3910.53

SD 48.62 46.29 264.60 30.43

BEST 5449.35 5218.59 4128.85 3864.09

GAP 0.78% 19.54% 1.96% 1.73%

ACE LAS both

AVG 5510.25 5292.42 4161.03 3879.72

SD 25.18 33.04 21.08 15.62

BEST 5460.29 5209.88 4094.21 3843.16

GAP 0.99% 19.34% 1.10% 1.18%

ACE FS operator

AVG 5499.55 5272.72 4176.15 3877.98

SD 12.66 18.38 20.04 13.64

BEST 5474.01 5245.04 4131.80 3847.81

GAP 1.24% 20.14% 2.03% 1.30%

ACE NLAS operator

AVG 5498.08 5276.13 4176.11 3885.27

SD 20.45 19.19 27.09 13.30

BEST 5459.43 5233.93 4133.47 3846.10

GAP 0.97% 19.89% 2.07% 1.25%

ACE LAS operator

AVG 5558.41 5266.24 4202.15 3877.72

SD 55.07 30.76 50.11 10.88

BEST 5497.77 5214.28 4120.17 3855.23

GAP 1.68% 19.44% 1.74% 1.49%

Non-learning

AVG 5683.60 5431.68 4238.98 3973.20

SD 55.43 42.20 38.76 28.32

BEST 5594.09 5347.23 4163.38 3905.85

GAP 3.46% 22.48% 2.81% 2.83%
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Tables 12-15 tabulate the statistical performances of ACE FS operator, ACE -

NLAS operator, ACE LAS operator concerning the search space of evolution

operators, and ACE FS both, ACE NLAS both, ACE LAS both concerning

the search space of both selection heuristics and evolution operators.

In Tables 12-15, ACE LAS both attains better performance on solution

quality than the other two ACE variants on most instances. Note that the

only difference between ACE variants lies in the entropy coefficient adjust-

ment scheme. Therefore, it is possible to infer that the linear entropy coeffi-

cient adjustment scheme is useful in striking the balance between exploration

and exploitation during the learning process, particularly on the large search

space of algorithm design. This observation is consistent with the results

obtained during the training process.

Note that the only difference in the selected type-R1 instances lies in

the customer time windows density, i.e. the percentage of customers with

time windows of R101 and R102 is 100% and 75% respectively, and 50%

and 25% for R103 and R104. As shown in Figure 7, with the decrease of

time windows density (i.e. with looser constraints), the starting points of all

ACE variants increase. This observation indicates that the ACE methods

learn better on instances with looser constraints. One possible reason is

that the solution space of the instances with looser constraints consists of

more feasible solution candidates, which is helpful for learning techniques to

discover some knowledge or patterns.

4.3.2. Component Analysis of the Best Designed Search Algorithms

Taking type-R1 instances as examples, Figures 8-10 show the most adapted

algorithmic components of the best designed search algorithms learned by the
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ACE LAS both method on the Selection for Evolution heuristics (i.e. Fig-

ure 8), Evolution Operators (i.e. Figure 9) and Selection for Replacement

heuristics (i.e. Figure 10).

In the best designed search algorithms, all the Selection for Evolution

heuristics are called during the optimisation process although the appear-

ances of each heuristic are different. The same phenomenons can be observed

in terms of Evolution Operators and Selection for Replacement heuristics.

This indicates that using distinct algorithmic components (e.g., selection

heuristics and evolution operators) can help to improve the performance of

the search algorithms. Moreover, it should be noted that h8 is identified as

the most frequently called selection for replacement heuristic, which is con-

sistent with the findings of manually designed algorithms in the literature.

4.3.3. Generality of the Learning Models

To investigate the generality of the policies learned by the ACE methods

concerning different search spaces of algorithm components for solving the

same-type and different-type problem instances, the policies trained on in-

stance R101 are employed to design algorithms for solving different types of

new problem instances.

Results in Table 16 demonstrate a good degree of generality of the re-

inforcement learning based models. The “GAP” is less than 3% on most

selected instances apart from instance RC101. Note that ACE LAS both at-

tained best “AVG”, “BEST” and “GAP” on most instances, which is consis-

tent with the experimental results regarding the effectiveness of the learning

models in Section 4.3.1.
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Table 16: Generality of the trained policy R101 (20 runs)

C101 C201 R105 R201 RC101 RC201

Best-known Solutions 10828.94 [37] 3591.56 [37] 15377.11 [37] 5252.37 [40] 15696.94 [44] 5406.91 [39]

ACE FS both

AVG 10828.94 3591.56 16367.11 5369.67 17451.46 5665.17

SD 3.64E-12 4.44E-13 213.87 34.71 516.73 396.70

BEST 10828.94 3591.56 15415.34 5295.14 16672.46 5524.74

GAP 0 0 0.25% 0.81% 6.21% 2.18%

ACE NLAS both

AVG 10882.25 3593.05 16216.42 5361.80 17597.40 5551.16

SD 226.77 6.37 385.46 30.95 301.94 30.14

BEST 10828.94 3591.56 15383.19 5299.25 16687.34 5495.74

GAP 0 0 0.04% 0.89% 6.31% 1.64%

ACE LAS both

AVG 10828.94 3591.56 16252.23 5320.08 17031.94 5495.34

SD 3.64E-12 4.55E-13 337.93 9.75 478.87 16.26

BEST 10828.94 3591.56 15422.13 5288.70 16638.66 5450.61

GAP 0 0 0.29% 0.69% 6.0% 0.81%

ACE FS operator

AVG 10828.94 3591.56 16354.52 5320.17 17243.77 5503.02

SD 3.64E-12 4.55E-13 203.59 10.67 480.18 17.45

BEST 10828.94 3591.56 15468.55 5301.74 16662.95 5465.95

GAP 0 0 0.59% 0.94% 6.15% 1.09%

ACE NLAS operator

AVG 10828.94 3591.56 16249.68 5323.86 17234.76 5511.80

SD 3.64E-12 4.55E-13 350.09 19.90 492.75 30.22

BEST 10828.94 3591.56 15393.51 5307.14 16653.41 5469.14

GAP 0 0 0.11% 1.04% 6.09% 1.15%

ACE LAS operator

AVG 11051.9 3591.56 16338.5 5383.6 17070.83 5564.74

SD 441.29 4.55E-13 278.59 35.30 457.47 28.72

BEST 10828.94 3591.56 15486.98 5332.277 16658.77 5506.94

GAP 0 0 0.71% 1.52% 6.13% 1.85%
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(a) R101 se (b) R102 se

(c) R103 se (d) R104 se

Figure 8: The most adapted algorithmic components of the best designed search algorithms

obtained by ACE LAS both, Selection for Evolution heuristics

5. Conclusions and Future Work

In this study, we systematically investigate two research issues in auto-

mated algorithm design with machine learning, namely the impact of in-

dividual algorithmic components and the synergy of multiple components,

within a unified general search framework. Extending the search space of

algorithm design from individual components to multiple components re-
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(a) R101 op (b) R102 op

(c) R103 op (d) R104 op

Figure 9: The most adapted algorithmic components of the best designed search algorithms

obtained by ACE LAS both, Evolution Operators

sults in a high-dimensional decision space of algorithm design. Therefore,

an advanced reinforcement learning method with adapted maximum entropy

mechanisms was devised to address the automated algorithm design problem,

with a continuous state space and a high-dimensional discrete action space.

The performance of the learning models, namely their effectiveness and

generality, was assessed on the capacitated vehicle routing problem with time

windows. Results regarding the impact of individual components show that
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(a) R101 sr (b) R102 sr

(c) R103 sr (d) R104 sr

Figure 10: The most adapted algorithmic components of the best designed search algo-

rithms obtained by ACE LAS both, Selection for Replacement heuristics

selection heuristics have less impact on the performance of search algorithms,

which supports human experience in designing search algorithms and findings

reported in the literature. Learning on the synergy of multiple components

demonstrate that proper collaboration among selection heuristics and evo-

lution operators can significantly improve the algorithm performance. The

comparison experiments with the learning on evolution operators indicate

that human design experience can help algorithm design to some extent, but
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machine learning techniques overtake human experience when dealing with a

larger algorithm design space which human experts are not able to explore.

For further work, the proposed learning models can be extended to in-

vestigate automated design of multi-objective search algorithms with the

support of the extended multi-objective general search framework. It would

be interesting to challenge the proposed automated design approaches by ap-

plying them to more complex VRP variants and real-world problems, such

as the multi-depot vehicle routing problem [48], the stochastic vehicle rout-

ing problem [49], or the time-dependent green vehicle routing problem with

time windows [50]. Further studies may also investigate how to transfer

the reusable knowledge in designing search algorithms for small-scale vehicle

routing problems to large-scale vehicle routing problems, or even to other

complex combinatorial optimisation problems.

Acknowledgement

This research has been funded by the School of Computer Science, Uni-

versity of Nottingham, UK.

45



References

[1] N. Pillay, R. Qu, Automated Design of Machine Learning and Search

Algorithms, Springer, 2021.

[2] Q. Zhao, Q. Duan, B. Yan, S. Cheng, Y. Shi, A survey on automated

design of metaheuristic algorithms, arXiv preprint arXiv:2303.06532

(2023).

[3] R. Qu, G. Kendall, N. Pillay, The general combinatorial optimization

problem: Towards automated algorithm design, IEEE Computational

Intelligence Magazine 15 (2020) 14–23.

[4] W. Meng, R. Qu, Automated design of search algorithms: Learning on

algorithmic components, Expert Systems with Applications 185 (2021)

115493.

[5] W. Yi, R. Qu, L. Jiao, B. Niu, Automated design of metaheuristics

using reinforcement learning within a novel general search framework,

IEEE Transactions on Evolutionary Computation 27 (2023) 1072–1084.

doi:10.1109/TEVC.2022.3197298.

[6] Y. Sakurai, K. Takada, T. Kawabe, S. Tsuruta, A method to control

parameters of evolutionary algorithms by using reinforcement learning,

in: 2010 Sixth International Conference on Signal-Image Technology

and Internet Based Systems, IEEE, 2010, pp. 74–79.

[7] G. Duflo, G. Danoy, E.-G. Talbi, P. Bouvry, Automated design of effi-

cient swarming behaviours: a Q-learning hyper-heuristic approach, in:

46



Proceedings of the 2020 Genetic and Evolutionary Computation Con-

ference Companion, 2020, pp. 227–228.

[8] B. Crawford, R. Soto, J. Lemus-Romani, M. Becerra-Rozas, J. M.
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