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Abstract

Integrated berth and quay crane allocation problem

(BQCAP) are two essential seaside operational problems

in container terminal scheduling. Most existing works

consider only one objective on operation and partition

of quay into berths of the same lengths. In this study,

BQCAP is modeled in a multiobjective setting that aims

to minimize total equipment used and overall opera-

tional time and the quay is partitioned into berths of

different lengths, to make the model practical in the

real‐world and complex quay layout setting. To solve

the new BQCAP efficiently, a multiobjective hydrologic

cycle optimization algorithm is devised considering

problem characteristics and historical Pareto‐optimal

solutions. Specifically, the quay crane of the large vessel

in all Pareto‐optimal solutions is rearranged to increase

the chance of finding a good solution. Besides, worse

solutions are probabilistic retained to maintain diversity.

The proposed algorithm is applied to a real‐world
terminal scheduling problem with different sizes from a

container terminal company. Experimental results show

that our algorithm generally outperforms the other
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well‐known peer algorithms and its variants on

solving BQCAP, especially in finding the Pareto‐
optimal solutions range.
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1 | INTRODUCTION

Container terminals serve as important nodes in global sea‐cargo transportation. According to
Sirimanne et al.,1 in 2018, its trade volume reached 11.08 billion tons, which urges effective
resource utilization during the whole operational process. Various scheduling problems in
container terminals have attracted attention in the engineering industry and academia to
maximize economic benefits.

Berth allocation problem (BAP) and quay crane assignment problem (QCAP) are the first
two essential scheduling subproblems, which determine the berthing time, mooring position,
optimal quay cranes (QC) arrangement to all incoming vessels (readers are recommended to
the latest related survey Rodrigues and Agra2). Due to problem complexity, these two
subproblems are generally treated separately. Although independence helps in considering
dynamic or improving solution efficiency, however, it neglects the close interaction between
the two subproblems, which often hinders obtaining an optimal system performance.

To overcome the suboptimal problem, Park and Kim3 pioneered an integration model for
the BAP and QCAP then extended by Raa et al.,4 Wang et al.,5 Malekahmadi et al.,6 and among
many others. In the most recent related works, intensive researches focus on constructing a
more practical model in container terminal scheduling. For example, Rodrigues and Agra7

considered an integrated problem with uncertain vessel arrival times, Xiang and Liu8 studied a
robust optimization model case, and Hsu et al.9 extended to an integrated model considering
yard truck scheduling. In many cases, the objective is onefold, such as cost minimization, time
minimization, or deviation minimization.

Although the multiobjective nature has been recognized recently, their objectives focused on
the average port time of vessels, the difference between the actual berth and preferred berth, total
turnaround time of vessels, total operating costs, average waiting time, and total carbon
emissions,10–12 which reckoned without QC equipment that greatly affects port system
performance. Besides, the quay was partitioned into a certain number of fixed‐length berths.
However, the quay utilization efficiency can be improved with berths of flexible and varying
lengths—an approach that supports serving more vessels simultaneously, although with increased
problem complexity. This motivates us to reformulate the problem into a new integrated berth and
quay crane allocation problem with berths of different lengths and multiple objectives (N‐BQCAP,
for short) to help port managers finish work faster, using minimum equipment.

The N‐BQCAP is a complex multiobjective problem, which causes traditional exact methods
to be not applicable. Popular solution schemes to date are combining the multiple objectives
into a single scalar value by the weighted‐sum method,13 or restricting optimization to one of
the objectives by the ε‐constraint method.14 These two approaches rely on statistical estimation
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and only generate an optimal solution rather than a set of nondominated solutions, which
cannot satisfy the various preferences of port managers in reality.

Multiobjective optimization algorithms have revealed good advantages in acquiring solution
sets efficiently and suffered extensive development. Such as, Ben Ammar et al.15 proposed new
versions of multiobjective binary particle swarm optimization, Niu et al.16 gave multiobjective
bacterial colony optimization algorithm, Nourmohammadzadeh and Voss17 declared multi-
objective simulated annealing, and so on. These algorithms mostly adopted convergence first
and diversity second principle, which may get stuck at an easy‐to‐find part of the Pareto front,
especially in problems with disconnected feasible regions. Multiobjective hydrologic cycle
optimization (MOHCO) proposed by Song et al.18 shows great advantages in both local
exploitation and global exploration abilities, exhibiting the potential to deal with our proposed
NP‐hard N‐BQCAP model, which has complex feasible regions. To satisfy more port managers
with different preferences in a single run, we are motivated to further improve the solutions
range by designing some efficient strategies.

On the basis of the analysis mentioned above, an N‐BQCAP model considering varying
berth sizes and adhoc algorithm (archive exploration multiobjective hydrologic cycle
optimization, AEMOHCO for short) are novelly designed. To match the mixed integer
optimization problem, we devise a specific mixed coding strategy for the algorithm. Some main
contributions of this study are as follows:

● An N‐BQCAP mathematical model considering more practical characteristics where berths
of different lengths with multiple objectives are constructed.

● An AEMOHCO algorithm is devised considering the problem characteristics and historical
good solutions, achieving improved scalability, stability, and convergence in solving the
N‐BQCAP.

● A discrete coding strategy is developed in the new problem model to facilitate the effective
performance of the proposed algorithm and provide specific scheduling results.

The remainder of this paper is structured into four sections. The problem description and
formulation of the N‐BQCAP are given in Section 2. The approach based on the MOHCO
algorithm for solving the N‐BQCAP is introduced in Section 3, and then experiments are
followed in Section 4. Section 5 concludes the study with avenues for future work.

2 | PROBLEM DESCRIPTION AND FORMULATION

The predefined N‐BQCAP is formulated as an integrated constrained multiobjective model,
which reflects the practical concerns of port managers. To have a comprehensively
understanding, we will first introduce the problem description followed by its model
formulation, including variables, objectives, and constraints with detailed explanations.

2.1 | Problem description

In daily coastal operation, berth allocation, QC assignment, and yard decision (including truck
scheduling and warehouse storage problems) shall be solved sequentially as Figure 1A presented.
Since the coastal decision affects port operation efficiency greatly and the complexity of integrating
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many subproblems, the last yard decision is not considered here. To increase resource utilization,
the quay is divided into varying berth lengths (as blue separation points in Figure 1A shown)
instead of classical fixed length with a certain number and the QC quantity available for each vessel
is also different. To fulfill the overall performance benefits the integrated N‐BQCAP brought, we
design a berth reassignment strategy, which will be triggered for the vessel when its scheduled
berth is occupied or its QC arrangement is not allowed. Specifically, Figure 1B sketches the whole
decision process of the integrated multiobjective model with multilength berths.

2.2 | Model formulation

Since the N‐BQCAP is a complex constrained multiobjective problem involving multiple
resources, for reading convenience, Table 1 first summarizes the assumptions, sets, parameters,
and variables used in the model construction. Then we introduce the model formulations,
followed by a step‐by‐step explanation:
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FIGURE 1 Sketched process. (A) Vessel service with multilength berths and (B) integrated decision
process. QC, quay crane. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Definition of assumptions, sets, parameters, and variables

Assumptions

Consider unloading process only Vessel arrival time is known in advance

Considers QC capacity only All vessels can find a suitable berth

Sets

Set Definition Set Definition

B m= {1, …, } Berths, indexed by j O o= {1, …, } Service order, indexed by k

V n= {1, …, } Vessels, indexed by i W z= {1, …, } Working vessel, indexed by l

Parameters

Denotation Definition Denotation Definition

Q QC quantity capacity ni Containers on vessel i

Li Length of the vessel i ai Arrival time of the vessel i

Lj Length of the berth j v QC unit working efficiency

q imax, Maximum QC quantities assigned for vessel i

Decision variables

Denotation Definition Denotation Definition

bi Berth allocation for i si Start working time of i

qi QC quantity assigned to the vessel i

x
i k j

=
1 if vessel is served at th in the service order at berth ,

0 otherwise
i j k, ,

Abbreviation: QC, quay crane.
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where Equations (1) and (2) are two conflicting objective functions, where f1 aims to
minimize the total equipment used (i.e., QC) while f2 aims to minimize the sum of
the waiting and working time of every vessel. Constraint (3) indicates that each vessel must
be served only once at a berth in any order. Constraint (4) requires that, at most, one vessel
can be serviced at any berth in any order. Constraint (5) stipulates the first vessel will be
served as soon as its arrival. Constraint (6) defines that a vessel cannot be served before its
arrival. In each berth, constraint (7) prevents the subsequent vessel from working before the
completion of its antecedent vessel. Constraint (8) ensures that the total working QCs do
not exceed the total capacity. Constraint (9) ensures that the vessel can be accommodated in
its selected berth. Constraint (10) stipulates the maximum QCs arrangement for each vessel,
which is determined by the vessel length. The last two constraints define the multilength
berths setting in this paper. Constraints (11)–(14) are the value range for all decision
variables, respectively.

3 | SOLUTION PROCEDURE BASED ON AEMOHCO
ALGORITHM

In this section, we propose an improved MOHCO considering problem characteristics
and historical Pareto‐optimal information called AEMOHCO for solving the N‐BQCAP.
It originates from the hydrological cycle phenomenon on Earth and includes three main
operators. The remainder of this section presents the basic MOHCO, improved strategies with
algorithm analysis, AEMOHCO's detailed steps, and coding mechanisms for solving the
N‐BQCAP.

3.1 | Basic MOHCO

To clearly understand the improvements of our AEMOHCO compared with the basic MOHCO,
we first describe the general process of the MOHCO algorithm in Figure 2. The gray rectangles
are three key operations in an evolutionary loop (AEMOHCO maintains the same operators).
Specifically, the flow operator guides the solution towards a better region in the search space.
Infiltration adjusts search direction by random‐dimension neighborhood search. The last
operator either facilitates the escape from the local optimum (evaporation) or exploits the local
region (precipitation). These designs although can guarantee solution accuracy and diversity at
a certain, they execute random mutation and always follow the best direction only, which
makes the basic MOHCO effectiveness not efficient enough. Especially when need to be applied
to some complex real problems. Thus, we are motivated to propose a more dedicated algorithm
for the N‐BQCAP model solution.

3.2 | AEMOHCO framework

To solve the N‐BQCAP specially, the following two improvements considering problem
characteristics and historical Pareto‐optimal solutions are designed to increase the solution
efficiency and solution range. The modifications proposed to the original MOHCO are
concentrated on the green dashed rectangle in Figure 2.
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1) Large vessel's QC rearrangement strategy (applied in the flow process): For the acquired
Pareto‐optimal solutions in the flow process, large vessel's QC rearrangement is executed
instead of moving to a random position as basic MOHCO does. And the new position will be
accepted only when the rearrangement solution performs well. This QC‐related detection
strategy absorbs the useful problem characteristics (both equipment and berth size
information) to generate the favorable and drastic changes, and makes the full use of the
contemporary Pareto‐optimal solutions, contributing to effective exploitation and improved
accuracy. The corresponding formulation is given as follows.





rand d i
x

x x x
=

+ ( − ). × (1, ), if is not a Pareto‐optimal solution,

Execute QC rearrangement for large vessel, otherwise,

i j i
Flow

(15)

where the particle j has better fitness than i, rand () is a random generation function to
generate a d‐dimension vector, and x xx = ( , …, ).d1

2) Probabilistic worse‐solution acceptance strategy (applied in the solution preservation): The
strategy proposed in 1) increases the chance of finding a good solution. In this strategy, all
better solutions and a half of worse solutions generated from the Infiltration process are
maintained to increase swarm diversity while retaining a fast convergence. In fact, keeping few
bad solutions may help discover some unexpected potential regions. Formulation (16) expresses
the detailed method.

≺

≺







f f

f f randx

x x x

x x x

x

=

, if ( ) ( ),

, if ( ) ( ) and > 0.5,

, otherwise,

i

i

i

i

Infiltration Infiltration

Infiltration Infiltration (16)

FIGURE 2 General process of the multiobjective hydrologic cycle optimization [Color figure can be viewed
at wileyonlinelibrary.com]
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where f () is the corresponding objective value and ≺ represents the dominated notation
generally used in multiobjective algorithms.

On the base of the aforementioned introduction, the detailed steps of the AEMOHCO are
presented in Algorithm 1.

Algorithm 1. Detailed steps of the AEMOHCO

Input: Parameters including population size, flow times, and termination criteria

Output: Archive set G containing all approximated Pareto‐optimal solutions

1: Initial feasible population

2: Evaluate solutions and construct the initial G

3: while the termination criterion is not fulfilled do

4: for each individual i in the population do

5: Execute the Flow operation by Equation (15)

6: while f x( )Flow is Pareto‐dominated && flow times are not reached do

7: x x=i Flow

8: Flow another time on the base of xFlow
9: end while

10: end for

11: Update G

12: for each individual i in the population do

13: x x= iInfiltration

14: Execute Infiltration operation:

rand sdX X X X= + ( − ). ×2 × ( (1, ) − 0.5)SD SD SD j SDInfiltration, Infiltration, Infiltration, , ,
where j is randomly chosen and SD is a vector with random sd dimensions

15: Execute solution keeping strategy as improvement 2) mentioned

16: end for

17: Update G

18: for each individual i in the population do

19: Execute the Evaporation or Precipitation operation:



rand P rand

rand P rand

x

x

moves to another position randomly if < and < 0.5,

moves to best solution′s neighbourhood if < and < 0.5,
i e

i e

where Pe is a preset probability and neighborhood is generated by Gauss mutation

20: end for

21: Update G

22: end while

3.3 | Coding rule for N‐BQCAP model

To illustrate the coding schema of the model, in Figure 3, an example comprising 4 vessels, 4
QCs, and 3 berth sizes (berths 1, 2, and 3 are small‐, middle‐, and large‐berth, respectively) is
presented. Figure 3A presents vessel information—vessel sizes (S, M, and L), arrival time, and
unloading containers, which are used to generate service orders by adopting the first‐in‐first‐
service and more‐container‐first‐service principles. The latter principle is used when multiple
vessels arrive at the same time. Figure 3B,C, whose elements are sorted in ascending order as
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being served, shows the encoding and decoding processes in an evolutionary loop. The
rounding‐off method is utilized to obtain the discrete values of the decision variables in the
problem. For example, the first element of the Berth and QCs column in Figure 3B (2.3 and 3.8)
collectively represents that the first‐serviced vessel S3(L) will be served in the first order at
Berth 3 with 4 QCs. In the decoding process, the first element 2.63 (  n vq/ = 420/40 4 2.63S3 S3 )
and 9:00 in Figure 3C mean that it costs the first‐served vessel S3 2.63 h to unload its containers
and it will be served as soon as it arrives at 9:00. Note that this example only demonstrates the
essential steps in the coding process. We assume that all vessels' working QCs do not exceed
their allowed capacity; if this does not hold, then the Berth Reassignment and Berth Free
Judgment strategies will be triggered so as to realize the integrative decision, as mentioned in
Figure 1B.

4 | EXPERIMENTS AND RESULT ANALYSES

In this section, real‐world instances with different scales are tested to demonstrate the
adaptability and superiority of our proposed AEMOHCO in solving the considered N‐BQCAP
model. In the following parts, the instance details, evaluation metrics, compared algorithms,
improved strategies efficiency, and final scheduling schemes are given, respectively.

4.1 | Case instances and evaluation metrics

The basic instance provided by Liang et al.19 addressing a real‐world problem at Shanghai's
container terminal company has been extended to a large‐scale containing 18 vessels, 17 QCs,
and 6 berths (berths 1 and 2, 3 and 4, and 5 and 6 are small‐, middle‐, and large‐berth,
respectively). Table 2 shows the detailed vessel information of both test instances.

To evaluate the performance of the multiobjective evolutionary algorithms from various
aspects, several performance metrics, that is, generational distance (GD), space (SP), and
inverted generational distance (IGD),20 which are widely recognized in the literature are
applied (For concise, the specific formulations are omitted here). They mainly consider
proximity, diversity, and distribution of the algorithm‐found‐Pareto front (F ) convergence to
the true Pareto‐optimal front (PF ). For any algorithm, smaller GD and SP values reflect better
closeness and inhomogeneity performance and a smaller IGD value reflects better overall
performance. Since the PF of the realistic N‐BQCAP is unknown, a widely used estimated
method is to obtain the PF by collecting all solutions from a large number of experiments on all
the compared algorithms.

(A) (B) (C)

FIGURE 3 Illustrative example of the problem encoding and decoding processes. (A) Examples of
generating service orders, (B) encoding strategy, and (C) decoding results. QC, quay crane.
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4.2 | Performance analysis for AEMOHCO algorithm

4.2.1 | Comparisons with peer algorithms

To make the results convincing, AEMOHCO is first compared against six peer multiobjective
algorithms (i.e., SPEA2,21 MOPSO,22 NSGA‐II,23 MOEA/D,24 MORBCO,16 and CMOPSO25) on
solving the N‐BQCAP model defined in Section 2. The first four are classical multiobjective
algorithms with different evolutionary principles, and the last two are novel algorithms. All
experiments are implemented in MATLAB R2014b. For a fair comparison, population sizes
N = 50 and maximum generations T = 3000 are implemented and each algorithm runs 30
times independently and the best average results obtained by all compared algorithms are
highlighted in boldface. All algorithm parameters follow their original settings and the main
details, including our AEMOHCO algorithm, are listed as follows:

• In SPEA2, probabilities Pcrossover = 0.1 and Pmutation = 0.2.
• Regarding MOPSO, learning factors c1 = 1, c2 = 2, and the inertia weight w0 = 0.9, w1 = 0.5.
• Considering NSGA‐II, Pcrossover = 0.1 and Pmutation = 0.5.
• About MOEA/D, probability Pneighbor = 0.15.

TABLE 2 Vessel information of both instances

Vessel (type)

Instance 1

Vessel (type)

Instance 2

Arrival time Container Arrival time Container

MSG(L) 9:00 428 MSG(L) 9:00 428

NTD(L) 9:00 455 NTD(L) 9:00 455

CG(M) 9:00 259 CG(M) 9:00 259

NT(S) 21:00 172 NT(S) 21:00 172

LZ(L) 0:30 684 LZ(L) 0:30 684

XY(M) 8:30 356 XY(M) 8:30 356

LZI(L) 7:00 435 LZI(L) 7:00 435

GC(M) 11:30 350 GC(M) 11:30 350

LP(S) 21:30 150 LP(S) 21:30 150

LYQ(S) 22:00 150 LYQ(S) 22:00 150

CCG(M) 9:00 333 CCG(M) 9:00 333

NT(S) 10:00 165

LP(S) 15:00 180

LYQ(S) 11:00 193

XY(M) 14:00 222

CG(M) 16:00 380

MSG(L) 17:00 550

LZI(L) 20:30 500
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• Concerning MORBCO, Nswim = 4, c1 = 3, c2 = 3, Elitenum = 20, and chemotaxis step
C= 0.001.

• Regard to CMOPSO, Elitenum = 10.
• In AEMOHCO, maximum flow time Nflow = 3 and probability Pe&d = 0.25.

Table 3 presents the mean, standard deviation, and best result of GD, SP, and IGD metrics
among all compared algorithms, for solving the new N‐BQCAP under both instances. It is clear that
AEMOHCO exhibits good performance since most of its mean values are minimal and it always
finds the best result, which means that AEMOHCO can approximate the PF with a set of well‐
converged and well‐distributed feasible solutions than other algorithms. This is due to that the
problem characteristic incorporated in the AEMOHCO can increase the chance of finding a good
solution. Although the standard deviations obtained by the MORBCO are lower than that by the
AEMOHCO, there is no significant difference in both instances. This is because that MORBCO
focuses on certain elite information, which may easily be trapped in local optimal.

TABLE 3 Metric results obtained by comparing algorithms for solving the N‐BQCAP

Metrics

GD SP IGD

Algorithms Mean Std Best Mean Std Best Mean Std Best

Instance 1

SPEA2 0.505≈ 0.344 0.306 1.498− 0.089 1.599 6.209− 2.519 2.772

MOPSO 0.796− 0.053 0.752 0.772− 0.025 0.783 2.513− 0.724 1.582

NSGA‐II 0.929− 0.175 0.874 0.778− 0.037 0.770 4.344− 2.667 2.516

MOEA/D 0.717− 0.278 0.554 0.789− 0.080 0.922 4.890− 1.546 2.578

MORBCO 1.502− 0.008 1.500 0.893− 0.011 0.885 9.221− 0.176 9.116

CMOPSO 1.190− 0.126 1.342 0.883− 0.048 0.962 11.66− 0.879 10.23

AEMOHCO 0.230 0.054 0.214 0.611 0.044 0.638 1.280 0.456 0.670

+/−/ 0/1/5 − − 0/0/6 − − 0/0/6 − −

Instance 2

SPEA2 0.247≈ 0.150 0.147 1.324− 0.088 1.317 6.076− 2.106 3.193

MOPSO 0.400− 0.064 0.322 0.827≈ 0.047 0.886 2.352− 0.266 3.193

NSGA‐II 0.260≈ 0.135 0.197 0.820≈ 0.045 0.822 1.384− 0.344 0.836

MOEA/D 0.369− 0.135 0.161 0.870− 0.086 0.833 3.494− 1.115 1.536

MORBCO 0.256− 0.025 0.243 0.822≈ 0.017 0.808 1.269− 0.292 0.960

CMOPSO 0.388− 0.049 0.341 0.857− 0.042 0.835 6.131− 1.601 3.035

AEMOHCO 0.228 0.059 0.083 0.826 0.028 0.781 1.065 0.232 0.524

+/−/ 0/2/4 – – 0/3/3 – – 0/0/6 – –

Abbreviations: AEMOHCO, archive exploration multiobjective hydrologic cycle optimization; GD, generational distance; IGD,
inverted generational distance; N‐BQCAP, new integrated berth and quay crane allocation problem; SP, space; Std, standard
deviation.
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Furthermore, we apply Wilcoxon's rank‐sum test26 at a significant level of 5% to statistically
compare the mean of all metrics of AEMOHCO with peer algorithms. Signals +, −, and  in the
upper right corner of the Mean columns indicate that the compared algorithm has better/worse
performance than AEMOHCO, or similar performance as AEMOHCO, respectively.
AEMOHCO is statistically no worse than that of any comparison algorithm in terms of
distribution and convergence, as indicated by the results that no signal+ exists in the last rows
under both instances.

4.2.2 | Effectiveness demonstration of the proposed improved strategies

To demonstrate the effectiveness of the aforementioned modified strategies in AEMOHCO, this
part conducts comparisons between AEMOHCO and the basic MOHCO in terms of solution
quality, algorithm performance stability, and convergence.

Table 4 shows the comparison results among the variant algorithms considering the
metrics previously described. From the results, AEMOHCO always achieves smaller metric
results, and nearly 25% improvement on IGD is acquired in both N‐BQCAP instances,
which means that the improved strategies help in enhancing algorithm‐solving ability. In
addition, the algorithm‐found‐Pareto fronts by the two algorithms in Instance 1 are visually
shown in Figure 4A,B. The simulated Pareto front PF of the problem is shown as a red
dotted line. It can be seen that AEMOHCO converges to the simulated PF better than
MOHCO and its solution covers a wider range, which can provide decision‐makers with
more diverse decision‐making schemes. A similar conclusion can be acquired in large‐scale
Instance 2, as shown in Figure 5.

To demonstrate the Pareto‐optimal solution convergence capability enhanced strategies
brought, the mean numbers of Pareto‐optimal solutions found by AEMOHCO and MOHCO
under every 100 generations are recorded in Table 5. The mean numbers found in the 50th
generation are also preserved to detect the initial response speed of the algorithms. The results
show that AEMOHCO can quickly find more considerable solution numbers at the very
execution beginning than MOHCO regardless of the instance scale. And AEMOHCO always
finds more Pareto‐optimal solutions than MOHCO in the same search environment.

TABLE 4 Metric results obtained by different HCO variants

Index

AEMOHCO MOHCO

GD SP IGD GD SP IGD

Instance 1

Average 0.167 0.804 1.224 0.227 0.819 1.667

Std 0.066 0.043 0.345 0.117 0.050 0.811

Instance 2

Average 0.246 0.770 2.928 0.258 0.772 3.931

Std 0.050 0.055 0.819 0.123 0.075 0.897

Abbreviations: AEMOHCO, archive exploration multiobjective hydrologic cycle optimization; GD, generational distance; HCO,
hydrologic cycle optimization; IGD, inverted generational distance; MOHCO, multiobjective hydrologic cycle optimization; SP,
space; Std, standard deviation.
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4.2.3 | Scheduling scheme exhibition

One illustrative example solution on Instance 1 given by AEMOHCO is presented in Figure 6.
The figure clearly shows that vessels CG(M) and LZ(L), which arrive at 0:30 at the same time,
are arranged at Berth 2 and Berth 4, respectively, and two QCs are scheduled for their
unloading operation. The red arrow pointing from Berth 4 to Berth 3 indicates that the vessel

(A) (B)

FIGURE 5 Pareto fronts produced by algorithms for Instance 2. (A) AEMOHCO algorithm and (B) MOHCO
algorithm. AEMOHCO, archive exploration multiobjective hydrologic cycle optimization; MOHCO, multiobjective
hydrologic cycle optimization; PF, Pareto front. [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 4 Pareto fronts produced by algorithms for the Instance 1. (A) AEMOHCO algorithm and (B) MOHCO
algorithm. AEMOHCO, archive exploration multiobjective hydrologic cycle optimization; MOHCO, multiobjective
hydrologic cycle optimization; PF, Pareto front. [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 Pareto‐optimal solution quantities found with an increase in generations

Iterations (time)

Instance 1 Instance 2

AEMOHCO MOHCO AEMOHCO MOHCO

50 23.25 18.00 27.45 21.15

100 26.00 21.40 30.60 24.80

200 28.85 23.70 35.25 29.90

300 30.50 25.55 37.35 32.70

400 31.10 26.65 39.15 34.65

500 32.00 27.80 40.35 36.20

600 32.70 28.85 42.30 37.55

700 33.20 29.65 42.85 39.50

800 34.00 30.25 44.30 40.60

900 34.25 31.20 45.15 41.25

1000 34.70 31.65 46.20 41.90

Abbreviations: AEMOHCO, archive exploration multiobjective hydrologic cycle optimization; MOHCO, multiobjective
hydrologic cycle optimization.

FIGURE 6 Example scheduling solution for Instance 1 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Example scheduling solution for Instance 2 [Color figure can be viewed at
wileyonlinelibrary.com]
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LZI(L), which is originally arranged at Berth 4, is rescheduled to another vacant and suitable
Berth 3 since its original berth is occupied at 7:00. The second serviced vessel MSG(L) at Berth 3
cannot be serviced until its antecedent vessel LZI(L) finishes its work at 12:44. This waiting can
be attributed to the lack of a vacant and suitable berth for MSG(L) at 9:00. We can conclude all
the waiting information from the brace in the figure directly. Similarly, one allocation scheme
for the large‐scale instance is presented in Figure 7.

5 | CONCLUSION

Contrasting from the existing models that ignore flexible multilength berths and QC utilization
on the integrated BQCAP, this study contributes to establishing a more realistic integrated
multiobjective model (i.e., N‐BQCAP), which defines the total equipment used as independent
objective. Thereafter, inspired by the advantages of keeping few bad solutions and equipment
rearrangement characteristics, a tailored AEMOHCO algorithm is proposed to solve the
N‐BQCAP and its effectiveness has been demonstrated comprehensively by some real‐world
instances. We also can find that AEMOHCO can quickly find more considerable solution
numbers at the very beginning regardless of the instance scale.

In the future, yard truck allocation problem also deserves consideration in conjunction with
this study to provide the scheduling scheme for the whole process. Besides, our proposed
AEMOHCO algorithm is only suitable for the static integrated BQCAP, we will try to design a
comprehensive algorithm that fits into more general decision environments, such as for
dynamic or emergent situations.
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