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An optimisation problem can have many forms and variants. It may consider different objectives, con-
straints, and variables. For that reason, providing a general application programming interface (API) to
handle the problem data efficiently in all scenarios is impracticable. Nonetheless, on a R&D environ-
ment involving personnel from distinct backgrounds, having such an API can help with the development
process because the team can focus on the research instead of implementations of data parsing, objective
function calculation, and data structures. Also, some researchers might have a stronger background in
programming than others, hence having a standard efficient API to handle the problem data improves
reliability and productivity. This paper presents a design methodology to enable the development of ef-
ficient APIs to handle optimisation problems data based on a data-centric development framework. The
proposed methodology involves the design of a data parser to handle the problem definition and data files
and on a set of efficient data structures to hold the data in memory. Additionally, we bring three design
patterns aimed to improve the performance of the API and techniques to improve the memory access
by the user application. Also, we present the concepts of a Solution Builder that can manage solutions
objects in memory better than built-in garbage collectors and provide an integrated objective function
so that researchers can easily compare solutions from different solving techniques. Finally, we describe
the positive results of employing a tailored API to a project involving the development of optimisation
solutions for workforce scheduling and routing problems.

Keywords: optimisation problems, data API, efficient data structures, research and development
projects

1. Introduction

Research on decision support systems (DSS) is multidisciplinary and has undergone numerous
improvements in the past few decades [1]. One particular type of DSS includes systems focused
on solving optimisation problems such as workforce scheduling [2], vehicle routing [3] and
many other kinds of problems with industry applications. In this context, the literature presents
many application program interfaces (API) and frameworks to help researchers and practitioners
to apply state-of-the-art solving techniques to optimisation problems, such as ParadisEO [4],
jMetal [5] and Opt4] [6].

The aforementioned APIs provide flexible implementations of state-of-the-art solving algo-
rithms that can be applied to many optimisation problems. The user can code their representation
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of the problem and objective function and plug-in the algorithms to solve instances of the prob-
lem. Analogously, having an API to handle the problem data can also be very useful: users could
save time by not having to code data parsers and data structures to hold the problem-related data
in memory. Less experienced programmers could have access to efficient implementations of
the internal structures to handle the problem data, etc.

Pinheiro and Landa-Silva [7] discussed the benefits of having a R&D methodology centred
on the problem data. Such benefits include obtaining a deeper understanding of the problem, a
higher integration between researchers and practitioners and an improved environment for the
development of the solving techniques, where multiple researchers from different backgrounds
can efficiently work as a team. In that context, including an API to handle the problem data
can further extend the usefulness of their proposed framework as it can increase the productiv-
ity of researchers and developers by simplifying the data access, avoiding re-work, improving
computational performance and promoting standard solution comparison measures.

However, it is impractical to provide a general API for a given optimisation problem because
each optimisation problem has many variants. Thus, even if it were possible to include all vari-
ants in a single API, that would have a performance impact as mechanisms for verification and
validation would have to be integrated, as well as extra data fields and structures to accommo-
date different characteristics. Also, having such a flexible API would increase the complexity
of using it. Yet, the recent literature presents few related contributions, such as an API to solve
nonlinear optimisation problems [8, 9] and a new API for evaluating functions and specifying
optimisation problems at runtime [10].

More recently, Pinheiro et al. [11] recognised the importance of an API for optimisation prob-
lems data and proposed a methodology to allow researchers and practitioners to design and build
their own data-centric API. The methodology is composed of three components. The first is a
parser for the data files that can read from and write to the modelled format. The second are the
data structures containing the relevant optimisation data kept on memory. The third is a mecha-
nism to store and manage solution objects in memory. In this work, we extend that concept by
providing further insights and information on how to apply the methodology to build the API.
Additionally, we bring the Object Pool, Data Locality, Matrix Ordering, Memory Alignment
and the Dirty Flag programming design patterns to reduce CPU cache misses and improve the
API computational efficiency. Moreover, we propose a feature called Solution Builder which
centralises the objective function and provides a repository that recycles solution objects to min-
imise the interference of the built-in garbage collector, therefore improving memory fragmenta-
tion and further increasing computational performance.

Lastly, we use an R&D project undertaken in a partnership with a software development com-
pany to validate the application of the proposed methodology by building an API for a workforce
scheduling and routing optimisation problem. We present an empirical study about the efficiency
of applying the Solution Builder in detriment of relying on the garbage collector of modern
languages. We also present experimental results for the design patterns presented in this work
to show that substantial computational performance can be gained by employing the proposed
methods.

The main contributions of this work are:

(1) A methodology that allows researchers and practitioners to build efficient data-driven APIs
for optimisation problem data. This methodology promotes reusability of code, better use of
research staff skills, improved integration between researchers and practitioners and facili-
tates the implementation of efficient solutions.

(2) The proposal and assessment of design patterns and techniques gathered from the literature
and applied to optimisation problems that provide substantial performance gains to optimi-
sation applications.
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(3) A centralised objective function evaluation mechanism that promotes fair comparison of
solutions obtained from different methods and techniques. Also, the mechanism recycles
solution objects held in memory to avoid the garbage collector of modern programming
languages and increase the overall processing performance of the developed solvers.

The remaining of this paper is structured as follows. Section 2 outlines the Workforce Schedul-
ing and Routing Problems (WSRP) Project which is used to illustrate the application of the pro-
posed API. Section 3 presents the guidelines and instructions on designing the API. Section 4
presents the results obtained and section 5 concludes this work.

2. The WSRP Project and Related Work

In this work, we illustrate the design of the proposed API using a WSRP. In general terms,
WSREP refers to a class of problems where a set of workers (nurses, doctors, technicians, secu-
rity personnel, etc.), each one possessing a set of skills, must perform a set of visits. Each visit
may be located in different geographical locations, requires a set of skills and must be attended
at a specified time frame. Working regulations such as maximum working hours and contrac-
tual limitations must be attended. This definition is quite general, and many problems can be
considered WSRPs.

This work considers a variant of this problem, the home healthcare scheduling and routing
problem. Workers in this scenario are nurses, doctors and care workers while the visits represent
performing activities for patients at their homes. In this problem, the primary objective of the
optimisation is to minimise distances and costs while maximising worker and client preferences
satisfaction and avoiding (if possible) the violation of area and time availabilities. For more
information regarding the WSRP we recommend the works of Castillo-Salazar et al. [12, 13, 14]
and Laesanklang et al. [15].

We are engaged in an R&D project in collaboration with an industrial partner to develop an
optimisation engine for tackling large WSRP scenarios. The existing information system col-
lects all the problem-related data and provides an interface to assist human decision-makers in
the process of assigning workers to visits. We are in charge of developing the decision support
module that couples well with the information management system being designed and main-
tained by the industrial partner. Hence, the proposed API is being used by the research team and
later it integrates to the current system.

Many APIs and implementations available in the literature focus on the solving techniques.
We can highlight ParadisEO [4], jMetal [5] and Opt4]J [6] as examples. They are all frameworks
that provide several solving algorithms for both single- and multi-objective problems. They all
have in common the fact that they are built around the solving methods, and they are flexible
enough to be applied for many optimisation problems.

In the literature, we can also find frameworks and APIs with a stronger focus on the problems
rather than on the solving techniques.

e Matias et al. [8] and Mestre et al. [9] propose a web-based Java API to solve nonlinear op-
timisation problems. The API incorporates a set of constrained and unconstrained problems
and gives the user the possibility to define problems with custom-made objective functions.
However, as with the many works that focus on the solving techniques, defining exclusively
the objective function may be too restricting for researching the solver. Hence, our API could
be integrated with this or any framework focused on the solving algorithm as we focus on
how to access the data efficiently and build solution objects.

e Huang [10] proposes a new API for evaluating functions and specifying optimisation prob-
lems at runtime. Huang proposes a Fortran interface FEFAR for the evaluation of objective
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functions and a new definition language LEFAR for the specification of objective problems
at runtime. Conceptually, our proposal differs from Huang’s because we are not proposing
a general API, but instead conceptualising the design of a tailored API that can help in the
research and development of optimisation solutions.

e Groth et al. [16] propose an API that extends the Linked Data architecture for pharmacology
data, to enable researchers to read, access and integrate multiple datasets. Their API highlights
the importance of a mechanism to handle data access. However, the approach of providing an
API to the community cannot be readily applied to optimisation problems because of the high
computational performance required by the algorithms.

e Pinheiro and Landa-Silva [7] propose a framework to aid in the development and integration
of optimisation-based enterprise solutions in a collaborative R&D environment. The frame-
work is divided into three components, namely a data model that serves as a layer between
practitioners and researchers, a data extractor that can filter and format the data contained in
the information management system to the modelled format and a visualisation platform to
help researchers to fairly compare and visualise solutions coming from different solving tech-
niques. In their work, they mention the importance of an API that extends the usefulness of
the data model.

e Swaminathan et al. [17] conduct a survey of APIs for genomic-related applications to improve
healthcare practice. The studied APIs (Google Genomics, SMART Genomics and 23andMe)
provide mechanisms to parse genomic data and sets of operations to aid researchers and de-
velopers to access and operate on the complex genomic data. Although not related to optimi-
sation, the authors show the importance of such tool on R&D projects.

e Recently, Pinheiro et al. [11] promote the use of data-centric APIs for optimisation problems
data as a support tool for R&D projects. They propose a methodology for the development
of tailored APIs to handle the problem’s data efficiently. The proposed method has three
components: a data parser to load/save the problem’s data from/to files; the efficient and in-
tuitive internal data structures; and a solution dispenser that keeps a pool of solution objects
in memory and recycles them as required, hence reducing garbage collector calls. This work
further extends the proposed methodology. We present new details and insights on the pro-
posed components. Additionally, we recommend the use of programming design patterns to
improve computational performance. Lastly, we extend the solution dispenser to create the So-
lution Builder, which not only keeps a pool of solution objects but also presents a centralised
objective function.

3. API for Optimisation Problems Data

The proposed API is composed of three main components that allow the user to decode the data
files of a problem scenario, to load the data into efficient and easy-to-access data structures and
to build and evaluate solutions in a straightforward and effective way.

Figure 1 presents an overview of the API components. On top, we have the XML Data (the
files containing a problem instance definition) as input for the API. The XML Parser decodes
the files and builds the Data Structures that can be accessed by the user of the API. The user can
also access the Solution Builder to instantiate and dispose of solution objects of the optimisation
problem. The Solution Builder communicates with the Data Structures to evaluate and update
current solutions.

These features facilitate the development of both experimental solving techniques and final
release versions. Additionally, they provide a reliable way for the optimisation algorithms to
query the data and to compare solutions from different approaches. We describe next how an
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Figure 1.: Overview of the APL

algorithmic solver interacts with the API.

3.1. API Concept

Figure 2 presents an overview of the API employed in the WSRP project and how the developed
solvers interact with the API. Following, we describe each feature numbered in the figure. Some
features extend to all problems and can potentially be employed by an API tackling any problem.

1.

Solver: the API facilitates the use of different solving techniques (exact solvers, heuristic al-
gorithms, etc.) on the problem because it provides a set of methods to quickly access various
features of the problem, such as values, constraints and basic operations on the data. There-
fore, the researchers can plug in existing solving APIs and frameworks or new algorithms.
Problem Data: we consider that each problem instance can be contained in a set of data
files (we use XML files) with all information related to a single instance of the optimisation
problem.

Internal Data Structures: one of the main functionalities of the API is to provide a set of
efficient data structures to hold the problem data in memory. After the solver selects a problem
instance to load, the data parser reads the files and allocate the problem data into memory.
These structures are designed to provide maximum access performance to the solver.

The API should provide secure and efficient access to the internal data structures and methods.

We now present what we consider essential to be provided by the WSRP API:

4. Constraints: the API provides several methods to assess and evaluate the underlying problem

constraints related to assignments. For example, given an assignment (a visit and a worker),
the API provides methods to:

o Check if the worker is skilled for the visit.

o Check if the worker possesses a valid contract to perform that visit.

o Check if the worker is available at the time of the visit.
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Figure 2.: Main features of the WSRP API, where (1) refers to the optimisation solver (mathematical
solver, heuristic algorithms, etc.), (2) and (10) to the data parser, (3) to the internal memory structures, (4)
to (8) to the operations and methods supported by the API and (9) to the Solution Dispenser.

o Check if the worker can commute to the place of the visit.

5. Operations: the API also provides several operations to be used by the solver. These opera-
tions can be simple checks and validations or complex functionalities. Among the operations
in the WSRP we highlight the following ones:

o Check if two given visits are time-conflicting.
o Check if a worker is qualified to perform two given visits.
o Identify the best contract for an assignment.

6. Preferences: in addition to constraint methods, the WSRP API also provides methods for
evaluating preferences (worker, staff and patient’s preferences):

o Retrieve the preferred worker to perform a given visit based on historical data.
o Identify the visits that a given worker prefers to perform.
o Select the worker that best matches a given patient preferences.

7. Geographical Methods: because the WSRP combines scheduling and routing, we designed

a set of methods related to the geographical data, including:

o Check if a given visit is within a specific area.

o Given a transportation mode, calculate the time to commute from a visit to another.
o Check which transportation modes can be used within an area.

o Retrieve all visits within an area.

8. Overall Data Access: it is important to notice that although the provided methods and oper-
ations are extensive, specific solvers or techniques may require a different way to access the
data. Hence, the WSRP API also provides basic "get’ methods for all information (Figure 4).

Finally, the API also provides functionalities for building and maintaining solution objects for
the optimisation problem:

9. Solution Handling: the solver may deal with a single or with multiple solutions simultane-
ously. The Solution Builder provides an interface for the solver to create and store solutions
in memory. This component provides the following methods:

o Create a new solution.
o Add assignment — given a visit, a worker, a contract, start time and transportation mode,
the method uses this information and creates an assignment in a given solution.
o Dispose a solution.
10. Evaluation Mechanism: the builder also provides an interface so that a solution can be eval-
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uated. The evaluation mechanism comprises of:

o A built-in objective function that calculates the values of objectives and constraint viola-
tions.

o A scalarisation function that takes the objective values and weights and generates a solution
fitness value. The objective weights can be customised.

o Dispose a solution.

11. Save Solution: additionally, the data parser can save a solution object to an XML file that can
later be retrieved and loaded back into memory.

Next, we detail each component of the proposed methodology to build an API for optimisation
problems data.

These features facilitate the development of both experimental solving techniques and final
release versions. Additionally, they provide a reliable way for the algorithms to query the data
and to compare solutions from different approaches. We describe next the first feature of the
proposed API, the data parser.

3.2. XML Data Parser
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Figure 3.: Representation of the XML Model.

Pinheiro and Landa-Silva [7] proposed the use of a data model to represent the optimisation
problem features and data. In a collaborative environment, where practitioners work with the
academia to develop DSS, it is common that an information system already exists and that the
DSS is a feature of the main software. In that context, a data model to represent the problem was
proposed to improve several aspects of the project:

e Improved definition of the problem: the process of defining the data model can promote dis-
cussions and deeper understanding of the problem by both academics and practitioners. While
practitioners have a business vision of the problem, scholars often focus on the technical con-
tent. Hence, divergences may arise and a precise definition of the model can help to establish



December 3, 2016

Management Analytics output

a common ground.

e Development independence: in the scenario mentioned above, we assume that the R&D team,
mostly composed of academics, is not the same team that develops the central information
system. Hence, the data model virtually represents a layer in which both teams can rely upon.

e Easy integration: having a data model early in the project helps to integrate the final solution
into the current information system. That happens because all data will be translated to and
from the data model. Hence both R&D team and leading development team use the model to
integrate the optimisation module to the main system. Thus, the development is modularised,
and the primary system and the decision support module only communicate through the data
model, which is well known for both teams.

Figure 3 presents the overall idea of the data model. We see that the problem features, repre-
sented by the mathematical formulation of the optimisation problem, relate to the XML files in
a manner that is intuitive for human beings to understand (grouping-related features in separate
files).

The first component of the API is a parser to read the files from the data model and build
the data structures. The parser is also responsible for converting a solution of the optimisation
problem into the XML data file. Additionally, the parser implementation should accommodate
extensions and updates in the data model.

For that purpose, we employed a serialisation library. Since we used Java, we employed the
XStream Java library [18], however, most high-level languages have XML serialisation mecha-
nisms available. The advantage of such approach is that a set of classes that corresponds to the
modelled data can be used, and the serialisation library handles all the file parsing. This method
is easy to develop and does not require extensive programming effort. However, it is likely that
the objects in memory are not best suited for performance or intuitive access because the seri-
alisation mechanism often requires intermediate classes and public access to attributes. Hence,
the parser is used exclusively to translate the information from and to the files. For efficient and
easy access to the data, we need another set of data structures.

3.3. Internal Data Structures

The second component of the API is composed of the data structures that hold the problem-
related data in memory. It is important to emphasise that while the aforementioned data model is
intended to be an explicit representation of the optimisation problem, the internal data structures
must be efficient for access by solving algorithms.

Therefore, we must ensure that the operations invoked during the optimisation are performed
on constant (O(1)) time when possible. Additionally, the API should be flexible enough to ac-
commodate different solving techniques easily, as we are not only concerned about the final
product but with the entire process of executing the R&D project. Hence, in our work, we di-
vided the API into groups of objects, following the data model orientation:

e Visits — containing information about the requirements of each visit, for example, number of
workers required, start time, duration, location, skills required, preferences, etc.

e Workers — containing information related to the workers themselves, for example, skills, avail-
ability, home location, preferences.

e Areas and locations.

e Transportation modes.

e Contracts — containing information regarding maximum and minimum working hours and
costs.

In order to hold the objects in memory, we first use arrays. The advantage of using arrays is
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that the random access using indexes is very efficient (O(1)). The disadvantage is that memory
allocation requires to estimate the size of the data or use dynamic memory allocation which
could also hinder performance. To increase the loading performance, we added a new XML file
to the model, called ‘metadata.xml’ that accommodates several information and statistics of the
problem instance, such as the number of workers, tasks and the date format used in the files.

Using arrays may be sufficient for most solving algorithms as it allows fast random access.
However, it may be a problem with specialised heuristics or external software accessing the API.
Such systems are often linked to a database. Hence, they handle elements using an identification
number, which is stored in the XML, but is not consistent with the index of the arrays. To solve
this matter, we employ a second data structure, a hash table, linking the identification numbers of
the database entries to its respective objects. To provide better usability with both data structures,
we encapsulated both the hash table and the arrays, for each type of objects, into a single class
representing the set of elements.

Finally, to improve the usability of the API, we define a naming convention according to the
operation performance. All methods starting with the words ‘get’, ‘is’ and ‘has’ are guaranteed to
perform in O(1) time. All methods starting with the word ‘calculate’ are guaranteed to perform
in O(n*) time in the worst case.

Task

+ getindex() : int

# Task(t : TaskE, a : Areas, hrs : HumanResources, ind : int)
+ getld() : Int

+ getPriority() : int

+ getDuration() : int

+ getDate() : Int

+ getMinimumMNumberCfHumanResources() : int

+ getMaximumnNumber OfHumanResources() @ int

+ getlLocation() : Location

+ getTimeWindow() : int[]

+ getPreferredTimeWindow() : Int[]

+ getValue() : double

+ getRequiredskilis() : List<Integer >

+ getPreferredSkils() : List<Integer >

+ IsSkillRequired(skillld : int) : boalean

+ getSkillRequirementPreferencel evel(skillld : int) : double

+ getSkilRequirementProficiencyLevel(skilld : int) : double

+ getDefinedHumanResourcesList() : List<HumanResource:=
+ getDeniedHumanResourcesList() : List<HumanResource>
+ getPreferredHumanRescourcesList() : List <HumanResource=
+ getHumanResourcesRequirernentPreferencel evel(hr : HumanResource) : double
+ getAlternativeTasksList() : List<Task>

+ getNonQverlappingTasksList() : List<Task=>

+ getRequiredTasksList() : List<Task>

+ getSynchronisedTasksList() : List<Task=

+ getSynchronisationData(t : Task) : int[]

- setTaskRelation(t : Tasks) : void

+ isTimeConflictingWith(t : Task) : boolean

+ isTimeConflictingWith(t : Task, travelTime : int) : boolean

{ordered} ‘%, -tS
- hashTable

Tasks

# Tasks(tf : TasksFile, areas : Areas, hrs : HumanResources)
+ getTask(index : int) : Task
+ getNumberOfTasks() : int
+ getTaskByld(id : int) : Task
+ iterator() : lterator<Task=>

- tasks

WorkforceSchedulingAndRoutingProblem

+ gethreas() : Areas

+ getTasks() : Tasks

+ getHumanResources() : HumanResources

+ getContracts() : Contracts

+ getHumanSolution() : Solution

+ getMetadata() : Metadata

+ getSolutionBuilder() : SclutionBuilder

+ getObjectiveFunction() : ObjectiveFunction

+ loadProbleminstance(zipFile : File) : WorkforceSchedulingAndRoutingProblem
+ calculateMinimumNumber OfAssignments() : int
+ generateReport() : MultiPage

+ getinformation() : Information

Figure 4.: Class Diagram for the Main Problem Class and the Tasks-related Classes.



December 3, 2016

Management Analytics output

Figure 4 presents a class diagram of the data structures. For simplicity, we included only the
main class that defines the optimisation problem and the classes that define the tasks and the
set of tasks. The main class, WorkforceSchedulingAndRouting Problem, is composed of sets of
elements included in a problem instance, namely areas, tasks, human resources and contracts.
This class provides an interface such that the user can retrieve each set and its elements. Also, this
class allows the user to obtain the Solution Dispenser, explained in the subsequent section. Note
that the calculateMinimumNumberOfAssignments method, as aforementioned, starts with the
’calculate’ word, hence in the worst case it performs in O(n), while all *get’ methods performs
with O(1) time complexity.

The Tasks, Areas, HumanResources and Contracts classes contain both the arrays of elements
and the hash table linked by each element’s identification number. Hence, when using these
classes it is possible to interact through all elements or retrieve a specific one given its identifi-
cation number or index, as we can find in the 7asks class. We see in this class that it is possible
to identify an ordered list of tasks Is representing the array and the hash table hashTable con-
taining the mapping of identification numbers. Finally, the class Task contains all the methods
to access the data from a single task plus some useful operations, such as isTimeConflicting With
which checks if a second given task conflict in time with the current task (hence they cannot be
performed by the same worker).

3.3.1. Code Optimisation

McShaffry [19] states that the performance of an application can be influenced by the data struc-
tures employed and by how the data itself is organised and accessed by the code. Additionally,
a good use of the processor’s internal cache can potentially increase performance by up to 50
times [20]. Hence, we now present some techniques found in the literature that can improve the
performance of the data access and subsequently of the algorithms that make use of the APL

1. Data Locality. One of the most overlooked ways to increase (or decrease) performance in
an application is due to the internal processor’s cache memory. Modern computers possess an
internal processor memory (cache memory) that bridges the access to the main RAM memory
to increase the system performance. In summary, when the application requires some data in
the memory, the CPU loads an entire section of the main memory into the faster internal cache.
When requesting the next data, it first checks if it is already in the cache. In case it is (cache hit),
the access is very fast as the data are promptly available. In case it is not in the cache, we have a
cache miss and a section of the memory containing the required data are loaded into the cache
[21].

[20] proposes the data locality design pattern that attempts to reduce the number of cache
misses in an application. The design pattern consists of sacrificing some abstraction and object-
oriented concepts to better arrange the data inside of an object such that, when accessing the
object attributes, the number of cache misses is minimised.

Take for instance the Task class in the sample API. If we sequentially define the variables for
id, priority, duration and date in the class and we always read them in that order (let us say in the
objective function), we are promoting cache hits because they are likely to be loaded together
into the cache.

Another way to improve cache hits is to use arrays of homogeneous data. Suppose some
massive calculations require the costs of all tasks to be processed. Instead of having an attribute
“cost’ inside task objects, it is more efficient to have an array containing all the costs for all
tasks such that when a calculation is performed, the sections loaded into memory will include
the costs for multiple consecutive tasks, hence actually promoting multiple cache hits.

This pattern affects the way getter and setter methods are implemented. Employing such meth-

10
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Figure 5.: Comparison of Cacheing Aligned and Misaligned Data.

ods is considered to be a good object-oriented practice, as it promotes encapsulation, error con-
trol and readability. However, it can cause cache misses because of the indirect referencing.
Languages such as Java have in-line optimisations which can convert a setter or getter method
into direct access to the attribute during the compilation of the code [22]. Hence setters and get-
ters can be used without fear of hindering the performance. It is important to know beforehand
the characteristics of the programming language used and the compiler employed to establish
whether making use of setters and getters impacts performance or not.

2. Matrices Ordering. Another pattern aimed to improve cache memory access focuses on an
issue that may be overlooked: the ordering of matrices in memory [19]. Optimisation problems
data are often organised in matrices. Accessing these data in the correct order to avoid cache
misses can potentially improve performance. Suppose the data from a matrix are stored in mem-
ory ordered by row (i.e. [0,0],[0,1],[0,2] are respectively adjacent). If we follow the row ordering
to access the data, entire sequential sections of the memory will be loaded into the cache, hence
promoting cache hits. Now consider the opposite scenario, if we accessed the matrix in column
order and given that a row is larger than the section that will be loaded into memory, we have
the worst-case scenario where every access results in a cache miss.

3. Memory Alignment. McShaffry [19] notes that the CPU reads and writes memory-aligned
data noticeably faster than misaligned data. A given data type is memory-aligned if its starting
address is evenly divisible by its size (in bytes). An aligned chunk of data is promptly loaded into
the cache while an unaligned chunk of data must be read in parts, shifted to the target frame and
then loaded. Figure 5(a) presents a diagram of a memory mapping of aligned data. The mapping
is direct, meaning that the data are directly transferred from the RAM memory to the internal
cache memory. Figure 5(b) presents the copy of misaligned data. The CPU reads the two chunks
containing the parts of the required data, shifts each piece to select the requested information
and merge into a single chunk which is then copied into the cache. Clearly, the second case
represents a much slower mechanism.

The best way to take advantage of memory alignment is to make sure that the internal data
types, structures and classes of the API have a number of bytes that is a power of 2. In the case
a data type has fewer bytes, dummy variables can be added to force the structure (or object) to
have the desired value. Also, it is imperative to be aware of the overhead of space required by
the programming language for classes and data structures before computing the total size.
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resent the Functionalities Given to the User. Arrows Represent Data Flow.

3.4. The Solution Builder
The last component of the API is the Solution Builder (SB). The SB have two roles:

(1) To provide a standard mechanism to calculate the fitness (objective value) of a given solution
to the optimisation problem.
(2) To provide an efficient way to handle solution objects in memory.

The SB provides an interface for the user to build and assess a solution to a given problem
instance. Once the problem is loaded into an object, the user can invoke the SB to create a new
solution object. A new empty solution is created, and an identification number is returned to
the user. This number can be used to access the solution, add new assignments and evaluate the
solution fitness according to multiple criteria (preferences, objectives or constraints). The user
can also invoke the objective function to evaluate the solution. Figure 6 presents a schematic of
the SB component.

3.4.1. Centralised Evaluation Mechanism

Integrated into the SB is the solution evaluation mechanism. Pinheiro and Landa-Silva [7]
pointed at the importance of a mechanism to ensure fairness in the comparison of results from
different techniques implemented. Having a centralised objective function is beneficial and helps
to avoid re-work and maintain consistency.

In the WSRP project, the weights of the objective function are initialised with standard val-
ues, but the SB allows the user to set them according to specific needs. Additionally, the user
can evaluate specific aspects of the problem (total distance, total costs, constraints violations,
preferences, etc.) or obtain the overall fitness of a given solution.
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3.4.2.  Solution Dispenser

Modern programming languages, such as Java and C#, provide a convenient way to handle
objects: a garbage collector. The user only needs to dispose links and pointers to objects, then
the garbage collector looks for objects not linked by the user’s program and frees the memory.
That can lead to two problems: memory fragmentation and extra processing time to seek, to free
memory and later to allocate new objects [23, 24].

Leaving the disposal of objects to the garbage collector can lead to a decrease in performance
that, aside from being marginal for most applications, can have an unacceptable impact on opti-
misation algorithms. Hence, the SB internally implements an Object Pool design pattern [20] to
recycle objects. We employ a factory object implemented using the factory design pattern [25]
for easy creation of the objects. This factory is responsible for creating new solution objects.

When a new solution request is invoked (Figure 6), the factory seeks its internal solution repos-
itory (a list of disposed solutions). If there is a solution available in the repository, it retrieves it,
clears the solution data and returns it to the solver. The solver now has an empty solution that it
can use. When the solver does not need the solution anymore, it can dispose of the solution by
invoking a specific method in the SB. The factory then receives the disposed solution and stores
it in the list.

Potentially, the use of the solution dispenser can provide significant performance gains. Take
for instance a population-based algorithm that processes one generation per second with a pop-
ulation of 100 individuals. That means 100 solutions being disposed of per second. After ten
minutes running, the algorithm will have disposed of 60,000 solutions, which potentially could
fragment the memory and cause several garbage collection calls. Now, when using the dispenser,
considering the worst case, when a new population is created before disposing of the old one,
we need 100 active solutions per population, totalling 200 active solutions that will be recycled
during the execution. Thus, in this hypothetical scenario, we could have a decrease of 99.6% on
the number of objects used, which could represent a reduction of 97.5% on the processing time
and memory consumed by the garbage collector (see section 4.1).

3.4.3. Code Optimisation

The SB itself is a component to improve the efficiency of the API with the dispenser being
a specialist implementation of an Object Pool design pattern. On the evaluation mechanism,
however, programming techniques can be applied to improve the overall evaluation performance.
Dirty Flag Nystrom [20] proposes a design pattern called dirty flag. This pattern consists of a
mechanism to avoid unnecessary recalculations when you have nested operations, usually on
recursive calls. In the solution evaluation context, the objective function can be very costly, and
recursive calculations may be needed. Additionally, algorithms may require specific parts of
the objective function to be calculated at different points and in multiple times. This pattern
consists of having a flag (boolean variable) to define if the state of an object has changed. If so,
the values that rely on that object must be re-calculated. Thus, in a recursive operation where a
value would always be calculated, it will now be calculated if the flag indicated that. Essentially,
after a solution is built, only one evaluation of its values are made. If an algorithm calls the
evaluation (or partial evaluation) on an unchanged solution, the last calculated value is returned.

4. Experiments and Results
We now present the results of employing the API in the WSRP project. We initially discuss

the advantages for the R&D project. Later, we present the results of the technical analysis on
the Solution Builder component and the benefits of using it. Additionally, we provide evidence
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of computational performance gains when using the design patterns suggested in the previous
section.

4.1. Improvements on the R&D Project

Rework In our project we had multiple researchers with different background investigating the
WSRP. The problem is complex and the data model, although easy to understand, is not so easy
to decode and load into appropriate memory objects due to its inherent complexity. Therefore,
having a centralised API containing a parser and efficient internal data structures helped to speed
the research conducted by the academic researchers.

Solver Efficiency During the design of the API, specifically the internal data structures, team
members could use it and assess it gaining confidence that the implementation is effective, ef-
ficient and has the best-known data structures available, hence helping to achieve improved
efficiency in all solvers.

Consistency As discussed in Pinheiro and Landa-Silva [7], one of the main concerns on a R&D
optimisation project is consistency in the comparison of multiple solving techniques. Using the
integrated Solution Builder in the API helped our team to assess and compare the developed
solvers because it guaranteed that the fitness calculations were consistent between methods.

Error Identification Having multiple people working on a single API helped to spot code errors
and bugs faster than having researchers relying solely on their code. During the first months of
our project, we had the research team releasing several versions of the API until we obtained a
stable version. This process increased the confidence of the team in the tool and helped us ensure
that we had a reliable component to support the research.

4.2. Solution Builder

We now present an empirical analysis of the efficiency of the Solution Builder. The SB is respon-
sible for holding solution objects for the given problem. Small problems using larger encoding
might consume more memory than larger problems using smaller encoding. For example, an
integer array representation (an array the size equal to the number of tasks) is an example of
smaller encoding and a binary array representation (a matrix which is of size number of work-
ers X number of tasks) is an example of a larger encoding. Then, to test the solution dispenser
we compared different encoding schemes, integer arrays varying from small (25 elements) to
large (25,000 elements), and binary representation. Note that even though integer variables are
employed to represent binary encoding (thus, a larger data type than necessary), the literature
commonly presents the encoding of binary variables using complex objects [5], hence, it is rea-
sonable to use integer variables instead of binary ones in our experiments.

We defined our experiments as follows: for each encoding size, we sequentially created and
disposed of one million solution objects. For the experiments using the garbage collector, the
disposing process merely unlinked the objects to free them to the Garbage Collector (GC). For
the SB, the internal dispose process is called and also the object data are cleared. We ran each
set-up for five times and computed the average results. Additionally, to measure time and mem-
ory we used the integrated profiler available in Netbeans which can accurately measure the time
spent on each method and the memory allocated during the execution of the application. The
experiments were performed in Java on a quad-core Intel 17 machine with 32GB memory run-
ning Linux. The main reason for choosing Java is that it is a mature language, multi-platform
and widely employed for optimisation problems with a large number of optimisation algorithms
and frameworks implemented and available for public use [4-6].

Figure 7 presents the results of the computation time. The red lines represent the time spent in

14



December 3, 2016

Management Analytics output

T T T
——— SD - Total
15FH|--- SD-new
...... SD - dispose
—— GC - Total
- — -  GC-new
1 0 ...... GC - dispose

Time (s)

0 [ i e o E - En R o PP TR §

| | | | | | |
S PN
NI

Solution Size

Figure 7.: Time comparison between the Solution Dispenser (SD) and the Java Garbage Collector (GC)
to instantiate and dispose new solutions.

seconds on experiments using the Java garbage collector, and the blue lines represent the time
spent on experiments employing the solution dispenser. The solid lines represent the total time;
the dashed lines represent the time used by the 'new’ method, which allocates new solution
objects, and the dotted lines represent the dispose method. The time spent by the SB follows
a constant trend throughout all encoding or solution sizes. This happens because both the new
and dispose operations of the solution dispenser perform in constant time and since there are
no objects freed in the memory (they are being kept alive by the SB), the garbage collector
(automatically activated by the Java virtual machine) just quickly checks for dead objects, finds
nothing, and is deactivated without any extra processing.

Regarding the tests using the garbage collector, we see that the dispose operation is performed
in constant time, but the new method requires higher time proportional to the size of the so-
lutions. We can clearly see that relying on the garbage collector to dispose and allocate new
objects can hinder the performance of the application. Also, it is important to notice that we did
not specify any parameters for the Java virtual machine. Hence the experiments had as much
memory as it was required. In a real-world environment, that might not be the case. Many pro-
cesses may be active in the machine, and the memory might be limited, which would make
the garbage collector to be active more often than it was on the presented tests, hence further
decreasing the performance.

In Figure 8 we have the results of the memory allocation measurement. The red lines represent
the experiments using the garbage collector and the blue lines the solution dispenser. Also, the
solid lines represent the maximum memory allocated in MB and the dashed lines the average
memory allocated. Analogously to the previous chart, it is clear that the memory required by
the SB, not surprisingly, is constant throughout all experiments. Although the size of the array
changes on each experiment, only one object is allocated in memory during runtime. However,
when relying on the garbage collector, we see that it makes use of much more memory, which
reinforces our previous statement that, in a scenario where the memory is limited, the garbage
collector requires more frequent activation.

Finally, we conducted experiments running a Genetic Algorithm (GA) Goldberg [26] through
the WSRP API to solve real-world scenarios [27]. To isolate the impact of employing the Solu-
tion Builder, we ran the experiments on a single test instance varying only the size of the data
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Figure 9.: Number of generations of a genetic algorithm with different solution sizes.

structure used to represent a solution. Therefore, all the experiments required the same com-
putational effort regarding the genetic operators and solution evaluation. Also, because of the
stochastic nature of GAs, we used fixed seeds for the random number generators to increase the
fairness of the comparison. We performed eight runs of the GA, both for the solution builder
and the garbage collector, and computed the average number of generations after one minute.
Figures 9 and 10 present the results. In Figure 9, we present the total number of generations for
the GA as the size of the solution representation increases. It is evident that when employing the
solution builder the average number of generation is roughly constant regarding the increase in
the size of the representation. It is also noticeable that if the solution size is not large enough (in
this case the equivalent of 10,000 integer values), the performance gain of using the SB is below
10% (Figure 10), but still substantial. Nonetheless, when the size of the representation increases,
the benefit of employing the SB represented up to 150% rise in the number of generations.
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Figure 10.: Increase in the number of generation when employing the Solution Builder in detriment of the
built-in Garbage Collector.

Thus, it is apparent that by using the solution builder we can achieve substantial improvements
in both time and memory consumption. This is particularly true for problems where the solu-
tion encoding is large. Also, the idea of recycling objects could be implemented in the solver
algorithms themselves, especially in population-based algorithms (because of the high number
of created and disposed solutions), to maintain their individual object pools.

4.3. Design Patterns

Finally, we provide evidence that the proposed programming design patterns can further increase
the computational performance of the APIL. This set of experiments requires extra control of the
hardware to ensure consistency of results. Hence, we avoided languages with a built-in garbage
collector such as Java and C#. We opted to employ the C language (C11 standard) and the
gcc compiler (version 5.2.1) under Linux OS (kernel version 4.2.0-19-generic) due to explicit
memory and processor control, the non-existence of a garbage collector and because we could
easily extend our experiment to consider GPU processing.

Data Locality. To evaluate the data locality pattern we created two types of structures: the
local structure with all variables contained locally, hence appearing consecutively in the phys-
ical memory, and the external structure where the variables are pointers to the actual values,
representing references (in a similar fashion to object-oriented languages) and thus appearing on
different sections of the memory.

For the experiment, we created two arrays, one for each structure, each one containing
1,000,000 structure elements. For each array we sequentially iterated through all items, in se-
quential order, operating elementary operations on all variables within each element of the struc-
ture (thus accessing all values). We ran the iteration 1,000 times and computed the overall pro-
cessing time.

Figure 11 presents the results. We run the experiment for different sizes of structures, varying
from 104 to 4,824 bytes. The x-axis shows the size of the data structure in bytes. The y-axis
shows the average time of 10 runs of the experiment, in seconds. It is clear that in both cases,
as the size of the data increases, the access time increases in a linear trend. However, when we
employ the use of local data, we have a reduction of the computational time averaging 77%.
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Figure 11.: Performance comparison of using values contained locally inside a structure (Local structure)
against only the references to the values contained locally (External structure).

It is important to notice that this is the comparison between the best and worst cases, hence
these results present the maximum potential gain. However, in languages such as Java, this
represents the difference between employing primitive data types (which will be stored locally
within an object) and employing object data types (which will be stored as references). These
results suggest that languages that are purely objected-oriented are not the best choice regarding
performance for optimisation systems.

Matrix Ordering. In order to evaluate the matrix ordering design pattern we created a matrix
of elements of type double. We then sequentially iterated through all elements of the matrix
1,000 times, accessing its elements in row order and computed the total processing time. Then
we repeated the process using column order.

I I
—— Row order
4l Column order

Time(s)

| | | |
2,000 3,000 4,000 5,000 6,000
Matrix Size
Figure 12.: Time comparison of performing sequential operations on a matrix using row order and using

column order.

Figure 12 presents the results of the matrix ordering design pattern. The x-axis shows different
matrix sizes in bytes, varying from 1,100 bytes to 6,000 bytes. The y-axis shows the average
time of 10 runs of the experiments, in seconds. It is evident that performing the iteration in row
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Table 1.: Results for the memory alignment pattern.

Architecture Time (s) Difference in

Manufacturer Model Codename Year Aligned Misaligned Performance
Intel Core i7-4870HQ Crystal Well 2014 44 5.1 17.4%
Intel Core i5-4460 Haswell 2014 4.6 5.6 21.9%
Intel Core i7-4770 Haswell 2013 4.0 4.9 21.8%
Intel Core 15-4200U Haswell 2013 6.5 8.0 22.4%
Intel Xeon E5-2407 v2 Ivy Bridge EN 2014 8.6 10.4 21.3%
Intel Core 15-3340 Ivy Bridge 2013 4.8 5.8 19.9%
AMD A10-6800K Richland 2013 6.2 8.1 30.0%
Intel Core 17-3632QM Ivy Bridge 2012 4.9 6.0 22.6%
Intel Core i7-3820 Sandy Bridge E 2012 4.7 6.6 38.4%
AMD FX-6100 Bulldozer 2012 7.8 12.0 53.5%
AMD A6-3670 K10 2011 133 17.0 27.6%
Intel Pentium Dual T2390 Merom 2007 17.9 259 44.8%
Nvidia GTX 980M (CUDA 5.2) Maxwell 2014 0.000314  0.000320 1.9%
Nvidia GTX 750 (CUDA 5.0) Maxwell 2014 0.000584  0.000586 0.3%

order achieved significant performance gain compared to employing column order. The time
reduction averages 57%. This gain happens because the C compiler organises each line of the
array sequentially in memory. Hence, when pulling data to the cache, several elements that will
be read next are loaded into the cache as well. It is important to notice that these results depend
on the programming language, and the results represent a potential gain. Because of that, the
developer must ensure to use the right matrix ordering according to the specifications of the
chosen programming language.

Memory Alignment. In order to assess the memory alignment, we created two types of struc-
tures, both consisting of a char, a short, and an int variable, totalling seven bytes. The
aligned structure contained an extra byte, a padding byte, to round the structure size to eight.
The misaligned structure did not contain the padding byte, and we ensured that by providing
the __attribute__((packed)) directive to the compiler because the C compiler automatically
aligns misaligned structures.

The performance test used is similar to the one employed on the data locality pattern: we
created two arrays, one for each type of structure, each one containing 1,000,000 elements. For
each array we iterated through all the elements, in order, performing elementary operations on
all variables of each structure element. We repeated the process 1,000 times and computed the
total processing time.

Because the performance of memory alignment is dependent on the CPU architecture, we
performed the experiments on multiple CPUs, on multiple architectures, and recorded the com-
putation times. Also, we used the same OS and gcc versions in all experiments, and each exe-
cutable was locally compiled to obtain architecture-specific optimisations. Also, because nowa-
days GPU computing is used for high-performance computing [28], we performed the experi-
ments on two GPUs as well.

Table 1 presents the results. The first column lists the manufacturer of the chipset: for CPUs,
we have Intel and AMD and for GPU we have Nvidia. Column Model gives the specific model
of the processor and column Architecture Codename gives the version of the architecture used
in the CPU (note that different processors may share the same architecture). Column Year shows
the year in which that processor was released. The double column Time(s) shows the compu-
tational time (in seconds) for the aligned and misaligned structures. The last column gives the
performance gain by applying aligned structures.

The results show that, for CPUs, there are benefits from using aligned structures. It is clear
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that on older architectures that gain is more substantial, going up to 53.5% on the AMD Bull-
dozer (2012) and 44.8% on the Intel Merom (2007). However, it is also clear that on recent
architectures, the manufacturers are minimising the impact of using misaligned structures. The
two bottom rows of the table present the GPU results. It is important to notice that we made full
use of the GPU multithread computing capability in these experiments. Hence, the processing
times are just a fraction of the processing times for the CPUs. It is clear that GPUs do not suffer
significant impairments from using misaligned structures. However, it might be the case that the
CUDA compiler did not recognise the pack directive sent to the compiler and the data structures
were padded regardless.

Even though modern processors handle misaligned structures more efficiently, there is sub-
stantial performance gain from using aligned data. Nonetheless, to assess memory misalignment,
we had to force the compiler to accept misaligned structures. Most programming languages au-
tomatically add padding bytes to align such structures, hence, unless a developer is using legacy
systems or programming on low-level languages such as assembly language, memory alignment
issues can be ignored.

Overall. The previous experiments showed the potential gain from using the computational
efficiency design patterns presented in this work. However, these experiments consider scenar-
ios where the evaluated features are isolated, which is unlikely to happen in practice. Hence, the
answer to questions such as how important is the application of the proposed design patterns on
optimisation algorithms? is still not clear. Therefore, we implemented a straightforward optimi-
sation algorithm for a simple, well-known problem in two versions: one employing data locality
and matrix ordering, and another one not using these patterns. We opted to ignore the memory
alignment for the reasons aforementioned.

The optimisation problem considered in this experiment is a Multidimensional Knapsack
Problem (MKP) [29] with n items (i = 1,...,n), m weights w’, (j = 1,...,m) and p profits
¢t (k=1,...,p). A set of items must be selected for packing in the knapsack in order to max-
imise the p profits while not exceeding the capacities W; of the knapsack. This problem can be
formulated as follows:

n
maximise Zc}cxi k=1,....p
i=1

n

subject to Zw;xi <W; j=1,....m
i=1

x; €0,1 i=1,...,n

The solution representation for the above problem is a straightforward binary array represent-
ing the decision variables. The problem data were generated with random values of a uniform
distribution [30]. The optimisation algorithm is a simple random search [31], where solutions
are randomly generated, evaluated, and if the current solution is the best so far, then it is kept,
otherwise it is discarded. The stop criterion is when the algorithm reaches a pre-defined number
of solutions generated.

The experiment consists of performing the random search for 10,000 solution generations and
recording the total computation time. We compared an implementation A, using data locality and
matrix ordering against a second implementation B that ignored these patterns. The remaining of
the application was kept identical. We performed the experiments for different number of items
varying from 100 to 10,000. Figures 13 and 14 present the results.

Figure 13 shows that by employing the patterns, the computational time is consistently smaller.
Figure 14 indicates that the performance loss of not using the patterns can be as high as 60% and
it increases with the size of the problem instances. Therefore, even in an optimisation algorithm
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Figure 13.: Results for 10,000 generations of MKP solutions using a random search employing an im-
plementation using the data locality and matrix ordering design patterns (A) and an implementation not
using these patterns (B).
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Figure 14.: Performance loss for not employing the data locality and matrix ordering design patterns.

environment, caring for matrix ordering and data locality can outcome substantial performance
gains. Certainly, when combining these techniques with the SB, a higher performance increase
can be achieved. Hence we recommend the use of the proposed techniques based on our experi-
ments and the results obtained.

5. Conclusion
It is difficult to provide an API to handle the data of an optimisation problem that is generic

enough to support many variants of the problem (hence be widely useful) and be computation-
ally efficient. Therefore, in this work, we proposed a methodology to help researchers to design
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and implement a tailored API for specific optimisation problems. Initially, we proposed the use
of a data parser to read the files from disk and load them into memory. We defined a set of data
structures to hold the data in memory and provided examples of methods and operations that fur-
ther increase the usefulness of the API. We brought programming design patterns to our model
to improve its effectiveness, such as the Data Locality, Dirty Flag and Object Pool. Also, we
proposed efficient techniques to improve matrix access performance and to reduce cache misses
during the execution of the code. Finally, we introduced a Solution Builder which centralises the
objective function, hence promoting fairness on the comparison of solutions arising from differ-
ent solving techniques. The Solution Builder also provides an object repository that handles the
memory allocation and disposal of memory objects to avoid garbage collector calls.

In order to illustrate the application of the API, we used a real-world R&D project to develop
DSS based on an optimisation solution for the WSRP, originating from a partnership between
The University of Nottingham and a software development company. We discussed the benefits
identified during the development of this project, such as

e reduction of re-work, because researchers and development team were using common im-
plementations;

¢ in the research team efficiency, because they were not required to implement necessary (but
time-consuming) programs to parse and process data;

¢ in computational efficiency, because all researchers used the best implementations known
for the data structures and data access and

o fair comparison between the different techniques developed.

We also presented the empirical results from computational experiments with the solution
builder, using optimisation algorithms to show that substantial performance can be gained by
employing the technique instead of relying on garbage collection. We also demonstrated that
the utilisation of the proposed design patterns further increases the performance of optimisation
algorithms.

In summary, the methodology presented in this work is a tool for both researchers and prac-
titioners to obtain improved results on R&D projects based on optimisation problems. Also, the
API helps to enhance the performance of the software developed while researchers with weaker
programming skills can still achieve improved computational performance in their algorithms.
Future work includes applying the methodology on additional R&D projects and formally mea-
sure the impact of using the API in the software development life cycle.
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