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Abstract. This paper presents the investigation of an evolutionary multi-objective simulated annealing algorithm with 

variable neighborhoods to solve the multi-objective multicast routing problems in telecommunications. The hybrid 

algorithm aims to carry out a more flexible and adaptive exploration in the complex search space by using features of 

the variable neighborhood search to find more non-dominated solutions in the Pareto front. Different neighborhood 

strictures have been designed with regard to the set of objectives, aiming to drive the search towards optimising all 

objectives simultaneously. A large number of simulations have been carried out on benchmark instances and random 

networks with real world features including cost, delay and link utilisations. Experimental results demonstrate that the 

proposed evolutionary multi-objective simulated annealing algorithm with variable neighborhoods is able to find high 

quality non-dominated solutions for the problems tested. In particular, the variable neighborhood structures which are 

specifically designed for each objective significantly improved the performance of the proposed algorithm compared 

with variants of the algorithm with a single neighborhood. 

Keywords Multi-objective Optimisation, Evolutionary Multi-objective Simulated Annealing, Variable Neighborhood 

Search, Multicast Routing 

1. Introduction 

In multimedia telecommunications, multicast routing aims to simultaneously transfer information from a 

source to a group of destinations in computer networks. A solution of a multicast routing problem (MRP) is a 

multicast tree which spans from the source node to all the destination nodes in the network. Due to the 

increasing demand of numerous multicast network applications including E-learning, E-commerce and 

video-conferencing, MRPs have attracted a large amount of research attention over the past decade. In real 

life applications, a range of Quality of Service (QoS) constraints have been defined, i.e. cost, bandwidth, link 

utilisation, delay variation, packet lost ratio and hop count, etc. The main goal of the QoS-based multicast 

routing is to efficiently allocate network resources, balance the network load, reduce congestion hot spots 

and provide adequate level of QoS for end users while satisfying all required constraints in the underlying 

computer networks. 

When different conflicting objectives are considered simultaneously, MRPs become much more 

complicated multi-objective problems, as already recognised by many researchers (Roy et al, 2002; Cui et al, 
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2003; Roy and Das, 2004; Crichigno and Baran, 2004a; Crichigno and Baran, 2004b; Koyama et al, 2004; 

Diego and Baran, 2005; Li et al, 2007). A recent survey on multi-objective optimisation algorithms for a 

variety of MRPs has been given in (Fabregat et al, 2005). 

The underlying model of MRPs is the Steiner tree problem in graphs (Hwang and Richards, 1992), one of 

the well known NP-hard combinatorial optimisation problems (Garey and Johnson, 1979). It is also known 

that the complexity of finding a feasible route with two independent path constraints is NP-hard (Chen and 

Nahrestedt, 1998). Due to their complexity and required computational expenses, QoS based MRPs have 

attracted an increasing research attention in both computer communications and operational research 

(Salama et al, 1997; Diot et al, 1997; Chen et al, 1998; Yeo et al, 2004; Oliveira et al, 2005; Masip-Bruin et 

al, 2006). In the rich literature of exact methods, heuristics and meta-heuristics, the majority of research on 

MRPs has been within the context of single-objective subject to certain constraints (Zhu et al, 1995; Guo and 

Matta, 1999; Haghighat et al, 2004; Kun et al, 2005; Skorin-Kapov and Kos, 2006; Qu et al, 2009). 

In contrast to the traditional single-objective algorithms, recently some multi-objective algorithms have 

been developed for solving MRPs with more realistic features. Table 1 summarises the heuristic algorithms 

developed for multi-objective MRPs in the literature, categorised by the objectives and constraints 

considered in the work, and ordered by the year of the publication. Here we concern MRPs where only a 

single multicast tree is constructed. It can be seen that most multi-objective multicast routing algorithms 

have been developed based on evolutionary algorithms (Roy et al, 2002; Cui et al, 2003; Roy and Das, 2004; 

Crichigno and Baran, 2004a; Crichigno and Baran, 2004b; Koyama et al, 2004). Other population based 

algorithms, such as the ant colony optimisation algorithms in (Diego and Baran, 2005) and the hybrid genetic 

algorithm with particle swarm optimisation algorithm in (Li et al, 2007), have also been investigated on 

multi-objective MRPs in the literature. 

Insert Table 1 somewhere here. 

Various multi-objective simulated annealing algorithms have been investigated by researchers for solving 

a range of combinatorial optimisation problems (Sefarini, 1994; Czyzak and Jaszkiewicz, 1998; Ulungu et al, 

1999; Haidine and Lehnert, 2008; Li and Landa-Silva, 2008). In a recent work (Li and Landa-Silva, 2008), a 

variant of such algorithm named Evolutionary Multi-Objective Simulated Annealing (EMOSA) has been 

designed and tested on a set of benchmark traveling salesman problem instances. A two-phase strategy in the 

EMOSA algorithm which tunes search directions and manages similar solutions has shown to be effective in 

comparison with other multi-objective simulated annealing algorithms. 
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In this work, we develop the first EMOSA algorithm based on the work in (Li and Landa-Silva, 2008) to 

solve real-life multi-objective MRPs. Due to the specific features of the multicast tree, which are quite 

different from those of traveling salesman problems, different neighborhood structures have been designed 

with respect to different objectives to improve the proposed algorithm. Four objectives are optimised 

simultaneously without a priori restriction, aiming to minimise (1) the cost, (2) the maximum end-to-end 

delay, (3) the maximum link utilisation, and (4) the average delay of the multicast tree. Compared with the 

traditional meta-heuristics with single neighborhood operator, our proposed VEMOSA algorithm (EMOSA 

with variable neighborhoods) is able to optimise different objectives simultaneously, contributing to 

advanced multi-objective search algorithms for a wider range of optimisation problems with different 

features and complex problem structures. 

The remainder of this paper is organised as follows. In Section 2, a general definition of the multi-

objective optimisation problem is introduced, based on which the multi-objective MRP is formally defined. 

Sections 3 and 4 present the proposed VEMOSA algorithm and experimental results. Finally, Section 5 

concludes the paper. 

2. The Multi-objective Multicast Routing Problem 

2.1The Multi-objective Optimisation Problem 

Multi-Objective Optimisation has become an important and challenging research topic due to the 

requirement of simultaneous optimisation of several conflicting objectives in many real world optimisation 

problems. It consists of finding a set of alternative solutions where multiple objectives are optimised at the 

same time while satisfying all the constraints (Burke and Kendall, 2005). A general multi-objective 

optimisation problem with m objectives and r restrictions can be defined as follows (Ulungu and Teghem, 

1994): 

Optimise F(x) = (f1(x), f2(x), …, fm(x))  (1) 

s.t. e(x) = (e1(x), e2(x), …, er(x)) ≥ 0   

where x = (x1, x2, …, xn) X is a vector of decision variables (a solution), X denotes the decision space of the 

set of feasible regions of the solution space; F(x) is the image of x in the m-objective space given by the 

vector of m-objective functions fi(x), i ∈ {1, …, m}. The set of restrictions ej(x) ≥ 0, j ∈ {0, …, r} determines 

the set of feasible solutions. In general, there is no unique optimal solution but a set of alternative solutions, 

none of which can be seen as superior to the others when all the objectives are taken into account. If X 

consists of a discrete set of solutions, then the problem defined in (1) is called the multi-objective 

combinatorial optimisation problem.  
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Without loss of generality, we assume hereinafter in a minimisation context, for any two decision vectors 

u, vX, u is said to dominate v, denoted by u   v, iff fi(u) ≤ fi(v) for i ∈ {1, …, m}, and there exists at least 

one objective j ∈ {1, …, m} satisfying fj(u) < fj(v). A solution x* is said to be Pareto-optimal if no solution in 

X dominates x*. The set of all Pareto-optimal solutions in X is called the Pareto-optimal set. The objective 

vectors of all solutions in the Pareto-optimal set in X is called the Pareto-optimal front (PF). Many meta-

heuristic algorithms, including genetic algorithms, simulated annealing, tabu search, particle swarm 

optimisation and ant colony optimisation, have been investigated to tackle different multi-objective 

optimisation problems (Landa-Silva et al, 2004; Gandibleux et al, 2004; Konak et al, 2006; Liu et al, 2006). 

The majority of research in this area has focused on generating a set of non-dominated Pareto optimal 

solutions (Ulungu and Teghem, 1994; Ehrgott and Gandibleux, 2000).  

In this work, we focus on investigating the first simulated annealing based multi-objective approaches for 

multi-objective MRPs. An excellent survey of multi-objective simulated annealing algorithms for solving 

both single and multi-objective optimisation problems and their performance comparisons can be found in 

(Suman and Kumar, 2006). 

2.2. The Multi-objective Multicast Routing Problem Formulation 

By using a computer network topology, we model the MRP by a directed graph G = (V, E) with |V| = n 

nodes and |E| = l links. The rest of the paper uses the following notations: 

(i, j)E: the link from node i to node j, i, j   V. 

cij R
+
: the cost of link (i, j) . 

dij R
+
: the delay of link (i, j) . 

zij R
+
: the capacity of link (i, j), measured in Mbps. 

tij R
+
: the current traffic of link (i, j), measured in Mbps. 

sV: the source node of a multicast group. 

RV – {s}: the set of destinations of a multicast group. 

rd R: the destinations in a multicast group. 

|R|: The cardinality of R, i.e. the number of destinations, also called group size. 

 R
+
: the traffic demand (bandwidth requirement) of a multicast request, measured in Mbps. 

T(s, R): the multicast tree with the source node s spanning all destinations rd R. 

pT(s, rd)T(s, R): the path connecting the source node s and a destination rd R. 

d(pT(s, rd)): the delay of path pT(s, rd), given by: d(pT(s, rd)) = 
 ) ,(),( dT rspji

ijd rd R. 
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Using the above definitions, in this paper a MRP is defined as a multi-objective optimisation problem that 

consists of finding a multicast tree while minimising the following four objectives (Crichigno and Baran, 

2004a): 

The cost of the multicast tree: 

C(T) =  · 
Tji

ijc
),(

  (2) 

The maximal end-to-end delay of the multicast tree: 

DM(T) = Max{d(pT(s, rd))}, rd R 
(3) 

The maximal link utilisation: 

α(T) = Max



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The average delay of the multicast tree: 
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(5) 

 

The problem is subject to a link capacity constraint as follows: 

  + tij ≤ zij ,  (i, j)T(s, R) (6) 

3. The Variable Neighborhood EMOSA (VEMOSA) Approach  

3.1 The Evolutionary Multi-objective Simulated Annealing (EMOSA) Algorithm 

Simulated annealing is one of the mostly studied stochastic local search algorithms in global optimisation 

(Kirkpatrick et al, 1983). The basic idea of the algorithm comes from the physical annealing process of 

heating and controlled cooling of a material to form a larger size of better state. During the search of 

simulated annealing, moves to non-improving neighborhood solutions are accepted in the algorithm with a 

given probability depending on the temperature at that stage and the difference between the fitness of the 

neighborhood solutions. As a result, the search has a chance to escape from local optima, making simulated 

annealing a very effective meta-heuristic when exploring the search space of complex combinatorial 

optimisation problems. 

A recent Evolutionary Multi-objective Simulated Annealing (EMOSA) algorithm developed in (Li and 

Landa-Silva, 2008) has shown to be effective for solving traveling salesman problems. In the EMOSA 

algorithm, a population of solutions evolves by using strategies of the cooling schedule in simulated 

annealing algorithms. We describe the main features of EMOSA as follows: 

1) The weighted scalarising function in the EMOSA algorithm 
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One general technique in multi-objective optimisation is to combine different objectives into a single 

composite function. In EMOSA, a weighted scalarising function is used to evaluate the fitness of solutions. 

A Pareto-optimal solution x* is obtained if it is the unique global minimum of the following scalar 

optimisation problem:  

Minimise g(x, λ) =  

m

i i1
 fi(x), xX  (7) 

where λ is a weight vector, λi [0, 1], i = 1, …, m and  

m

i i1
 = 1, i.e. the weights are uniformly assigned to 

m objectives, and each λi is associated with one objective function fi(x). The function g(x, λ) in (7) is called 

the weighted scalarising function, and is one of many scalarising functions used in the literature (Miettinen, 

1999).  

The competition between members of population in EMOSA is managed by adaptation strategies using 

the scalarising function defined in (7). During the evolution of EMOSA, a neighboring solution x’ replaces 

similar solutions in the current population if it is better with respect to the scalarising function. The similarity 

between solutions is measured by the Euclidean distance between their weight vectors. 

2) The acceptance criterion in the EMOSA algorithm 

In EMOSA, the acceptance decision of a new solution has to take into account all the objectives in the 

problem. The acceptance probability in the standard simulated annealing has been modified by using the 

weighted scalarising function g(x, λ) in (7). Given an incumbent solution x and its neighborhood N(x), the 

probability of x moving to its neighbor x’ ∈ N(x) is thus defined as follows: 

P(x, x’, λ, T) = 









T

xxg

e

)',,(

1



otherwise

0),',( if  xxg

 

 

(8) 

where T > 0 is the current temperature, ∆g(x, x’, λ) = g(x’, λ) - g(x, λ) is the difference between x and x’, 

defined by using the weighted scalarising function in (7). 

3) The two-phase strategy in the EMOSA algorithm 

In addition to defining a starting temperature, a final temperature, and a temperature decrement in the 

cooling schedule, in EMOSA, a threshold temperature TPc is also defined within a two-phase strategy for 
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tuning the weight vectors. During the evolution of EMOSA, in the first phase when T   TPc, all weight 

vectors remain unchanged. In the second phase when T < TPc, the weight vectors are adaptively changed 

according to the closeness of solutions to their non-dominated neighbor in the population. 

3.2 The Overall Procedure of the VEMOSA Algorithm 

Based on the EMOSA algorithm developed in (Li and Landa-Silva, 2008), we propose in this work a 

variable neighborhood based EMOSA (VEMOSA) for solving MRPs. In VEMOSA, a simple binary vector 

of n bits, where n is the number of nodes, has been used to represent the multicast tree in the population 

during the evolution. The value of 1 to a bit indicates that the corresponding node is included in the multicast 

tree. This solution representation has been widely used in the literature to represent multicast trees. 

The pseudo code of the VEMOSA algorithm is presented in Fig. 1. The algorithm starts with a random 

initial population of solutions where multicast trees Ti are generated by starting from the source node and 

randomly connecting the next node until all the destination nodes have been added to the tree. Each solution 

Ti is initially associated with a random weight vector λ
i
. An external non-dominated solution set is 

maintained to store non-dominated solutions during the evolution and is returned as the solutions for the 

problem after the evolution is finished. 

Insert Fig. 1 somewhere here. 

During the evolution, for each multicast tree Ti in the population, a neighboring tree Ti’ is generated by 

using a randomly chosen neighborhood structure Nk. The neighboring tree is accepted as the current tree with 

a probability P(Ti, Ti’, λ
i
, TP) based on the current temperature TP and the weight vector λ

i
, defined by the 

adopted acceptance criteria in simulated annealing, see formula (8). The external non-dominated solution set 

is updated if Ti’ is not dominated by the current tree Ti. Note that in VEMOSA, if kmax = 1 then it becomes 

the EMOSA algorithm with only one neighborhood structure. 

To maintain a population of diverse solutions, two adaptation strategies have been used in VEMOSA. 

Each newly generated neighboring tree replaces its closest member in the current population if it is better 

with respect to the scalarising function in (7). At the later stage of the evolution, when the current 

temperature is decreased to below a threshold, the weight vectors of each solution are adaptively adjusted to 

tune the search directions near the Pareto front. The VEMOSA algorithm stops either when the temperature 

drops to below the final temperature or after a given period of time. 

3.3 The Variable Neighborhood Structures in VEMOSA 
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Variable neighborhood search is a recent meta-heuristic, jointly invented by Hansen and Mladenovic 

(Hansen and Mladenovic, 2001), for solving combinatorial and global optimisation problems. Compared 

with other single neighborhood based meta-heuristics, variable neighborhood search is more flexible and 

effective due to its ability to escape from local optima by traversing among different search spaces defined 

by different neighborhood structures. However, little research attention has been given on applying variable 

neighborhood search to solve multi-objective optimisation problems (e.g. Liu et al, 2006; Adibi and Zandieh, 

2009).  

In solving multi-objective problems, an important research issue concerned is the diversification and the 

intensification of the search for Pareto optimal solutions. In the current literature, almost all multi-objective 

simulated annealing algorithms use only one neighborhood structure. We investigate in this paper the 

important issue of how to appropriately define neighborhood structures targeting at different objectives of 

multi-objective MRPs. Our aim is to devise neighborhood structures which effectively drive the search 

towards diverse solutions with regard to different individual objectives, rather than to select solutions within 

those obtained during the search which, if not properly designed, may miss some of the Pareto optimal 

solutions in the search space of complex multi-objective MRPs. We integrate the EMOSA algorithm with a 

set of neighborhood structures designed for individual objectives during the search process. Two EMOSA 

algorithms have been evaluated and compared based on the EMOSA algorithm described above, namely 1) 

EMOSA with a single neighborhood structure; and 2) VEMOSA with a set of variable neighborhood 

structures. Both algorithms represent new approaches in solving MRPs in the literature.  

In VEMOSA, two types of neighborhood operators have been devised as the transition mechanism to 

generate neighboring solutions.  

- The path-switching operator. This type of neighborhood operator operates on paths in the multicast tree. 

A backup-path-set of k-best paths for each objective is constructed from the source node s to each 

destination by using the k-shortest path algorithm (Eppstein, 1998). For m objectives, there are m k paths 

in the backup-path-set for each destination (in this work m = 4 as formulated in Section 2.2., see Fig. 3 for 

an example). In our algorithms, we keep the same k-best paths for the two delay related objectives in (3) 

and (5). To generate a neighboring tree, a destination node rd is randomly chosen and the path from the 

source to rd in the current tree is replaced by a randomly selected path in the backup-path-set of the 

chosen destination. The mechanism of the backup-path-set is developed based on a similar idea of routing 

table designed in (Crichigno and Baran, 2004a), which shows to be effective to provide alternative paths 

in multicast trees. 

- The node-switching operator. This neighborhood operator operates on nodes in the multicast tree. A 

neighboring tree is generated by removing a random node (excluding the source and destination nodes) in 
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the current tree. A minimum spanning tree is then generated by using the Prim’s algorithm (Betsekas and 

Gallager, 1992) with the remaining nodes in the tree. The Prim’s algorithm is a well known algorithm in 

graph theory that finds a tree which spans a subset of links and all the nodes in a graph, where the total 

weight of all the links in the tree is minimised. 

In this work, the neighborhood structure in EMOSA is based on the path-switching operator. In VEMOSA, 

besides the neighborhood structure defined in EMOSA, four additional neighborhood structures based on 

both the path-switching and the node-switching operators are devised for each objective. By employing 

different neighborhood structures specifically target at individual objectives, VEMOSA is expected to make 

intensified search while optimising all objectives simultaneously. 

For ease of understanding, we present the benchmark NSF (National Science Foundation) network (Cui et 

al, 2003) with 14 nodes in Fig. 2 and an example backup-path-set of the path-switching operator in Fig. 3. 

The NSF network is a major part of early 1990s Internet backbone and has been tested in the existing 

literature by a number of researchers as a benchmark MRP. 

Insert Fig.2 and Fig.3 somewhere here. 

For the MRP in Fig. 2.(a), a random multicast tree and an optimal solution is given in Fig. 2.(b) and Fig. 

2.(c), respectively. To generate a neighboring tree, the set of backup-paths of destination rd = 0 is shown in 

Fig. 3, i.e. the k least cost paths for objective (2), the k least delay paths for objectives (3) and (5), and the k 

least link utilisation paths for objective (4). We list only 5 paths for each objective in Fig. 3.  

3.4 Adaptation Strategies in VEMOSA 

To diversify the search and avoid getting trapped in local optima, we adopted the two adaptation strategies in 

EMOSA (Li and Landa-Silva, 2008) to tune the search directions in VEMOSA during the evolution. Both 

adaptive strategies have shown to help improving the performance of the EMOSA algorithm. 

- The first strategy concerns the competition between the closest members in the current population. After a 

new solution Ti’ is generated, the closest solution Tj measured by the Euclidean distance on their weight 

vectors in the current population is selected. VEMOSA will replace Tj by Ti’ if Tj is worse than Ti’ by 

comparing their weighted scalarising function values, i.e. g(Ti’, λ
j
) < g(Tj, λ

j
). The competition is an 

intensification strategy which improves the quality of solutions in the current population.  

- The second strategy adaptively tunes the weight vectors according to the closest non-dominated 

neighboring solution in the current population after the current temperature is below a given threshold. 

This is similar to that is used in EMOSA (Li and Landa-Silva, 2008), aiming to tune the directions of the 

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/National_Science_Foundation
http://en.wikipedia.org/wiki/Internet_backbone
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search when it is getting closer to the Pareto front at the later stage of the evolution. The second strategy 

is intended to diversify the search directions along the Pareto front. 

4. Performance Evaluation  

We first evaluate the impact of neighborhood structures and adaptation strategies within the VEMOSA 

algorithms upon two random networks with two objectives. Based on the observations obtained, we test two 

multi-objective multicast routing benchmark problems, namely the NSF network in Fig. 2.(a) and the NTT 

network in Fig. 4 (see Crichigno and Baran, 2004b) with all four objectives defined in Section 2.2, and 

compared our results with those of existing approaches in the literature. Finally, we demonstrate the 

effectiveness and efficiency of our algorithms upon a set of random networks of different sizes with all the 

four objectives defined. 

Insert Fig. 4 somewhere here. 

4.1 Parameter Settings 

The random networks in our simulations are generated by the multicast routing simulator (MRSIM) 

implemented in C++ based on Salama’s generator (Salama et al, 1997). MRSIM generates random network 

topologies by using the Waxman’s graph generation algorithm (Waxman BM, 1988). In the random 

networks, the average node degree is set as 4. The link capacity zij is set as 1.5Mbps, the delay dij is 

generated depending on the length of the link, the cost cij is assigned a random value between (0,100] which 

represents the bandwidth consumption on the link, and the current traffic tij is randomly loaded with around 

50% of its total link capacity. 

The parameter settings for all EMOSA and VEMOSA algorithms are given in Table 2. They have been 

determined after a set of extensive tests. It is well known that simulated annealing with a higher starting 

temperature leads to better results however at a much longer computational time. Our purpose here is to find 

the balance between the quality of solutions and the expenses of computations. For fair comparisons, we 

keep the same parameter settings for both the VEMOSA and EMOSA algorithms on all the networks tested 

in this paper. All simulations have been run on a Windows XP computer with PVI 3.4GHZ, 1G RAM. To 

encourage scientific comparisons, the detailed information of all the problems and experimental results are 

provided at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. 

Insert Table 2 somewhere here. 

The following notations are used in the analysis of experimental results: 
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- VEMOSA1 and VEMOSA2: VEMOSA with and without adaptation 

- EMOSA1 and EMOSA2: EMOSA with and without adaptation 

4.2 Variable Neighborhoods and Adaptation Strategies in VEMOSA 

We first compare VEMOSA and EMOSA to identify the impact of different neighborhood structures on the 

performance the proposed multi-objective algorithms. In addition, we evaluate the effect of adaptation 

strategies in these variants of algorithms.  

To visually compare the Pareto optimal front generated by variants of algorithms, in this set of 

experiments we consider only two objectives, namely the cost and the delay as defined in Section 2.2, on two 

random networks of |V| =50 and |V| =100 with different group sizes, i.e. the number of destination nodes |R| = 

20%*|V| and |R| = 30%*|V|. The computational time of each algorithm for each run is set to 160 seconds. If 

within the given computational time the temperature drops to the final temperature, the algorithms will 

reheat the current temperature to the initial temperature and start again. The best results obtained are returned 

as the solutions for the problem. 

The union of non-dominated solutions found by each algorithm after 20 runs for the random network of 

size |V| =50 with different group sizes are shown in Fig. 5. It can be clearly seen that both VEMOSA 

algorithms with five neighborhoods found much better non-dominated solutions than the two EMOSA 

algorithms with single neighborhood structure. This is due to that the variable neighborhoods in VEMOSA 

are devised to effectively deal with different individual objectives simultaneously. Within both VEMOSA 

and EMOSA, the adaptation strategies do not seem to make significant contributions, shown by the similar 

performance with the interweaving Pareto fronts found by the algorithm with and without adaptation 

strategies for this small network of 50 nodes. 

Similarly, in Fig. 6, the union of non-dominated solutions found by 20 runs of the four algorithms shows 

that VEMOSA outperforms EMOSA with a much larger scale on the larger network of 100 nodes. It 

becomes clearer that variable neighborhoods can contribute to a better performance of VEMOSA on larger 

networks. It is interesting to see that with single neighborhood structure, the adaptation strategies in 

EMOSA1 significantly improve the algorithm performance compared against EMOSA2. However, both 

VEMOSA algorithms with variable neighborhood structures have similar performances. This shows that the 

adaptation strategies have less impact on VEMOSA, where variable neighborhoods can also effectively drive 

the search directions towards diverse Pareto optimal solutions of different objectives. Our proposed 

VEMOSA algorithm outperforms EMOSA even without adaptation strategies which carefully concern the 

directions of the search. 
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Insert Fig. 5 and Fig. 6 somewhere here. 

4.3 The VEMOSA and EMOSA Algorithms on Benchmark Instances 

4.3.1 The VEMOSA and EMOSA algorithms for the NSF network with Four Objectives 

For the NSF benchmark problem in Fig. 2.(a), an optimal Pareto Front (PF) that consists of 16 solutions 

have been found by an exhaustive search in (Crichigno and Baran, 2004b). We test the same four variants of 

VEMOSA and EMOSA algorithms on the MRP of the NSF network with the four objectives defined in 

Section 2.2. Table 3 presents the results of each algorithm within 100 runs, compared against those of 

MOEA (Crichigno and Baran, 2004a) and the Improved MOEA (Crichigno and Baran, 2004b) in the 

literature.  

Insert Table 3 somewhere here. 

For this small NSF problem, our proposed VEMOSA and EMOSA algorithms outperform the two 

MOEA approaches in the literature. Among all algorithms, both VEMOSA algorithms perform the best, i.e. 

always find all 16 Pareto optimal solutions in all 100 runs. This, together with our above observations for the 

random networks with two objectives, supports the conclusion that VEMOSA is more effective than 

EMOSA and MOEA algorithms with only one neighborhood structure for multi-objective MRPs. It is not 

surprising to see that the VEMOSA algorithms spend longer computational time to obtain better results 

compared with the EMOSA algorithms when using the same parameter settings. 

4.3.2. The VEMOSA and EMOSA algorithms for the NTT network 

We also test our proposed four algorithms on the NTT network in Fig. 4 with four objectives and different 

multicast groups, shown in Table 4. As the traffic tij for each link in the NTT network is randomly loaded 

with around 50% of its total link capacity in our experiments and in (Diego and Baran, 2005), we could not 

provide comparisons on the exact same experimental data. We therefore report and analyse results of our 

proposed four algorithms in this paper. 

Insert Table 4 somewhere here. 

To obtain an approximation of the Pareto optimal solution set, denoted by YPF, the following six-step 

procedure in (Diego and Baran, 2005) is also used here to generate YPF: 

1) Each algorithm is run 10 times. In this work four variants of EMOSA and VEMOSA algorithms have 

been used. 

2) For each algorithm, 10 sets of non-dominated solutions Y1, Y2, …, Y10 are obtained, one from each run. 
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3) For each algorithm, the aggregate population YT is obtained, where YT =
10

1i

iY . 

4) Dominated solutions are deleted from YT to obtain the non-dominated solution set for each algorithm, 

denoted by Yalg. Here, alg represents an algorithm, i.e. YVEMOSA1, YVEMOSA2, YEMOSA1, YEMOSA2. 

5) A set of solutions Y’ combining the non-dominated solutions from all algorithms is obtained, i.e. 

lg' aYY   

6) Non-dominated solutions in Y’ are selected as an approximation of the true Pareto optimal solution set 

YPF. 

Table 5 presents the total number of non-dominated solutions in YPF obtained by our four variants of 

EMOSA and VEMOSA algorithms for the NTT network by using the above six-step procedure. Results are 

obtained for the NTT network with two different multicast groups by using 160 seconds and 320 seconds, 

respectively. Our proposed four algorithms are tested with regard to the obtained YPF on the NTT network, 

results shown in Table 6 and Table 7. 

Insert Table 5 somewhere here. 

Insert Table 6 and Table 7 somewhere here. 

Table 6 shows that the VEMOSA algorithms found more non-dominated solutions in YPF than that of 

EMOSA for each run. It is interesting to see that EMOSA2 outperforms EMOSA1, meaning that the 

adaptation strategies of tuning search directions does not help to improve the algorithm performance for the 

small multicast group instance. VEMOSA1 and VEMOSA2 have similar performance, again showing that 

adapting search directions does not make significant contribution to the VEMOSA algorithms.  

Results in Table 7 show that for the NTT network with large multicast group, VEMOSA algorithms 

outperform EMOSA algorithms, demonstrating that variable neighborhoods help the algorithms to find more 

non-dominated solutions. EMOSA1 with the adaptation strategy found more solutions in YPF than that of 

EMOSA2, which does not find a single solution in YPF. Compared with the results in Table 6, this indicates 

that the adaptation strategies improve the algorithm performance for the large multicast group instance. 

However, if given longer computational time, even without adaptation strategies, VEMOSA2 find more non-

dominated solutions than that of VEMOSA1, again showing that the adaptation strategies have less impact to 

the performance of VEMOSA algorithms. 

4.4 The VEMOSA Algorithms on Random Networks 

Finally, we test the four algorithms on random networks of size |V| = 50 and |V| = 100 with different group 

sizes of |R| = 20%*|V| and |R| = 30%*|V| and with all four objectives defined in Section 2.2. Table 8 presents 
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the total number of the estimated non-dominated solutions obtained by the four algorithms on the random 

networks by using the six-step procedure in Section 4.3.2.  

Insert Table 8 somewhere here. 

Table 9 and Table 10 present the results of the four variants of algorithms on the two random networks 

with different group sizes in the given 360 seconds. Average results from 10 runs for each problem show that 

both VEMOSA algorithms significantly outperform the EMOSA algorithms in finding more non-dominated 

solutions in YPF in Table 8. The scale of differences again is much larger for larger problems, demonstrating 

the effectiveness of the VEMOSA algorithms for larger multi-objective MRPs. We observe again that the 

two VEMOSA algorithms have similar performances with regard to the average number of non-dominated 

solutions found, i.e. the number of solutions in YPF for problems of different group sizes. The adaptation 

strategies have small impact on the performance of VEMOSA algorithms.  

To summarise, the extensive experimental results on a range of different multi-objective MRPs with 

different features demonstrate the efficiency and effectiveness of our proposed evolutionary simulated 

annealing algorithms based on variable neighborhoods. Variable neighborhood structures which are 

specifically designed for different objectives significantly improve the performance of the proposed 

algorithms, especially for problems of larger network size. The VEMOSA algorithms work very well even 

without the adaptation strategies, which have shown to be important in the EMOSA algorithms for both 

MRPs in our experiments and the travelling salesman problems in (Li and Landa-Silva, 2008). 

5. Conclusions 

In this paper, we investigate the hybridisation of an evolutionary simulated annealing algorithm with variable 

neighborhoods for solving the multi-objective multicast routing problems in telecommunications. Instead of 

employing a single neighborhood structure, a number of neighborhood structures are designed to deal with 

each specific objective during the evolution in the complex search space of multi-objective multicast routing 

problems. By comparing the evolutionary multi-objective simulated annealing (EMOSA) algorithm and its 

hybridisation with variable neighborhoods (VEMOSA), we demonstrate the efficiency and effectiveness of 

the VEMOSA algorithms via an extensive set of experiments for solving both the benchmark and random 

multi-objective multicast routing problems with different number of objectives. 

With a single neighborhood, the conventional EMOSA algorithms is not able to identify multiple 

objectives simultaneously, thus cannot find some of the Pareto optimal solutions. The proposed VEMOSA 

algorithms overcome this weakness and obtain a highest number of non-dominated solutions for all the 

multi-objective multicast routing problems tested. It is observed that properly defined variable neighborhood 
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structures can significantly improve the performance of multi-objective simulated annealing algorithms. In 

addition, the competition between the members of solutions and the adaptive tuning of the search directions 

shown to be effective in EMOSA. However, they seem to play a less important role in the VEMOSA 

algorithms. The VEMOSA algorithms have shown to be highly effective even without the adaptation 

strategies for solving the multi-objective multicast routing problems. 

The proposed VEMOSA algorithm has shown to be a promising approach for solving multicast routing 

problems with multiple objectives. In our future work, we intend to investigate the influence of specific 

neighborhood structures within the VEMOSA algorithm for solving multicast routing problems with wider 

range of real world features. It is also interesting to extend our VEMOSA algorithms to solve other multi-

objective optimisation problems. 
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Fig. 1. The pseudo code of the VEMOSA algorithm. 

 

 

 

 
 (a)  

  
(b) (c) 

Fig. 2. The NSF network and two example solutions (multicast trees). (a) The NSF (National Science Foundation) network. The 

delay dij, cost cij and current traffic tij are shown on each link. The shaded node 5 is the source node; the destinations R = {0, 4, 9, 10, 

13}. For each link the traffic demand   = 0.2Mbps, capacity zij = 1.5Mbps. (b) An example of a random initial solution, C(T) = 10.8, 

DM(T) = 87, α(T) = 0.6, DA(T) = 48.8; (c) An example of an optimal solution, C(T) = 7.4, DM(T) = 36, α(T) = 0.6, DA(T) = 22.2. 
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VEMOSA (m, kmax, TPmax, TPmin, TPc) 

{ // m: the number of objectives; kmax: the number of neighborhood structures; 

   // TPmax / TPmin: the starting / final temperatures; TPc: the threshold temperature for tuning weight vectors; 

Initialization: 

Create the initial population P by randomly generating T1, …, Tpop multicast trees; // pop: population size 

Produce pop distinct random weight vectors λ1, …, λpop with a uniform distribution; 
Form the external non-dominated solution set NDS by the non-dominated solutions in P; 

Set the current temperature TP = TPmax; 

while TP ≥ TPmin do { 

foreach Ti P do { 

lc = 0; 

while lc < LC do { // LC: the number of local search moves between two consecutive temperatures 

Generate a neighbor Ti’Nk (Ti) by a random k{1, ..., kmax}, set lc = lc + 1; 

if Ti does not dominate Ti’ then  

Update the external NDS set; 

Replace the current solution Ti by Ti’ with the probability P(Ti, Ti’, λ
i, TP); // see formula (8) 

Find the closest solution Tj P (Tj ≠ Ti) of Ti’ 

if (g(Ti’, λ
j) – g(Tj, λ

j) then 

 Tj = Ti’ // adaptation strategy 1: replace the closest solution in P, see Section 3.4 

end of while loop } 

} 

TP = TP – α; // α: temperature decrement 

if TP < TPc then // adaptation strategy 2: tune the search direction, see Section 3.4 

foreach Ti P do { 

Find the closest non-dominated solution T of Ti from P 

foreach obj {1, …, m} do { 

if fobj(T) < fobj(Ti) then λi
obj = μ λi

obj; // μ: the constant for tuning the search direction 
else λi

obj = λi
obj / μ; } 

} 

end of while loop } 

return the non-dominated solution set NDS; 

} 
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 Fig. 3. An example of the backup-path-set by using the path-switching operator. 

 

 

 

 

 

 

 

 

Fig. 4. The NTT (Nippon Telephone Telegraph of Japan) network topology with 55 nodes and 142 links. 

 

 

 

 

 

 

 

  
(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15) 

Fig. 5. The non-dominated solutions found by variants of algorithms in 160 seconds for the random network of |V| =50 with different 

group sizes and two objectives. 

 

ID Paths 

1 5-6-1-0 

2 5-4-2-0 

3 5-6-9-11-10-3-0 

4 5-6-1-3-0 

5 5-4-10-3-0 

(a) least cost paths 

ID Paths 

1 5-4-10-3-0 

2 5-6-1-0 

3 5-4-2-0 

4 5-4-10-11-9-6-1-0 

5 5-4-10-3-1-0 

(c) least link utilisation paths 

ID Paths 

1 5-4-2-0 

2 5-6-1-0 

3 5-4-10-3-0 

4 5-4-2-7-8-9-6-1-0 

5 5-6-9-8-7-2-0 

(b) least delay paths 
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(a) Cost vs. Delay (|V| = 100, |R| = 20) (b) Cost vs. Delay (|V| = 100, |R| = 30) 

Fig. 6. The non-dominated solutions found by variants of algorithms in 160 seconds for the random network of |V| = 100 with 

different group sizes and two objectives. 
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Table 1. Categorised multi-objective multicast routing algorithms by the objectives and constraints considered in the problem. 

MOEA: multi-objective evolutionary algorithm. 

Heuristic Algorithms 

Objectives Constraints 
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A MOEA based on non-dominated sorting (Roy et al, 2002)  X X X    

A multi-objective genetic algorithm (Cui et al, 2003)  X  X X  X 

A QoS-based mobile multicast routing protocol based on a MOEA (Roy and Das, 2004)  X X X    

A MOEA (Crichigno and Baran, 2004a) and an improved MOEA (Crichigno and Baran, 

2004b) based on a Strength Pareto Evolutionary Algorithm  
X X X   X  

A multi-objective genetic algorithm (Koyama et al, 2004) X X      

A multi-objective ant colony optimisation system and a multi-objective Max-Min ant 

system (Diego and Baran, 2005) 
X X X   X  

A hybrid genetic algorithm and a particle swarm optimisation algorithm (Li et al, 2007) X X X   X  

 

 

 

 

 

 

Table 2. Parameter settings of EMOSA and VEMOSA algorithms. 

Algorithm parameters Settings 

population size 50 

starting, final temperatures and temperature decrement 100, 5 and 5 

number of iterations between two consecutive temperatures 25 

temperature threshold for tuning weight vectors 50 

constant μ in the adaptation strategy for tuning the search direction 1.05 

number of paths for each objective in the backup-path-set for path-switching operator 25 

 

 

 

 

 

 

Table 3. The maximum, minimum and average number of non-dominated solutions found by different algorithms for the NSF 

network in Fig. 2.(a) and the computational time of each algorithm. |NDS|: the number of non-dominated solutions; PF: the optimal 

Pareto front, here |PF| = 16. 

Algorithms 
Max 

|NDS| 

Min 

|NDS| 

Average  

|NDS| 

Computational 

time (sec) 

VEMOSA1 16 16 16 12.719 

VEMOSA2 16 16 16 12.528 

EMOSA1 16 15 15.98 5.346 

EMOSA2 16 14 15 5.426 

MOEA (Crichigno and Baran, 2004a) 16 10 12.72 / 

MOEA (Crichigno and Baran, 2004b) 16 12 13.54 / 

 

 

 

 

 

 

 

Table 4. Two different multicast groups within the NTT network in Fig. 4. 

Group Source Destination Set R |R| 

group1 (small) 5 {0,1,8,10,22,32,38,43,53} 9 

group2 (large) 4 {0,1,3,5,6,9,10,11,12,17,19,21,22,23,25,33,34,37,41,44,46,47,52,54} 24 
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Table 5. The total number of non-dominated solutions for each multicast group of the NTT network in Fig 4 with two different 

multicast groups shown in Table 4. 

Computational Time 160 seconds 320 seconds 

Multicast Group group1 group2 group1 group2 

| YPF | 6 9 6 11 

 

 

 

Table 6. Four variants of algorithms for the NTT network in Fig. 4 with small multicast group 1. The best results are in bold. 

Algorithms 

Time = 160 seconds Time = 320 seconds 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 
VEMOSA1 3.8 8.2 12 4 6 10 

VEMOSA2 3.8 8.6 12.4 4 5 9 

EMOSA1 2.2 12.8 15 2.8 13.2 16 

EMOSA2 3.4 10 14.4 3 9 12 

 

 

 

Table 7. Four variants of algorithms for the NTT network in Fig. 4 with large multicast group 2. The best results are in bold. 

Algorithms 

Time = 160 seconds Time = 320 seconds 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 
VEMOSA1 2 8 10 1 10.2 11.2 

VEMOSA2 1.8 8.2 10 1.8 7.4 9.2 

EMOSA1 0.6 15.4 16 1 21.8 22.8 

EMOSA2 0 27.8 27.8 0 17 17 

 

 

 

Table 8. The total number non-dominated solutions of YPF on the random networks. 

Network Size |V| = 50 |V| = 100 

Group Size |R| = 10 |R| = 15 |R| = 20 |R| = 30 

| YPF | 96 164 46 46 

 

 

 

Table 9. Comparison of different algorithms on random network of |V| = 50 with different group sizes. Computational time = 360 

seconds. The best results are in bold. 

Algorithms 

|R| = 10 |R| = 15 
Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 
VEMOSA1 17.4 19.8 37.2 28 94.2 122.2 

VEMOSA2 17.8 21.8 39.6 23 92.2 115.2 

EMOSA1 8.4 97.8 106.2 0.8 96.6 97.4 

EMOSA2 4 79.6 83.6 8.6 37.8 46.4 

 

 

Table 10. Comparison of different algorithms on random network of |V| = 100 with different group sizes. Computational time = 360 

seconds. The best results are in bold. 

Algorithms 

|R| = 20 |R| = 30 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 

Average 

Solutions 

in YPF 

Average 

Dominated 

Solutions  

Average 

Total 

Solutions 

VEMOSA1 4.8 26.4 31.2 3.4 15.6 17 

VEMOSA2 4.6 26.4 31 6.8 11 34 

EMOSA1 0.4 40.2 40.6 0 19 19 

EMOSA2 0 51.4 51.4 0 27 27 
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Table 7. Four variants of algorithms for the NTT network in Fig. 4 with large multicast group 2. The best results are in bold. 

Table 8. The total number non-dominated solutions of YPF on the random networks. 

Table 9. Comparison of different algorithms on random network  of |V| = 50 with different group sizes. Computational time = 360 

seconds. The best results are in bold. 

Table 10. Comparison of different algorithms on random network of |V| = 100 with different group sizes. Computational time = 360 

seconds. The best results are in bold. 

 


