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Abstract

In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea
behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature—value
pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help
to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribu
graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results
from our experiments show the effectiveness of the retrieval and adaptation in the proposed @00l Elsevier Science B.V. All rights
reserved.
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1. Introduction able to describe important information that could make
differences in finding high quality solutions to this kind of
Case-based reasoning (CBR) [1] solves problems by problem. Thus the similarity measure cannot recognise the
retrieving the most similar previous cases in a case basecorrespondence between the features in cases and character-
(source casgsand by re-using the knowledge and experi- istics of the solutions. It can be very difficult to adapt the
ences from previous good quality solutions. If necessary, the retrieved cases for the new problems and the adaptation may
retrieved solutions are adapted by using domain knowledgetake as much effort as scheduling from scratch. Smyth and
so that they are applicable for the new problem. The caseKeane [2] questioned the similarity assumption in CBR and
base is then updated by the new learned cases. introduced a concept called “adaptation-guided retrieval”. It
is unwarranted to assume that the most similar case is also
the most appropriate from the re-use perspective. Similarity
must be augmented by a deeper knowledge about how easy
In traditional CBR, a list of feature—value pairs is typi- it is to modify a case to fit a new problem. Traditional case
cally employed to represent cases. The nearest-neighboufepresentation does not enable this description of the deeper
method is used extensively as a similarity measure thatknowledge that is needed in cases such as the heavily inter-
gives every feature a weight and results in a weighted sumconnected time-tabling problem. A similarity measure such
to measure the similarity between two cases. Then the mostas the nearest-neighbour method is not sophisticated enough
similar case(s) retrieved from the case base are adapted fofo reflect deeper similarities between these problems.
the new problem. In some domains, this representation and The aim of this paper is to present the possibilities and
retrieval method is sufficient to find similar cases. However, advantages of using attribute graphs to represent cases struc-
some complex problems (such as time-tabling problems) turally in a CBR system which solves educational time-
consist of events that are heavily inter-connected with tabling problems. The attribute graphs are used to describe
each other. A list of feature—value pairs by itself is not the relations between the events in a time-tabling problem
more concisely and explicitly and thus can express deeper
knowledge stored in the cases such as the correspondence
between structures of events and characteristics of the
* Corresponding author. Tel+44-1159514206; fax:44-1159514254. solutions. The solutions of the retrieved cases are adaptable

1.1. Traditional case representation in CBR
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and can be reused for the new problem that has a similarmemory. Miyashita and Sycara [13] stored previous sche-

structure. dule repair tactics as cases in the CABIN system for job
) shop scheduling problems by incrementally revising a
1.2. Structured cases in CBR complete but sub-optimal schedule to produce a better sche-

Representing cases structurally has been discussed in th(%iljle according to a set of optimisation criteria.
P 9 y Hennessy and Hinkle [14] explored a new approach for

literature, but no general theory or methodology has been retrieval and adaptation processes to solve the autoclave

identified. Baer [3] proposed a CBR system that trans- management and loading problem. Case adaptation finds

formed a set of pre-selected candidate cases into astructuratlhe substitute by searching the case that has the correct
representation to find the common structure between thecontext in the n)éw environgment for the unmatched parts

Leodto represent the opalogical Suctre t support iayoun " REl [15] o approaches were explored that reuse the
P polog bp y portions of good schedules to build new schedules. The

design [4]. Structural similarity is usually defined using . | d with oth hod d
maximum common sub-graphs, which are employed as experiment results were compared wit c.)t.er methods an
' showed that the approach worked efficiently for less-

prototypes to represent classes of cases thus reducingmmplex scheduling problems. Schmidt [16] proposed a

much of the memory retrieval effort. . .
: roblem solving system that used the theory of scheduling
Racci and Sender [5] used a tree to represent structured . . . .
within CBR to solve production planning and control

cases. The similarity measure takes into account both the roblems. Scheduling problems are oraanised by usin
structures and the labels in the cases. A set of aIgorithmsP o g p organ y 9
transformation graphs” to show similarities between

was explored to solve subtree-isomorphism and it was T .
shown that significant speed-up can be obtained on problem characteristics in terms of polynomial t'ransforma-
tion between cases. MacCarthy and Jou [17] discussed the

randomly generated case bases. use of CBR in the development of a class of schedulin
Two systems CHIRON and CAPER were used in Ref. [6] , . P uling
problems involving sequence dependent set-up times.

to show how thg graph-structured representation mplemen_-General problems about the application of CBR to schedul-
ted as semantic networks support Case-Based Planning mmg problems were also addressed
two domains. The benefits and cost associated with graph- '
structured representation were also discussed. In CAPER
the retrieval problem was solved by a massively parallel

mechanism [7].

'1.3.2. Time-tabling problems
In this paper, structured cases are used in CBR to repre-

. “ i sent simple educational time-tabling problems. Time-
Jantke introduced “nonstandard concepts” [8] where ; )
..~ tabling problems were defined by Wren [18] as: “the alloca-
cases are represented as structured cases. The similarit

L . ¥|on, subject to constraints, of given resources to objects
measure thus takes structural properties into account, with, " : . ) .
. . . being placed in space-time, in such a way as to satisfy as
the aim of making the CBR approach more flexible and . } L i
expressive nearly as possible a set of desirable objectives.” Time-

The FABEL project [9] provides more details of some tabling problems are specific types of scheduling problems

existing systems that employ structured cases. The Casethat can be highly constrained and difficult to solve. A

similarities described were classified into five groups: general time-tabling problem consists of assigning a number
. : . o ) . " _.of events (e.g. exams, courses, meetings, etc.) into a limited
restricted geometric relationships; graphs; semantic nets;

L . . . . ~'number of timeslots (periods of time) so that no person is
model-based similarities and hierarchically structured simi- : : :
assigned to two or more events simultaneously. Constraints

larities. which should under no circumstances be violated are known

1.3. CBR in scheduling and time-tabling problems as hard constraints. Other constraints which are desirable
but not essential (such as that two events should be conse-

1.3.1. CBR in scheduling cutive, etc.) are known as soft constraints. The violations of

As far as the authors are aware, there are few publicationsthe soft constraints should be minimised.
specifically on CBR for scheduling problems. MacCarthy  Various methods have been used to solve educational
[10] proposed a general framework for CBR in general time-tabling problems [19,20]. The graph theoretic
scheduling environments and the areas where CBR offeredapproach was a widely employed technique in the early
the most potential were justified. A review was also carried days of research on time-tabling problems.
about CBR systems dealing with scheduling problems. Recentresearch has considered a variety of modern meta-
Koton [11] proposed a system for the scheduling of a heuristic methods and approaches such as Tabu Search (e.g.
large-scale airlift management problem by abstracting and see Refs. [21,22]), Simulated Annealing (e.g. see Refs.
decomposing it, and afterwards the precedent cases werd23,24]), Genetic Algorithms (e.g. see Refs. [25-27]) and
combined for the new problem. The CBR-1 project [12] hybrid methods (such as Memetic Algorithms, e.g. see Refs.
used CBR in the dynamic job-shop scheduling problem. A [28—32]). A wide variety of research work on time-tabling
pool of methods in the system provides rules dealing with a can be found in Refs. [33,34].
constrained environment but it requires a large amount of CBR is potentially a very valuable tool in scheduling
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Table 1 _ _ _ are labelled with a 1 (to indicate that they are multiple
Some node attributes of course time-tabling problem courses) and with values 2, 3 and 2 that denote that they
Label Attribute Value(s) Notes should be held 2, 3 and 2 t!mes a week, respgctively. Other
courses are labelled 0 (ordinary courses), which denote that
0 Ordinary course  N/A Takes place once a week they should be held just once a week. SpanishA should not
1 Multiple course N (no. of times) - Takes plachl times a week be consecutive to Physics (because the edge between them
2 Pre-fixed course S(slot no.) Assigned to times|@ is labelled b 6 d Chemi hould b .
3 Exclusive course S(slot no.) Not assigned to timesl|&t is labelled by a 6) an emistry shou e consecutive to

SpanishB (labelled by a 5). The directed line between

SpanishA and SpanishB has the label 4 (with value 1)

problems [10,16]. One of the major contributions of CBR, which denotes that SpanishA should be held before

as a modelling tool to capture knowledge, is the ability of SpanishB.

avoiding computation (in Tabu search, GA, etc.) by search- Using this approach, the course time-tabling problems

ing, selection and matching techniques. CBR is also a valu-can be represented structurally. It enables us to describe

able method for scheduling problems that put emphasis onthe relations between events in the problem that is not possi-

constraint directed research, a major feature in time-tabling ble by using feature—value pairs. Also the different cases of

problems. the problems can have different structures, unlike in tradi-
In this paper a simple course time-tabling problem is used tional case representation using the list of feature—values

as an example to interpret the retrieval and adaptation of pairs where all the cases have the same form of feature slots.

structured cases. The representation of time-tabling

problem; by attrlpute graphs is given in Section 2. Section 3. Implementation of the CBR system for course

3 describes the implementation of the proposed SyStemtime-tainng problems

organised as a tree and an example is shown in Section 4.

A brief concluding discussion is presented in Section 5. 3.1. The graph isomorphism problem and decision tree

algorithm

2. Attribute graphs for course time-tabling problems Using attribute graphs to represent cases has many advan-
tages. However, the matching problem between the struc-
In course time-tabling, a number of courses (events) havetured cases is equivalent to that of the graph isomorphism or
to be assigned to a limited number of timeslots. Two courses sub-graph isomorphism problem that is known to be NP-
may have common students so they conflict with each other Complete [35]. A grapl@ is isomorphic to grapks’ if there
and cannot be assigned to the same timeslot. exists a one to one correspondence between nodes and edges
Attribute graphs are used here to represent course time-of the two graphs. A grapls is sub-graph isomorphic to
tabling problems structurally. In attribute graphs, nodes graphG’ if G is isomorphic to a sub-graph @'. Some
indicate events and edges show the relation between anymethods have been attempted to solve this problem in
pair of events. Nodes and edges have attributes that repreCBR by detecting cliques of the graph [3]. The system
sent the problem more precisely. Each attribute correspondsheing proposed here is based on Messmer’s algorithm [36]
to a label assigned to nodes and edges. Tables 1 and 2 showhere graphs are organised in a decision tree.
parts of the labels and attributes of nodes and edges that are The attribute graph is represented by its adjacency matrix
used in our problems. M = m;, wherem ; € L. indicates the attribute of the edge
A simple example is shown in Fig. 1 to illustrate a course between nodéand nodg andm; € L, indicates the attri-
time-tabling problem represented as an attribute graph.bute of nodei. L, andL, are the sets of labels defined in
Nodes represent courses. Solid edges indicate hardTables 1 and 2. There anédifferent adjacency matrices for
constraints (labelled 7) which means that the adjacent an n-node attribute graph when the nodes are in different
courses cannot be held simultaneously. Dotted lines indicatepermutations. The basic idea of Messmer’s algorithm is
soft constraints labelled 4, 5 or 6. The labels on the edgesto pre-store all the adjacency matrices of some known
and inside the nodes correspond to the attributes shown ingraphs with their permutation matrice®=p;;, to the
Tables 1 and 2. For example, Maths, Physics and Chemistrycorresponding nodes in a decision tree. If graphis

Table 2

Some edge attributes of course time-tabling problem

Label Attribute Values(s) Notes

4 Before/after 1 or O (direction) One before/after another course
5 Consecutive N/A Be consecutive with each other
6 Non-consecutive N/A Not consecutive with each other
7 Conflict N/A Conflict with each other
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root node with label 0 and 1 on the first level. The second
level under branch 1 can be 707 and>dGn M4 andM5,
thus two branches below branch 1 are built. Then the
following levels of the decision tree can be built by the
same process, each branch on levidads to a successor
node that is associated with a specific value for itne
element ofMO-M5. Each permutation matrix is stored in
the corresponding node in the decision tree (not shown in
Fig. 3). Then all the other known attribute graphs can be

< added into the tree in the same way.
SpanishB .
Let us suppose that we are presented with a new problem
represented by matrid for attribute graptG’ (see Fig. 4).
Fig. 1. Attribute graph of a course time-tabling problem. The matrixM is inserted into the tree and can be classified to
nodeX according to the values of each branch. The permu-
isomorphic to graptG, then if p;; = 1, nodei in graphG tation stored to nod& gives the isomorphism that tells us

corresponds to nodgin graphG'. If a new graph can be that Maths(c), Physics(b) and Spanish(a) in attribute graph

classified to a node in the decision tree at legethen the G correspond to English(b), Chemistry(a) and Maths(c) in

permutation matrix (matrices) stored in this node indicate attribute graphG’, respectively.

the matching between thenodes of the new graph and that

of previously stored graph(s). If the time spent on building 3 2 Retrieving structurally similar cases

up the decision tree is ignored, this algorithm guarantees

that all the graph isomorphism(s) or sub-graph isomorph- Some course time-tabling problems are generated

ism(s) stored in the tree can be found in polynomial time randomly and their attribute graphs are used to build up a

(quadratic to the number of nodes of the new graph). decision tree in the proposed system. The solutions of these
For example, in Fig. 2, attribute grafghrepresents a 3-  problems are obtained by using a heuristic graph colouring

course time-tabling problem. Maths is labelled 1 with value method described in Ref. [37].

2 (multiple course, held twice a week). Physics and Spanish A penalty is associated to each pair of labels described in

are labelled 0 (ordinary course, held once a week). PhysicsTables 1 and 2 and used in the retrieval process. A threshold

should be held before Maths. Spanish should not be schedds also set to judge whether two labels are similar or not.

uled simultaneously with Physics as Maths. There are six When the system tries to match each pair of events in the

adjacency matricesM0—-M5 representing graphG, X new problem with source cases, the events can be seen as
denotes that there is no edge between two nodes and theimilar if the penalty between their labels is below the
labels in the matrices are described in Tables 1 and 2. threshold. They are identified as similar and returned to be

These matrices are used to build the decision tree (see Figmatched to each other.
3). If a matrix M can be seen as consisting of an array of  If an event in the new problem has the same label and the

the so-called row-column elements, = (my;, My, ..., same value as the source case, then they match with no
my, My, .., My), then a 3x 3 matrix consists of three  penalty. Two events are considered not to be matching if
elements: a; = a5, @ = ax1@»a;» and az = az1a3.833 the penalty between their labels exceeds the given threshold.
a,3a13. The first element of each of the matrick®d—M5 Two events that are labelled the same are further analysed

can be 1 or 0, and therefore there are two branches from theto see if they have the same values. Penalties are given for

abc ach bac bca cab cba

al0]717] a|0f7]7] bl0]7]4 01417 ci|7|x] c{l|x]|7

bl71014] c|7]1IX] a(7]0|7| c|xf1]|7| a|7]0]|7| b|4]0|7

c |7ix |1 bl71410] cix]711 al7]710] b4i710] al|7]710

MO Ml M2 M3 M4 MS
Graph G

Fig. 2. Matrices of attribute grapB of a course time-tabling problem.
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(a]7

o-° <> |

M4 X ~ MO M2

Fig. 3. Part of a decision tree storing matrices of attribute gfauifi a course time-tabling problenMQ, M2 andM4 are shown).

the differences between the values and are taken intonodes and edges, the system calculates the similarity

account in the similarity measure. between the new problem and the candidate cases in and
Every label is also given a weight using domain knowl- below the node. The most similar case(s) are selected for

edge for the similarity measure. The similarity measure is adaptation.

thus given by

n 3.3. Reuse and adaptation of the solutions

s=1 LJZO Py X w/P After the system finds the most similar case(s), the solu-

tions or part of the solutions of the retrieved case(s) can be

reused. The system substitutes the events in the solution(s)

of the retrieved case(s) with the matching events in the new

problem according to the isomorphism(s) found. After the

substitution, a partial solution for the new problem can be

of Iapels times the_weight_of every label. _ _ obtained although there may be some violations of
Using the penalties assigned to each pair of labels in thecons’[raints. If there is no violation of hard constraint in

course time-tabling problem;, the retrieval is, targetgd al the retrieved solutions, there is also no violation of hard
matchlng between every pair of events, not just a single constraint in the solutions after substitution.
judgement between the whole cases. The system can 1 graph heuristic method which tries to minimise the

retrieve the case(s) suitable for adaptation for the new g iations of constraints is used in the adaptation process.

problem from the case base. _ i Events that violate the constraints are collected from the
_When a new problem is entered in the system, itis clas- ,ia| solution, and all the unscheduled events are ordered

sified to a node in the decision tree and the system retrievesg by their degrees (number of conflicts of an event with

all the cases stored in and beloyv that node as candidates. Ather events) decreasingly and then are assigned one by one
the tree stores cases hierarchically, all the cases that havel:o the first available timeslot. If some events cannot be
more events and/or more relations are stored below thoseassigned to a timeslot without violation of constraints

having less events and/or relations. It is observed that SO'“'they will be kept until all the other events have been sched-
tions of more constrained cases can be adapted easily foruled. Then they are scheduled to the timeslots that lead to
less constrained problems. Thus all the cases in and belowthe fewest number of violations of constraints

the node are retrieved.

Using the penalties for every pair of the labels of

wheren is the total number of the labelg;; the penalty
between labelof node or edge in the new problem and label
j of node or edge of source casegthe weight of label in
the new problem anB the sum of the penalty for every pair

4. A simple illustrative example

Let us suppose that the problem shown in Fig. 1 is the

cab new problem. All the cases and their isomorphisms are
o[7]7 ; : -
retrieved from the node that the new problem is classified
al7]0/4 .
b [FTxT1 to in the case base. Not only the case(s) that are graph
M isomorphic to the new problem can be adapted, but also

the case(s) which the new problem is sub-graph isomorphic
Fig. 4. Matrices of attribute grapls’ for a new course time-tabling ~ Can be adapted, although they may not be “good” solutions
problem. for the new problem. Two cases whose similarities pass a
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Table 3
Solutions after substitution by using isomorphism

Timeslotl Timeslot2 Timeslot3 Timeslot4 Timeslot5
Solution1 Physics, Maths, Chemistry English, Geography SpanishA SpanishB, Physics, Maths Chemistry, Maths
Solution2 Maths, Physics, Chemistry English, Geography SpanishA SpanishB, Maths, Physics SpanishB, Physics
Solution3 Physics, Maths, Chemistry English, Geography SpanishA SpanishB, Physics, Maths Chemistry, Maths
Solution4 Maths, Physics, Chemistry English, Geography SpanishA SpanishB, Maths, Physics Chemistry, Physics

given threshold (a score we set) are considered to be the5. Conclusions and future work
most similar to the new problem and are retrieved from the
case base. The structures of these two cases are shown in In this paper, a method is proposed to help solve course
Fig. 5. It is possible to find more than one isomorphism time-tabling problems using CBR in which attribute graphs
between two graphs. Two isomorphisms were found for are used to represent cases. To our knowledge, the CBR
each of the retrieved cases in this example. approach proposed in this paper is new in solving the

After substituting the events of the retrieved cases shown time-tabling problems.Retrieval targets every pair of
in Fig. 4 by matching events indicated by the isomorphisms, nodes and edges between the new problem and source
four solutions can be obtained for the new problem (see cases so that the retrieved case(s) are the most adaptable
Table 3). for the new problemThe retrieved cases’ solutions store

It can be seen that there are three violations of soft good optimised or sub-optimised schedules for the
constraints in solution 1: SpanishA is consecutive to previously solved problems. These schedules can be
Physics, Physics is held only two times and Maths is sched- exploited and re-used for the new similar cases, after only
uled one more time. Using the graph heuristic method takeslimited adaptations for solutions which are then applicable
two adaptation steps: it deletes Maths from timeslot1 and addsfor the new problem. The graph data structure gives a
another Physics to timeslot 5. It can also be seen that there argletailed description of the time-tabling problem. The rela-
1, 3 and 1 violation(s) of soft constraints in solution 2, 3 and 4, tions between any events can be described clearly, and
respectively. Using the graph heuristic method takes 1 and 2therefore the application ofhis method to time-tabling
adaptation step(s), respectively, for solution 2 and 3. There isproblems is likely to find the similar cases adaptable for
no adaptation for solution 4. After adaptation, there is only the new problem.
one violation of a soft constraint in each solution. In the current system, it is presumed that some pre-

The simple example has demonstrated that only a few compiled cases exist so that the new problems can find
adaptations are needed to get solutions for the new problemisomorphic or sub-graph isomorphic cases from the case
on the basis of the solutions of the retrieved similar cases. base. If only part of the structure of the new problem
Cases can explore deeper knowledge in course time-tablingfound correspondence to part of the structures of the source
problems by the structural representation. Retrieval that cases, the partial matching could also be reused for the new
targets the adaptability of every pair of events between the problem. Research work is being undertaken on searching
new problem and the retrieved case(s) finds the most adap-and re-using the maximum-weighted common sub-graphs
table cases for the new problem, thus a corresponding rela-between source cases and the new problem. This work on
tion between the events and adaptation requirements isthe simple problem is a potential method and it provides
built-up. Employing the adaptation requirements in the defi- promise. We believe it is applicable to large real world
nition of the similarity between every event pair gives a problems. Comparison with other methods will form a
more elaborate description for the similarity measure. major part of our future work in this area.
Thus the knowledge and experiences previously stored in
the retrieved cases’ solutions can be exploited for re-use for
new similar problems. We note that the CBR can re-use the
sub-solutions of previously solved problems within the
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