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In this paper, we investigate the hybridization of constraint programming and local search techniques
within a large neighbourhood search scheme for solving highly constrained nurse rostering problems.
As identified by the research, a crucial part of the large neighbourhood search is the selection of the
fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The
success of the large neighbourhood search depends on the adequacy of this identified neighbourhood
with regard to the problematic part of the solution assignment and the choice of the neighbourhood
size. We investigate three strategies to choose the fragment of different sizes within the large neigh-
bourhood search scheme. The first two strategies are tailored concerning the problem properties. The
third strategy is more general, using the information of the cost from the soft constraint violations
and their propagation as the indicator to choose the variables added into the fragment. The three
strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results
demonstrate the possibility of future work in the hybrid approach.

1 Introduction

Nurse rostering problems (NRPs) represent an important administration activity in real world modern
hospitals. It consists of assigning a set of shifts of different types to a limited number of nurses with
different working skills and working contracts, while satisfying a large set of hospital rules, working
practices, legislations and personal preferences. Solving nurse rostering problems properly, while con-
cerning the efficient allocations of the limited resources available, has a positive impact on nurses’ work-
ing conditions, which are strongly related to the quality level of the healthcare.

Beside the importance of the practical aspects, solving complex NRPs which is NP-hard [1] also
raises a scientific challenge to the researchers. NRPs are a special type of scheduling problem with a
wide range of heterogeneous and specific constraints, thus are over-constrained and hard to solve effi-
ciently. It has been extensively studied in Operational Research, Artificial Intelligence and local search
(meta-heuristics) communities for more than 40 years [2-4]. Exact procedures, in particular Operational
Research techniques such as linear programming [5], integer programming [6] and mixed-integer pro-
gramming [7] have been proposed to tackle the problems. Another exact procedure, constraint program-
ming, which originated from Artificial Intelligence research, also forms an important research direction
in solving NRPs [8]. Its flexibility of modelling the complex logical constraints makes constraint pro-
gramming a strong candidate to model and solve NRPs. However, due to the exponential growth of
search space along with the problem size, exact procedures including constraint programming are com-
putationally expensive for solving large scale nurse rostering problems.

On the other hand, local search approaches including tabu search [10] and simulated annealing [11],
etc, are shown to be highly effective for solving large scale personnel scheduling problems. They are

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 A Constraint-directed Local Search Approach to Nurse Rostering Problems

usually applied to improve initial complete solutions obtained from a construction phase in terms of
the cost of the solutions, i.e. the value of the objective function. Roughly speaking, we can catego-
rize local search approaches into two types: traditional local search and constraint-directed local search
approaches.

Traditional local search approaches employ neighbourhood moving operators, such as 2-opt, k-opt
and ejection chain, etc, while the satisfaction of constraints are checked at each move [3]. The moves
considered are usually only those preserving the feasibility, i.e. all constraints have been satisfied. These
methods are thus lack of flexibility when moving in the search space because the search is more likely
to be stuck in the region around the initial solution. Meyer auf’m Hofe [12] highlights this limitation
by using a specific example where the swap neighbourhood operator is unlikely to remove a particular
violation, as it requires a simultaneous change of eight specific variables. One solution to resolve this
limitation is to design more complex neighbourhood moves which amend larger parts of the current
assignment. Dowsland [10] employs two types of ejection chains which consist of a sequence of on/off
day swaps. Louw et al. [13] employ compound moves which are similar to the idea of chain swaps. These
complex moves, although highly effective, face the potential problem of exploring an exponentially large
neighbourhood. Complex moves which remain polynomial time solvable are highly desired, and usually
are tailored to the specific properties of the problems in hand.

In constraint directed local search approaches, a more general neighbourhood move can be performed
by using a complete search solver concerning all constraints involved. This is the central idea of large
neighbourhood search (LNS) [9,14-17]. Inspired by the concept of the impact of a variable in integer
programming techniques, Refalo in [18] proposed a general impact based strategy in constraint pro-
gramming to measure the importance of a variable for a reduction of the search space. Laurent Perron in
[15] studied propagation guided large neighborhood search approaches. An adaptive large neighborhood
search approach was proposed in [14] to solve vehicle routing problems by adaptively choosing among
a number of insertion and removal heuristics (neighborhood structures) to intensify and diversify the
search.

In this paper, we develop and investigate a constraint-directed local search approach within a LNS
scheme to tackle the NRPs. To the best of our knowledge, this is the first attempt to use this technique
to NRPs. The two main advantages of this approach are: firstly, there is no need to design complicated
neighbourhood move operators to reach more solutions in the search space; secondly, by using the branch
and bound search in constraint programming, more than one variable assignment can be optimized within
one improvement step.

The paper is organized as follows. In section 2 we describe the NRPs and build the constraint pro-
gramming model with primitive constraints, global hard constraints and global soft constraints. In section
3 we present the constraint-directed LNS with different strategies. In section 4 we analyze computational
experiment results. Conclusions and future work are given in section 5.

2 Problem description and modeling

2.1 Description of the nurse rostering problem

The NRPs we are testing are derived from real-world problems in intensive care units at hospitals. The
problem consists of assigning a predefined number of shifts of different types (i.e. Early, Day, Night,
Late) to a number of nurses of different working contracts in a hospital ward over a scheduling period
(i.e. four weeks). Among the set of benchmark problems, the main constraints are similar but variants
exist with respect to the number of nurses, number of shift types, length of the scheduling period, and
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different subsets of the constraints. Constraints are usually categorised into two groups: hard constraints,
which must be satisfied to get feasible solutions for use in practice, and soft constraints, which are not
obligatory but are desired to be satisfied as much as possible. A common hard constraint is to assign all
shifts required to the limited number of nurses, i.e. demand coverage. The violations of soft constraints
are usually used to evaluate the quality of solutions, for example, if a balanced workload is allocated so
that human resources are used efficiently. Examples of constraints we concern in this work are listed as
follows:

The hard constraints are:

• To a full-time nurse, 18 shifts per scheduling period have to be assigned.

• To a part-time nurse, 10 shifts per scheduling period have to be assigned.

• On each day there starts at most one shift for a nurse.

• Each nurse receives at most 4 night shifts, of which at most 3 on consecutive days, per scheduling
period.

• Each nurse works at most 6 days in a row.

• Each any 3 consecutive weekends, at least one is free of labor.

• After a series of 1, 2, or 3 night shifts, there is 48 hours free of labor.

The soft constraints for a nurse are:

• A single night shift causes a penalty of 100.

• A stand-alone shift, i.e. a single shift with day off before and after, causes a penalty of 100.

• A weekend with 1 shift causes a penalty of 100.

• A single day off causes a penalty of 10.

• A full-time nurse receives 4 or 5 shifts, and a part-time nurse receives 2 or 3 shifts per week (from
Monday till Monday). A penalty of 1, 4, 9 and 16 occurs for a deviation of 1, 2, 3 and 4 from this
range, respectively.

• A full-time nurse can work a series of shifts of length 4 to 6, and a part-time nurse can work a series
of shifts of length 2 or 3. A penalty of 1, 4 and 9 occurs for a deviation of 1, 2 and 3, respectively.
(Too short series at the end of the scheduling period are not penalized as they are carried forward
to the next scheduling period).

2.2 Constraint programming model for the nurse rostering problem

Following our previous research [20], we formulate the NRPs in a constraint programming model within
the LNS scheme.

Denotations:

• I: set of nurses available(index i)

• J: number of days within the scheduling period(index j)

• K: set of shift types(includes off shift)(index k)

• D jk:coverage demand of shift type k on day j

• Decision variable si j: the shift type assigned to nurse i on day j
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Primitive constraints are used to model the problem. For example, one extra constraint to the above
list is that ”after a Late shift no Early shift is allowed”. It can be expressed by using ”if si j = Late, then
si j 6= Early”.

In addition to primitive constraints, to efficiently model the features of the problem, global constraint
such as cardinality(gcc) has been used in the model. For example, the demand coverage constraint can
be expressed as cardinality(x,D,LB,UB), restricting the decision variable x to take only values in shift
type set D of a number of times within the bounds [LB,UB]. It is quite straightforward to use gcc to
model the constraint crisply, i.e. the constraint is either satisfied or not satisfied [12, 20]. However, the
problem we are trying to tackle is over-constrained. Using only crisp constraints to model all the above
stated constraints does not usually produce feasible solutions for the problems. Therefore, global soft
constraints have been used to model the originally over-constrained problems as constraint optimization
problems. Global soft constraints upon group of variables can be seen as a preferential constraint whose
satisfaction is not required but preferred. A cost is associated to each global soft constraint in order to
quantify the violation of the corresponding constraint. The objective is defined as to minimize the total
sum of the cost.

Definition: µ is a violation measure for the global constraint c(x1, · · · ,xn) iff µ is a function D1×
D2×·· ·×Dn⇒ R+. s.t. ∀A∈D1×D2×·· ·×Dn, where D1, · · · ,Dn is the domain of x1, · · · ,xn. µ(A) = 0
iff tuple A satisfies c(x1, · · · ,xn).

To evaluate the violation of the soft constraint, we define the violation measure µ for soft constraint
cardinality as:

µ(so f t−cardinality) = card−UB, i f card > UB (1)

= LB− card, i f card < LB

For example, due to the constraint that nurse i should work 4-5 Day shifts in one week, assigning the
nurse Day shifts of less or over the range [4, 5] will cause a penalty of 100. For a given schedule: l =
Day, Day, Day, Off, Off, Off, Off, we have Cost(l) = w×µ(l) = 100× (4−3) = 100, where card(l) =
3,LB = 4,UB = 5.

In this paper we use the global constraint gcc and its soft version at different stages of our solu-
tion procedure. In the first stage, only hard constraints are considered and they are modeled as crisp
constraints to obtain initial solutions. In the second stage, local search is applied to improve the initial
solution with respect to global soft constraints. The soft gcc is used not only in the objective function,
but also to decide the structure of neighborhood in the LNS approach. That is, we choose variables to be
added to the fragment if these variables are linked and propagated by these soft global constraints.

3 The constraint-directed large neighborhood search approach

LNS is firstly proposed by Shaw in [17] to solve the vehicle routing problem. The framework of LNS
is a very simple scheme in the context of constraint programming. The basic idea is to iteratively relax
and then re-optimize a part of the solution assignment to find better solutions over iterations. Constraint
programming is used to generate the new assignment for the relaxed part of variables and to add bound
to the search to ensure that the new solution found is better than the current one.

Table 1 presents our 2-stage approach to solve NRPs. In the first stage, a feasible initial solution is
constructed with respect to the hard constraints. In the second stage, LNS is used to iteratively improve
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Table 1: The large neighborhood search scheme
Stage 1: construct initial solution: solve (H) // H: set of hard constraints
Stage 2: While optimal solution not found or stopping criteria not met do //LNS

Choose the low quality fragment to be relaxed
Freeze the remaining variables
Re-optimize the fragment with strategy i // see sections 3.1-3.3
If found (a) First improved solution, or

(b) Best improved solution // search heuristics, see section 3.4
Update solution

End if
End while

the initial solution. The LNS is parameterized with different strategies to choose the low quality frag-
ment (poor assignment) in the solution, which is relaxed and re-optimized to obtain improved solutions
iteratively.

As observed by several researchers [14, 15], the key issue in designing efficient LNS is the selection
of the fragment, i.e. set of variables to be relaxed and re-optimized. For instance, in job shop scheduling
problems, the fragments usually involve the critical path of the schedules. In routing problems, cluster
removing techniques have been used. To a certain extent, the success of LNS depends on the adequacy
of this fragment (neighbourhood) with regard to the problematic parts of the solution and the choice of
the neighbourhood size.

The roster (solution) we construct for NRPs has a 2-Dimensional row/column structure. Each row
represents the schedule for a nurse and each column represents a day assignment in the scheduling
period. The constraints involved in the model can thus be categorized as row/horizontal constraints and
column/vertical constraints. In our problem, there is only one hard constraint, coverage constraint, which
can be seen as a column constraint. All other constraints concerning shift patterns and preferences can
be seen as row constraints. This 2-Dimensional structure of rosters determines the basic structure of the
fragment selected. That is, we can select related variables by choosing which row and which column of
variables to be added to the fragment.

The advantages of choosing small fragments are that complete assignment can be searched quickly.
However, it is more likely that an improved solution exists in larger fragments. There is thus a trade-off
between the computational time and the optimality while we set the size of the chosen fragment. Ideally
the fragment should be large enough to have a reasonable chance of moving to an improved solution, and
small enough so computational time is affordable.

We investigate three strategies in this paper to choose the fragment of variables. The first two strate-
gies are based on the observations that specific neighbourhoods with domain knowledge are usually
helpful in finding good results. The first basic strategy iteratively chooses all rows (schedules of all
nurses) with a fixed length over the roster, i.e. a sliding window covering fixed days/columns of the
roster for all nurses. The second strategy considers the overlap of these sliding windows. In addition,
a more general third strategy is investigated by using the information gained via constraint propagation
to define the fragment (neighbourhood). It chooses the fragment with respect to the cost of global soft
constraints, and thus is more general compared with the first two strategies.
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3.1 Fixed length sliding window as the neighborhood

In all the constraints listed in section 2.1, the only constraint imposed on the columns is the coverage
constraint cardinality. In our first strategy, we simply set the total number of nurses as the size of rows
in the fragment. Based on the domain knowledge that most pattern and sequence related constraints
concern one week length, i.e. full-time nurses work 4 or 5 shifts per week and part-time nurses work 2
or 3 shifts per week, etc, we set the length of rows in the fragment as 7 (days), as shown in Fig 1. This
iterative selection of fragments can be seen as a sliding window with a fixed length over the roster in
each iteration of the LNS loop. This is a basic and static strategy in choosing the fragment to relax and
re-optimize in the LNS scheme.

Figure 1: Fixed length sliding window as the fragment (neighborhood) in the LNS approach

3.2 Sliding window with an overlap as the neighborhood

Due to the row constraints concerning shift patterns and sequences, optimizing only the variables within
the fixed length sliding window usually leads to violations of constraints over the variables on the bound-
ary of these windows, as the row constraints upon the variables over the boundary interleave with the
variables outside of the window. For example, as shown in Fig 2, if we relax and re-optimize the variables
within the sliding window while freezing all variables outside of the window, the shift sequence of NNN
for nurse H will be seen as violating the constraint of length of consecutive night shifts. In strategy 2, we
consider the overlap between these sliding windows, i.e. adding the variables over the boundaries into
the fragment by including different number of related variables which are involved in those constraints
over the boundary.

3.3 Regions of low quality detected by cost of soft constraints

As mentioned above, the success of LNS depends on the adequacy of neighbourhood defined with regard
to the problematic part of the solution assignment and the choice of neighbourhood size. In the first two
strategies, the fragment (neighborhood) is set as is set as the length of one week (columns) for all number
of nurses (rows). These are efficient strategies when the problem is small, i.e. with 8 or 10 nurses.
However, as the solution space increases for large problems, the computational time to re-optimize the
fragment is more expensive. In strategy 3, q rows of manageable size and of low quality in the roster are
detected based on the cost p(c) of soft constraint c. The number of rows q is a thus parameter here. For
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Figure 2: Sliding window with the consideration of overlap as the fragment (neighborhood) in the LNS
approach

example, in Fig 3, two rows (schedules for nurses C and F) with the highest cost are chosen and added
to the fragment.

Figure 3: Region of low quality in the roster detected by constraint propagation as the fragment (neigh-
borhood) in the LNS approach

The size of column (length of the selected rows) added to the fragment is decided by the information
gained from constraint propagation. The idea is that when a variable is relaxed and re-initialized, prop-
agation occurs. By tracing the volume of domain reduction, we can detect which variables are linked
to the relaxed variables and use this information to determine the next variable to relax. The complete
method using strategy 3 is described in Table 2. For each soft constraint c a variable list is maintained
storing the variables linked by this constraint. Both the size of this list and the way it is updated are
parameters of this algorithm. In our experiment, the variable list is consists of variables linked by the
constraint involved and variables propagated by this constraint. We set the size of the list as 7 (due to
the weekly structure in the roster). We also notice that the list is almost always full in the experiments,
indicating that the dependencies of variables are quite tight, i.e. highly constrained. The algorithm loops
until the size of fragment’s search space is reasonable large.

A possible extension of the algorithm may be made to further improve the LNS search. Instead of a
fixed fragment of size s, we can adjust the desired fragment size s by adding a multiplicative correction
factor to s, i.e. fragment of size set as s× ε , where ε is continuously updated throughout the search pro-
cess. Future investigations will be carried out to analyze the performance of the approach with different
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Table 2: The constraint directed large neighborhood search approach using strategy 3
While Fragment size is smaller than the desired size s

If variable list is empty then
Randomly choose a linked variable

Else choose a variable in the variable list
End if
Reinitialize the chosen variable and propagate
Update the variable list: add propagated variables to the list
End if

End while

sizes of the fragment, i.e. the fixed desired size s and the desired adjusted size s× ε .

3.4 Searching heuristics

After the fragment has been chosen by either the problem specific strategies or the general strategy,
the variables in the fragment are relaxed and re-optimized while all other variables are frozen to their
existing assignments. The standard branch-and-bound (B&B) search in constraint programming is used
with respect to the objective function for the whole problem, i.e. sum of violations as defined in section
2.2. Within the B&B search, we compare two variable selection heuristics to search for the optimal
solution for the chosen fragment.

As shown in Table 1, when we re-optimize the chosen fragment, we can either follow the first im-
proved rule or the best improved rule. First improved rule stops the optimization procedure as soon as
the first improved solution is found; while the best improved rule solves the problem to optimal. We use
the best improved rule on small size problems and the first improved rule on large size problems.

4 Experimental results

In this work, we evaluate our constraint-directed LNS upon a benchmark nurse rostering problem GPost,
public available at http://www.cs.nott.ac.uk/∼tec/NRP. The problem consists of 8 nurses who work on 3
different shift types over a scheduling period of 28 days. Other problems with different characteristics
will be tested in our future work. In all experiments, 10 runs are carried out on an Intel Core 1.86GHz
machine with 1.97G memory, from which average results are presented. We use the callable library in
ILOG solver 6.2 as the CP solver and implement all algorithms in C++.

4.1 Search heuristics

We first test several variable selection heuristics to identify the efficient search heuristics in re-optimizing
the chosen fragment. The variable order heuristics include:

• MinSizeInt: chooses the variable with the smallest domain

• MaxSizeInt: chooses the variable with the largest domain

• MinMinInt: chooses the variable with the least minimal bound

• MaxMinInt: chooses the variable with the greatest minimal bound
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Table 3: Evaluation of variable selection heuristics
No. of choice points No. of fails CPU(sec)

MinSizeInt 8966 7995 1.3
MaxSizeInt 10706 9723 1.5
MinMinInt 10703 9720 1.5
MaxMinInt 11978 10995 1.8
MinMaxInt 9290 8319 1.2
MaxMaxInt 12603 11620 1.8

Table 4: Result of fixed length sliding window as the fragment over iterations in the LNS approach
Length Initial solution Iter 1 Iter 2 Iter 3 Iter 4 CPU(sec)

4 49 38 33 32 31 1.56
7 49 32 31 24 22 1.78
14 49 31 16 10 8 1.80

• MinMaxInt: chooses the variable with the least maximal bound

• MaxMaxInt: chooses the variable with the greatest maximal bound

Within the same constraint programming model for the problem, we compare in Table 3 these variable
selection heuristics with respect to the number of choice points during the tree search and the number
of fails encountered. Among the 6 heuristics tested, we can see that the MinSizeInt and MinMaxInt
heuristics perform better than others but no statistically significant differences between themselves can
be identified. We just use MinSizeInt in the follow re-optimization procedures within the LNS approach.

4.2 Comparison of the three fragment selection strategies

The first fixed sliding window strategy chooses the fragment of variables, represented as row*column,
to be relaxed and re-optimized. The size of row is the total number of nurses while the size of column
is 7 and 14 (weekly length). We also set a small size of 4 as the column size for testing purposes. The
best improved rule is used on this problem. Table 4 presents the cost of solutions over iterations, from
which we can see that choosing large length of sliding window obtains better result as there is more
chance to obtain improved solutions within a larger neighboring size of the solution space. Meanwhile
the searching time spent is acceptable for this problem.

To evaluate strategy 2 concerning a variable sliding window with overlap, different lengths of the
column are compared. Due to the weekly related constraints in the problems, we set the basic length of
the column as 7 (days). Based on this, we also tested different lengths of 11, 13 and 15 days. The results
presented in Fig 4 demonstrate that with the largest length of sliding window = 15, better improved
solutions can be obtained within less number of iterations.

We test strategy 3 based on the constraint and propagation directed fragment, and compare it with the
above two strategies in Fig 5. Results demonstrate that strategies 2 and 3 perform similarly, both better
than strategy 1. LNS with strategy 2 and strategy 3 obtained intervening objective values over iterations,
partially because the length of columns in strategy 2 is similar to that of strategy 3, but the size of rows
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of strategy 2 is much larger than that of strategy 3. Thus strategy 2 searches a much larger search space
than that of strategy 3. In our future work we will test these strategies with adaptively adjusted parameter
s on large size problems to further investigate the effect of fragment selection based on online constraint
propagation during the search.

Figure 4: Results of choosing variable length sliding window with the consideration of overlap as the
fragment

Figure 5: Comparison of the three fragment selection strategies in the LNS approach

5 Conclusions and future work

In this paper we investigate a constraint-directed large neighborhood search approach for solving nurse
rostering problems by integrating constraint programming techniques with a local search approach. In-
dentified by current research in the literature, a key factor in the large neighborhood search approach is
the design of neighborhoods i.e. the choice of related variables to be relaxed and re-optimized within the
fragment. We focus on designing several tailored and general fragment selection strategies and compared
their effect upon the performance of the large neighborhood search approach. It is shown that both the
domain specific knowledge and the information of constraint propagation contribute to identifying the
appropriate fragment in the large neighborhood search. Results have been analyzed to recommend future
work.
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In this work, we only present the preliminary results of our proposed approach applied on solving an
easy problem. Further investigations are still ongoing to extend the research pursued in this paper in the
following two directions:

• Larger benchmark nurse rostering problems will be tested to bring more insightful conclusions on
our constraint directed large neighborhood search. We will also compare the approach with other
existing algorithms in the literature.

• More intelligent strategies concerning domain reduction and variable bounding, etc, will be inves-
tigated in the large neighborhood search approach.
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